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1 Introduction

In previous work we argued that semantic discrepancies between different on-
tologies do not reduce to the fact that a concept (relation) in an ontology is
somehow related to another concept (relation) in another ontology. On the con-
trary, semantic discrepancies are likely to be more articulate; e.g. the same “real
world” entity can be modelled as a concept or a relation. For example, consider
an ontology modelling orders by means of a PurchaseOrder class with attributes
(i.e. functional roles) holding the details of the actual order (buyer, good, date,
delivery option, etc.). In a second ontology not all the details on the purchase
orders are modelled, and the information is summarised into the BoughtBy role
ranging from Taxable to Person.

This kind of differences are among the so-called schematic differences, well
studied in schema integration (see, e.g., [1]) but still not deeply investigated in
ontology integration. To address this problem we introduced in [3] a Distributed
Description Logic (DDL for short) able to represent heterogeneous mappings
involving a class and a relation, in addition to mappings between homogeneous
components (i.e. concepts into concepts, and roles into roles). This formalism
enables the modeller to express the semantic relation between concepts and roles
(and vice-versa). For example, the modeller can map the concept PurchaseOrder
of Ontology 1 and the role BoughtBy of Ontology 2 via, so-called, heterogeneous
bridge rules like

1 : PurchaseOrder
w
−� 2 : BoughtBy (1)

stating that the class PurchaseOrder of Ontology 1 is more specific than the
role BoughtBy of Ontology 2.

In this paper we extend the formalism of DDL further in order to represent
additional mappings involving concepts and relations. In particular we study how
to extend heterogeneous mappings in order to express the fact that a concept
in an ontology is the reification of a relation contained in another ontology. The
main idea is the following: let us assume for the moment that PurchaseOrder
and BoughtBy belong to the same ontology. If the class PurchaseOrder reifies
the relation BoughtBy, by means of two (functional) roles Buyer and Good, then
we have that:
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Fig. 1. Reification in distributed ontologies.

(a) instances d of the concept PurchaseOrder represent pairs of objects (d1, d2)
of the role BoughtBy; and additionally

(b) roles Buyer and Good exist, and connect the PurchaseOrder d representing
the BoughtBy pair (d1, d2) to the two components d1 and d2 of the pair.

Let us examine the case in which PurchaseOrder and BoughtBy belong to
different ontologies. If we want to model the fact that the class PurchaseOrder
in Ontology 1 reifies the relation BoughtBy in Ontology 2, then we can maintain
condition (a), which is captured in DDL by heterogeneous bridge rules like (1),
but we have to modify condition (b) slightly. In fact, assume that po123 is the
purchase order in Ontology 1 reifying the pair (airdryer, john) of BoughtBy in
Ontology 2. Since the two ontologies are interpreted over different domains, we
cannot require (or force) that the two objects connected to po123 via Buyer and
Good are exactly airdryer and john, as they belong to a different domain of
interpretation. Nevertheless domains can be related, as represented by the dotted
arrows in Figure 1. We therefore “relax” the property (b) into the following

(b’) two (functional) roles exist, and connect the PurchaseOrder d representing
the BoughtBy pair (d1, d2) to two objects d′1 and d′2 which “correspond” (in
a sense to be specified) to the objects d1 and d2 in Ontology 2 (see Figure 1).

In this paper we develop this intuition into a logic framework, providing a
DDL enriched with new bridge rules, called reification bridge rules, able to for-
malise the aspects (a) and (b’) above. We provide a semantics for the reification
bridge rule, different examples of how to use them to model heterogeneous rep-
resentations of binary relations, and a sound and complete axiomatisation of
the effects of all mappings from a source ontology to a target ontology. This is
the crucial step towards the proof of completeness for an arbitrary network of
ontologies in the style as the one presented in [6].

2 DDL Syntax

Given a non empty set I of indexes, used to identify ontologies, let {DLi}i∈I be
a collection of description logics. For each i ∈ I let us denote a T-box of DLi as
Ti. In this paper, we assume that each DLi is weaker or at most equivalent to
SHIQ, enriched with role union and difference. Namely, we allow complex role
expressions of the form RtS, and P u¬(Q1tQ2t . . .tQn). In [8] it is shown as
this language can be encoded in ALCQIb, which corresponds to ALCQI with
role union, conjunction and difference (see [8]).



We call T = {Ti}i∈I a family of T-Boxes indexed by I. To make every
description distinct, we prefix it with the index of ontology it belongs to. For
instance, the concept C that occurs in the i-th ontology is denoted as i : C.

