
A Hybrid Tableau Algorithm for ALCQ

Jocelyne Faddoul1, Nasim Farsinia1, Volker Haarslev1, and Ralf Möller2

1 Concordia University, Montreal, Canada
{j faddou, n farsin, haarslev}@encs.concordia.ca

2 Hamburg University of Technology, Hamburg, Germany
r.f.moeller@tuhh.de

Abstract. We propose an approach for extending a tableau-based sat-
isfiability algorithm by an arithmetic component. The result is a hy-
brid satisfiability algorithm for the Description Logic (DL) ALCQ which
extends ALC with qualified number restrictions. The hybrid approach
ensures a more informed calculus which, on the one hand, adequately
handles the interaction between numerical and logical restrictions of de-
scriptions, and on the other hand, when applied is a very promising
framework for average case optimizations.

1 Introduction

Using the DL ALCQ one can express numerical restrictions on concepts with
(∃R.C), (≥ nR.C), and (≤ mR.C) as well as logical ones, or both.3 Such expres-
siveness means that a satisfiability algorithm for ALCQ not only needs to satisfy
logical restrictions, but also numerical ones. For example, deciding the satisfia-
bility of an ALCQ concept (≥ 5S.C u ≥ 5S.¬Du ≤ 2S.(C u ¬D)) consists of
finding a model with fillers for the role S such that at least 5 fillers are instances
of C, at least 5 fillers are instances of ¬D, and at most 2 fillers are instances
of (C u ¬D). Most DL tableau-like algorithms [4, 1, 5] test the satisfiability of
such a concept by blindly creating 10 fillers for S, 5 of which are instances of
C and 5 are instances of ¬D. Then a concept choose rule non-deterministically
assigns (C u¬D) or (¬C tD) to these fillers. Afterwards the at-most restriction
(≤ 2R.(C u ¬D)) is checked for satisfiability by non-deterministically merging
some pairs of fillers. Searching for a model in such an arithmetically un-informed
way could become very inefficient. Even by means of optimization techniques
such as the signature algorithm proposed in [2], they can easily fail with many
at-most restrictions or with large numbers used in at-least restrictions (≥ nR.C).

Our calculus, strongly inspired by [3, 6, 7], consists of a standard tableau for
ALC [1] modified and extended to work with a constraint solver such as a linear
inequation solver. The tableau rules encode numerical restrictions into a set of
inequations using the atomic decomposition technique [7]. The set of inequations
is processed by an inequation solver which finds a minimal integer solution (dis-
tribution of role fillers) satisfying the numerical restrictions, if one exists. The
3 A universal restriction could be considered as both numerical and logical restriction

(∀R.C ≡≤ 0R.(¬C)).

tableau rules then take care of making sure that such distribution of role fillers
also satisfies the logical restrictions. Considering a minimal distribution of fillers
ensures that a corresponding model is of minimum size.

Since this hybrid algorithm collects all the information about arithmetic ex-
pressions before creating any role filler, it will not satisfy an at-least restriction
by violating an at-most restriction and there is no need for a mechanism of merg-
ing role fillers. Moreover, it reasons about numerical restrictions by means of an
inequation solver, thus its performance is not affected by the values of num-
bers in qualified number restrictions. Considering all these features the proposed
hybrid algorithm is well suited to improve average case performance.

2 Preliminaries

We introduce the syntax and semantics of the description logic ALCQ along
with some definitions and pre-processing of input expressions.

Let NC, NR, be non-empty and pair-wise disjoint sets of concept names and
role names respectively. The set of ALCQ concepts is the smallest set such that:
(i) every concept name A ∈ NC is a concept, and (ii) if C, D are concepts and R
is a role in NR then ¬C, (CtD), (CuD), (∃R.C), (∀R.C), (≥ nR.C), (≤ nR.C)
with n a non-negative integer are also concepts.

An interpretation I = (∆I , ·I) consists of ∆I , a non-empty set of individuals,
called the domain of the interpretation and ·I an interpretation function which
maps each atomic concept A ∈ NC to a subset of ∆I , and each atomic role
R, S ∈ NR to a subset of ∆I × ∆I such that, for all ALCQ concepts, the
following must hold:

(C uD)I = CI ∩DI ,
(C tD)I = CI ∪DI , (¬C)I = ∆I \ CI

(∀R.C)I = {s ∈ ∆I | for all t ∈ ∆I such that 〈s, t〉 ∈ RI then t ∈ CI},
(∃R.C)I = {s ∈ ∆I | there exists t such that 〈s, t〉 ∈ RI and t ∈ CI},
(≥ nR.C)I = {s ∈ ∆I |#(FIL(R, s) ∩ CI) ≥ n},
(≤ nR.C)I = {s ∈ ∆I |#(FIL(R, s) ∩ CI) ≤ n},

Where # denotes the cardinality of a set, and FIL(R, s) is the set of R-fillers
of an individual s ∈ ∆I for some role R ∈ NR and is defined as: FIL(R,s) =
{t ∈ ∆I | 〈s, t〉 ∈ RI}. The set of all R-fillers for R is then defined as FIL(R) =⋃

s∈∆I FIL(R, s).
For an interpretation I, a concept C is satisfiable iff CI 6= ∅ which means

there exists an individual s ∈ CI as an instance of C. We abbreviate (≥ nR.>)
by (≥ nR) and (≤ mR.>) by (≤ mR) where > is equivalent to C t ¬C.