Semantic mappings between different ontologies are expressed via collections
of bridge rules. In the following we use A,B,C and D as place-holders for con-
cepts and R,S, P and Q as place-holders for roles. We instead use X and Y to
denote both concepts and roles.

Definition 1 (Bridge rule). A bridge rule from i to j is defined as follows:

– homogeneous bridge rule

i : X v−→ j : Y (into bridge rule) (2)

i : X w−→ j : Y (onto bridge rule) (3)

– heterogeneous bridge rule

i : C
v
−� j : R (concept-into-role bridge rule) (4)

i : C
w
−� j : R (concept-onto-role bridge rule) (5)

i : R
v
−� j : C (role-into-concept bridge rule) (6)

i : R
w
−� j : C (role-onto-concept bridge rule) (7)

– reification bridge rule

i : P −� j : R#k (attribute to role bridge rule) (8)

i : R#k −� j : P (role to attribute bridge rule) (9)

where X and Y in a bridge rule are either both concepts, or both roles, C is a
concept, R and P are atomic roles and k ∈ {1, 2}.

Bridge rule (2) states that, from the j-th point of view the concept (role) X
in i is less general than its local concept (role) Y . Similarly, the onto bridge rule
(3) expresses the fact that, according to j, concept (role) X in i is more general
than its own concept (role) Y . Bridge rules (4)–(7) express similar mappings,
but involve heterogeneous elements of the ontologies. For instance, bridge rule
(4) states that, from the j-th point of view the concept C in i is less general
than its local role R. Bridge rules (8) and (9) are novel bridge rules introduced
in this paper. (8) is used to express the fact that, from the j-th point of view,
the role P in ontology i corresponds to the k-th argument of its own relation R.
Vice-versa bridge rule (9) expresses the fact that, from the j-th point of view,
the k-th argument of the relation R in ontology i correspond to role P in j.
Bridge rules (8) and (9) can be used, together with the heterogeneous bridge
rules to express reification mappings between different ontologies. For instance,
the bridge rules

1 : PurchaseOrder
≡
−� 2 : BoughtBy (10)

1 : Good −� 2 : BoughtBy#1 (11)
1 : Buyer −� 2 : BoughtBy#2 (12)



will be used in Section 4 to express the reification relation between PurchaseOrder
and BoughtBy introduced in Section 1. Notationally, i : X ≡−→ j : Y indicates
the existence of both an into and an onto bridge rule between i : X and j : Y .

A distributed T-box (DTB) T = 〈{Ti}i∈I ,B〉 consists of a collection {Ti}i∈I

of T-boxes, and a collection B = {Bij}i 6=j∈I of bridge rules between them.3

3 DDL Semantics

The semantic of DDL assigns to each ontology Ti a local interpretation domain.
The first component of an interpretation of a DTB is a family of interpreta-
tions {Ii}i∈I , one for each T-box Ti. Each Ii is called a local interpretation and
consists of a possibly empty domain ∆Ii and a valuation function ·Ii , which
maps every concept to a subset of ∆Ii , and every role to a subset of ∆Ii ×∆Ii .
The interpretation on the empty domain is used to provide a semantics for dis-
tributed T-boxes in which some of the local T-boxes are inconsistent. The reader
interested in this aspect of DDL can refer to [6].

The second component of the DDL semantics are families of domain relations.
Domain relations define how the different T-box interact and are necessary to
define the satisfiability of bridge rules.

Definition 2 (Domain relation). A domain relation rij from i to j is a subset
of ∆Ii ×∆Ij .

Domain relations are used to interpret homogeneous bridge rules and are
illustrated in detail in [6], but do not provide sufficient information to interpret
heterogeneous bridge rules. As an example, in order to evaluate the heteroge-
neous bridge rule (10) we would like to map a purchase order, say order po123,
of ontology 1 into a triple of the form

BoughtBy[airdryer, john]

composed of elements of Ontology 2, with the intuitive meaning that po123 is
the purchase order in ontology 1 which correspond to the bought by relation
holding between airdryer and john in Ontology 2.

Let us formally introduce a triple R[d1, d2]. Let Ii be a local interpretation
for DLi. Let R be the set of all atomic roles of DLi. We indicate with [R]Ii the
set of all triples R[d1, d2] such that R ∈ R and (d1, d2) ∈ RIi . We call [R]Ii the
set of admissible triples for Ii. Given a role R ∈ R, we write [R]Ii to denote all
the admissible triples in [R]Ii of the form R′[d1, d2] with R′ v R.

Definition 3 (Concept-role and role-concept domain relation). A concept-
role domain relation crij from i to j is a subset of ∆Ii × [R]Ij such that if
(d,R′[d1, d2]) ∈ crij and R′Ij ⊆ RIj with R atomic role, then (d,R[d1, d2]) ∈
crij. A role-concept domain relation rcij from i to j is a subset of [R]Ii ×∆Ij

such that if (R′[d1, d2], d) ∈ rcij and R′Ii ⊆ RIi with R atomic role, then
(R[d1, d2], d) ∈ rcij.
3 As in [3] we require that for every bridge rule between roles i : P −→ j : R in Bij ,

also i : inv(P ) −→ j : inv(R) is in Bij (where inv(X) is the inverse of X).



The domain relation crij represents a possible way of mapping elements of
CIj into pairs of RIi , seen from j’s perspective. For instance,

(po123, BoughtBy[airdryer, john]) ∈ cr12 (13)

represents the fact that po123 is an object in ontology 1 corresponding to the
BoughtBy relation between airdryer and john in ontology 2. The additional
condition on RIj ⊆ R′Ij above is used to ensure that crij is consistent with the
hierarchy of roles. Analogously for rcij .

Definition 4 (Distributed interpretation). A distributed interpretation I
of a DTB T consists of the 4-tuple 〈{Ii}i∈I , {rij}i 6=j∈I , {crij}i 6=j∈I , {rcij}i6=j∈I〉.

In order to define the satisfiability of bridge rules we introduce some func-
tional notation for domain relations and for roles. Given a (regular, concept-role,
role-concept) domain relation drij , we write drij(t) to denote the set of objects
(elements of the domains or triples) t′ such that (t, t′) is in drij . Analogously,
given a set T = {t1, t2, . . .}, we write drij(T ) to denote the union of all drij(ti)
with ti ∈ T (we use the same notation with the inverse dr−ij of the relation).
Finally, given a role P , we use P Ii(t) to denote the set of objects t′ such that
(t, t′) belongs to P Ii .

Definition 5 (Satisfiability of bridge rules). A distributed interpretation I
satisfies a bridge rule br, written as I |= br, when

– homogeneous bridge rules

I � i : X v−→ j : Y if rij(XIi) ⊆ Y Ij (14)

I � i : X w−→ j : Y if rij(XIi) ⊇ Y Ij (15)

– heterogeneous bridge rules

I |= i : C
v
−� j : R if crij(CIi) ⊆ [R]Ij (16)

I |= i : C
w
−� j : R if crij(CIi) ⊇ [R]Ij (17)

I |= i : R
v
−� j : C if rcij([R]Ii) ⊆ CIj (18)

I |= i : R
w
−� j : C if rcij([R]Ii) ⊇ CIj (19)

– reification bridge rules

I |= i : P −� j : R#k if for all (d,R[d1, d2]) ∈ crij , P Ii(d) ⊆ r−1
ij (dk) (20)

I |= i : R#k −� j : P if for all (R[d1, d2], d) ∈ rcij , P Ij (d) ⊆ rij(dk) (21)

Satisfiability of into bridge rules forces the appropriate domain relation to
map objects of the left hand side element of the bridge rule into objects of the
right hand side element. Analogously all the onto bridge rules ensure that each
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Fig. 2. Semantics of reification rule (8).

object of the right hand side element has at least a pre-image, via the appropriate
domain relation, which is in the left hand side element of the rule.

Satisfiability of reification bridge rules establishes how concept-role (role-
concept) domain relations interact with the regular domain relation rij . For
instance, if object po123 in Ontology 1 reifies the pair (airdryer, john) in On-
tolgy 2 (via cr12), then the bridge rule (11) forces the domain relation r12 to
relate the object(s) connected po123 via the attribute Good, with the first com-
ponent of the pair (airdryer, john). Analogously with the reification rule (11),
which relates the attribute Buyer to the second component of the pair, as shown
in Figure 2. The meaning of the reification rule (9) is similar.

A distributed interpretation I satisfies DTB T if all the T-boxes Ti are satis-
fied by their local interpretation Ii, and if I satisfies all the bridge rules in Bij .
Entailment and satisfiability of a single concept are defined in the usual way by
means of the satisfiability of a distributed T-Box. The reader interested in the
formal definitions can refer to [3].

4 Reification and Undecidability results

Among the driving motivations to enrich the expressiveness of bridge rules by
means of the introduction of the so called reification rules there is the possibility
of fully capture reification. In fact, heterogeneously relating roles and concepts
doesn’t capture the key reification modelling practice of using attributes to rep-
resent the participants in a given tuple (e.g. see [5]).

As described in the previous sections, the reification bridge rules serve exactly
to this purpose. In fact, they relate roles and “projections” of relations (in this
case just binary, since they are roles) along the first or the second components.
Note that the given semantics does more than simply relating domains and
ranges of the involved roles. This is enforced by the appropriate involvement of
the concept to role and role to concept relations.

In this section we show, by means of reification examples and by showing that
the unconstrained language leads to undecidability, that the proposed semantics
genuinely increase the expressiveness of the language.

Let us consider the purchase order example introduced in Section 1. In Ontol-
ogy 1 we assume also the “reification” axiom PurchaseOrder v =1Buyer.Customeru
=1Good.Hardware which states that PurchaseOrder has two mandatory func-
tional roles and specifies their range, while in Ontology 2 we still have the two
concepts 2 : Person and 2 : Taxable but we have no information on the domain



and range of 2 : BoughtBy. Let us connect the two ontologies via bridge rule
(10), which maps concept 1 : PurchaseOrder into role 2 : BoughtBy, plus the
following bridge rules:

1 : Customer v−→ 2 : Person 1 : Hardware v−→ 2 : Taxable

which map concepts 1 : Customer, 1 : Hardware into concepts 2 : Person and
2 : Taxable respectively. With these rules only, nothing can be said about the
domain and range of 2 : BoughtBy. This because the combination of homoge-
neous and heterogeneous bridge rules alone does not generate any effect, since
the domain relation and the concept-role domain relations do not affect each
other. However, the addition of the reification rules (11) and (12) makes the dif-
ferent domain relations interact and forces the domain and range of BoughtBy
to Taxable and Person, respectively.

An analogous situation that shows the flexibility of the framework is when
the role, on one side of the heterogeneous bridge rule, has additional constraints
incompatible with the concept representing its reification. Let us assume an
ontology in which a marriage is represented by means of a concept 1 : Marriage
with two attributes 1 : Husband and 1 : Wife restricted to two disjoint concepts
1 : Male and 1 : Female. On the other side we have a symmetric role 2 :
MarriedTo whose domain and range are the union of the disjoint concepts 2 :
Male and 2 : Female. If we proceed as in the last example with the rules below,
2 : MarriedTo is going to be empty in any model for the distributed system.

1 : Marriage
≡
−� 2 : MarriedTo (22)

1 : Wife −� 2 : MarriedTo#1 1 : Female v−→ 2 : Female (23)

1 : Husband −� 2 : MarriedTo#2 1 : Male v−→ 2 : Male (24)

The reason is that if a pair (x, y) is in the local interpretation of 2 : MarriedTo,
then the bridge rules (22) and (23) force x to be in the interpretation of 2 :
Female. But because of symmetry also the pair (y, x) is in the local interpretation
of 2 : MarriedTo and the bridge rules (22) and (24) force x to be also in the
interpretation of 2 : Male, which is disjoint from 2 : Female.

The problem is that the concept 1 : Marriage does not represent exactly the
reification of 2 : MarriedTo, but of a non-symmetric sub-role of 2 : MarriedTo in
which domain and range are disjoint. The bridge rules, as stated in (22)–(24), do
not capture correctly this situation. Obviously, there are several ways of “fixing”
the problem: the first is to add an atomic role 2 : MarriedToFemale indicating
the domain restriction of MarriedTo over the concept Female and use this in
rules (22)–(24).4 However, in the spirit of DDL we should adopt a method which
doesn’t require modifications in the local ontologies. In particular, the flexibility
of bridge rules enables the relaxation of rule (22) into the following

1 : Marriage v−→ 2 : MarriedTo
4 We can encode the domain restriction of R over C, often expressed as R � C, as

R�C v R, C v ¬∃(R u ¬R�C), and ∃R�C v C.



which states that 1 : Marriage is more specific that 2 : MarriedTo. This rule, in
fact, does not force the existence of an object in 1 : Marriage for each pair in
2 : MarriedTo.

A strong indication that the proposed semantics properly captures the reifi-
cation mechanism can be understood in the fact that it enables the encoding of
role axioms of the form R ◦ S v T . Note that the adopted Description Logics
doesn’t allow axioms of that sort. The encoding can be done by means the fol-
lowing set of bridge rules, which is equivalent to of the axiom R◦S v T asserted
in the second ontology.

1 : T ′#1 −� 2 : R− 1 : T ′#2 −� 2 : S

1 : T ′ v−→ 2 : T 1 : T ′
w
−� 2 : ∃R−.> u ∃S.>

To show that these axioms imply the above role axiom we should consider the
case in which the local interpretation for 2 contains both R−(x, x1) and S(x, x2).
Because of the fourth bridge rule there should be a pair (T ′[y1, y2], x) in rc12,
where T ′[y1, y2] is an admissible triple (i.e. T ′(y1, y2) is in the local interpretation
of 1). The reification rules ensure that x1 and x2 are in the image of y1 and y2
respectively (i.e. xi ∈ r1,2(yi)). Finally, the third (homogeneous) rule implies
that each pair in r1,2(y1) × r1,2(y2) is in the interpretation of T ; this ends the
proof, showing that T (x1, x2) is satisfied in the local interpretation of 2.

This expressiveness shows that the semantics really captures the intuition
behind reification; however, it shows also that the satisfiability problem for the
resulting DDL is undecidable. In fact, even simple Description Logics which allow
unrestricted axioms of the form R ◦ S v T are undecidable (see [9]). In order to
guarantee decidability, we should restrict the interaction of the bridge rules.

5 The effects of bridge rules

Bridge rules can be thought of as inter-theory axioms, which constrain the models
of the theories representing the different ontologies. An important characteristic
of mappings specified by DDL bridge rules is that they are directional, in the
sense that they are defined from a source ontology to a target ontology, and
they allow to transfer knowledge only from the source to the target, without any
undesired back-flow effect. Here we start by characterising the effects of mappings
of a simple DTB 〈Ti, Tj ,Bij〉, composed of two T-boxes Ti (the source) and Tj

(the target) and a set of bridge rules Bij from i to j, and we prove that DDL
extended with reification bridge rules still fulfils the requirement of directionality:

Proposition 1. 〈Ti, Tj ,Bij〉 |= i : X v Y if and only if Ti |= X v Y

The proof can be found in [4]. According to Proposition 1, bridge rules from i
to j affect only the logical consequences in j, and leave the consequences in i
unchanged. In the following we characterise the knowledge propagated from i
(the source) to j (the target) using a set of propagation rules of the form:



bridge rules from i to j
axioms in i
axiom in j

which must be read as: if Ti entails all the axioms in i, and Bij contains the
bridge rules from i to j, then 〈Ti, Tj ,Bij〉 satisfies axioms in j.

An extensive description of the effects of homogeneous and heterogeneous
bridge rules can be found in [3]. In this section we investigate the additional
effects induced by the reification bridge rules.

Simple propagation rules which describe the effects of the reification bridge
rules in a scenario in which concepts are mapped to roles are:

i : C
w
−� j : R

i : P → j : R#1

i : A
v−→ j : B

i : C v ∃P.A

j : ∃R.> v B

(25)

i : C
w
−� j : R

i : Q→ j : R#2

i : A
v−→ j : B

i : C v ∃Q.A

j : > v ∀R.B

(26)

i : C
w
−� j : R

i : P1 → j : R#1

i : P2 → j : R#2

i : A1
v−→ j : B1

i : A2
v−→ j : B2

i : C v ∃P1.A1 t ∃P2.A2

j : ∃R.¬B2 v B1

(27)

These effects propagate knowledge from i to j and allow to infer information
over the domain and range of the role i : R. Let us go back to the purchase order
example of Section 4. Rules (25) and (26) are the rules that allow to infer that
2 : Taxable and 2 : Person are the domain and range of BoughtBy, respectively.
Note that, we still obtain these inferences if we relax the “reification” axiom
to weaker axioms which state only the existence of the roles Buyer and Good
and their ranges, and omit functionality. Effect (27) considers the scenario in
which we can guarantee, for each PurchaseOrder d, the existence of at least one
role among Buyer and Good, written as PurchaseOrder v ∃Buyer.Customer t
∃Good.Hardware. In this case we obtain that for each pair (d1, d2) of BoughtBy,
we can classify at least one among d1 and d2 and say that d1 is a Taxable or d2

is a Person.
Simple effects, which can be considered the “counterpart” of (25)–(27) in a

scenario in which roles are mapped to concepts, are:

i : R
w
−� j : C

i : R#1 → j : P

i : A
v−→ j : B

i : ∃R.> v A

j : C v ∀P.B

(28)

i : R
w
−� j : C

i : R#2 → j : P

i : A
v−→ j : B

i : > v ∀R.A

j : C v ∀P.B

(29)

i : R
w
−� j : C

i : R#1 → j : P1

i : R#2 → j : P2

i : A1
v−→ j : B1

i : A2
v−→ j : B2

j : ∃R.¬A2 v A1

i : C v ∀P1.B1 t ∀P2.B2

(30)

Bridge rule (28) allow to propagate information about the domain of the
relation R, to all the P -successors of C, when P corresponds to the first compo-
nent of the pairs in R. Analogously (29) propagates the information about the



range of R, if P corresponds to the second component of the pairs in R. Finally,
(30) is the analogous of the effect described in (27). In fact if only know how to
classify (at least) one of the two components of the relation R, then we can infer
knowledge about at least one of the Pi-successors of C (if any).

In addition to the effects shown above, imposing reification bridge rules from
roles to concepts also allows to infer the following effect

i : R
w
−� C

i : R#1 −� P1

i : R#2 −� P2

i : R
v−→ j : Q

j : P−1 ◦ P2�C v Q

(31)

which correspond to the encoding of axioms of the form R ◦S v T discussed in
Section 4. P2�C expresses the domain restriction of P2 over C (see Section 4 for
the encoding).

The general form of the propagation rules is given in [4] and is omitted here
for lack of space. Given two T-boxes Ti and Tj , and a set of bridge rules Bij from
DLi to DLj , these general rules provide the basis for the definition of an operator
Bij(·) which takes as input Ti and produces a T-box Tj , augmented with the
conclusions of the rules. The theorem below states that the effects produced
by the general rules characterise all, and only, the knowledge transferred to the
target ontology via the current set of bridge rules.

Theorem 1 (Soundness and Completeness of Bij(·)). Let Tij = 〈Ti, Tj ,Bij〉
be a distributed T-box, where Ti and Tj are expressed in the ALCQIb description
logic. Then Tij |= j : X v Y ⇐⇒ Tj ∪Bij(Ti) |= X v Y .

The proof can be found in [4]. The generalisation for an arbitrary network of
ontologies can be obtained following the technique used in [6].

6 Discussion

In this paper we have extended the framework presented in [3] in order to prop-
erly capture the reification modelling paradigm. In [3] it was possible to assert
bridge rules involving heterogeneous ontology terms, but is was not possible to
link attributes to domain or range of roles. This limitation seriously hamper the
possibility of mapping relations with their reified counterpart.

The need for mappings enabling the reconciliation modelling differences has
been underlined in several works (e.g. [7, 6, 2]). However, to the best of our
knowledge, our is the first framework to capture heterogeneous mappings. The
closest approach to ours is in [2], where it is presented a framework that allows
any kind of arbitrary heterogeneous mapping, which are evaluated in a common
“reference” interpretation. Appropriate functions take care of relating local do-
mains with the reference one (equalising functions). However, these functions
maps just elements of local domains and not e.g. pairs. In this way can be seen



as our “plain” bridge relations; so, hardly providing the necessary semantic ex-
pressiveness. A more detailed discussion on related works is contained in [3].

The work presented here leaves a few open problems which need to be
addressed in order to provide an effective semantic framework to reconciliate
schematic differences between ontologies. First of all we need to devise an intu-
itive syntax restriction which guarantees decidability. Roughly speaking, once a
role in i has been “reified” into a concept in j, then it cannot be also mapped
in a role in j. The rationale behind this is the fact that having in the same on-
tology both a reified role and the plain role itself doesn’t seem a good modelling
practice. Obviously, adding a restriction interacts with the role hierarchy, which
depends on the (heterogeneous) mapping themselves; therefore the proper syn-
tactic restriction is not obvious. Note that once the decidability has been proven,
the propagation rules provide a naive fixpoint-based algorithm for checking sat-
isfiability. However, investigating a direct distributed tableaux-based algorithm
in the style of [6] would provide additional insight into the framework and room
for direct optimisation. Finally, up until now only the terminological reasoning
has been investigated. We are currently looking into the problem of establishing
mapping among individuals and considering the problem of instance checking
(i.e. query answering w.r.t. unary acyclic conjunctive queries).
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