Arithmetic and Logical Expressions Given an ALCQ concept expression
with C, D concepts and R a role name, we distinguish between arithmetic and
logical expressions.

Expressions of the form (∃R.C), (≥ nR.C), and (≤ mR.C) hold arithmetic
restrictions; they specify a lower (upper) bound on the cardinality of the set of
R-fillers. For example, s ∈ (≥ 2R.C)I imposes that at least 2 individuals s1 and

s2 must be R-fillers of s, and therefore #FIL(R, s) ≥ 2. An (∃R.C) expression
can be converted to a (≥ 1R.C) expression, therefore we restrict our attention
to expressions of the form (≥ nR.C), and (≤ mR.C).

Expressions of the form (C uD), (C tD), and ¬C hold logical restrictions
using logical operators on concepts. We refer to these expressions as logical ex-
pressions. We give special attention to expressions of the form (∀R.C) since they
hold both arithmetic and logical restrictions due to the following equivalences:
s ∈ (∀R.C)I ⇔ s ∈ (≤ 0R.¬C)I , and s ∈ (∀R.C)I ⇒ FIL(R, s) ⊆ CI

In the following, we assume all ALCQ concept expressions to be in their
negation normal form (NNF) [5]. We use ¬̇C to denote the NNF of ¬C. We also
define clos(C) to be the smallest set of concepts such that: (a) C ∈ clos(C), (b)
if D ∈ clos(C) then ¬̇D ∈ clos(C), (c) if (E u D) or (E t D) ∈ clos(C) then
E, D ∈ clos(C), and (d) if (≥ nR.E) or (≤ mR.E) ∈ clos(C) then E ∈ clos(C).
The size of clos(C) is bounded by the size of C.

Re-writing ALCQ Arithmetic Expressions We define a concept operator
(∀(R\S).D) and a role implication operator (R v S) needed to preprocess the
input descriptions before applying the calculus. These operators are based on
set semantics such that given an interpretation I, then (∀(R\S).D)I = {s ∈
∆I | 〈s, t〉 ∈ RI and 〈s, t〉 /∈ SI ⇒ t ∈ DI} is satisfied and (RI ⊆ SI) is satisfied
for each role implication R v S ∈ ϕr, where ϕr is a set of role implications.
The definition of FIL(R,s) is extended to support the role implications in ϕr as
follows: FIL(R,s) = {t ∈ ∆I | 〈s, t〉 ∈ SI , with S v R ∈ ϕr}

Given an ALCQ concept E and an empty set ϕr of role implications, we
re-write the arithmetic expressions in E such that:

- each ≥ nR.C is replaced with ≥ nR′ u ∀R′.C, with R′ new in NR and
R′ v R new in ϕr

- each ≤ mR.D is replaced with ≤ mR′ u ∀R′.D u ∀(R\R′).¬D, with R′

new in NR and R′ v R new in ϕr

Let ϕ denote E after re-writing arithmetic expressions, ϕr is treated as a
special case role hierarchy where roles can have only one super role. It is easy
to see that such re-writing preserves satisfiability (see [7]); E is satisfiable iff ϕ
is satisfiable w.r.t ϕr.

Satisfiability of Arithmetic Expressions w.r.t ϕr Using Linear Inequa-
tion Solving. The atomic decomposition technique was used in [6] to reduce
reasoning about cardinalities of role fillers to inequation solving. We use the
same technique and reduction to decide the satisfiability of arithmetic expres-
sions w.r.t ϕr using an inequation solver, and refer the reader to [6] for a proof
about the correctness of this reduction.

For each role R ∈ NR that is involved in an arithmetic expression the
introduced sub-role R′ enables some hierarchy of roles. We define H(R) =
{R} ∪ {R′ | (R′ v R) ∈ ϕr} as the role hierarchy of R.

For every role R′ ∈ H(R), the set of R′-fillers forms a subset of the set of
R-fillers (FIL(R′) ⊆ FIL(R)). Using the atomic decomposition of H(R) we can

define all possible intersections between R-fillers as disjoint partitions. Each L ⊆
H(R) is associated with a unique partition P (L) =

⋂
R′∈L FIL(R′). Furthermore

P is the set of partitions defined for the decompositions of all hierarchies in ϕr,

P =
⋃

R∈NR

({L |L ⊆ H(R)} \
{L |L ⊆ H(R),∃R′ ∈ L, R /∈ L and R′ v R ∈ ϕr}

)

We do not consider L such that R′ ∈ L, R /∈ L for some (R′ v R) ∈ ϕr

since the corresponding partition P (L) does not satisfy FIL(R′) ⊆ FIL(R) and
therefore must be empty (please refer to Sect. 3.1 for an example).

We assign a variable name v for each partition L such that v is mapped to
a non-negative integer value n which denotes the cardinality of P (L). Let V be
the set of all variable names, we maintain a mapping between variable names
and their corresponding partitions using a function α: V → P such that for some
non-negative integer n assigned to a variable v we have n = #P (α(v)).

Since the partitions are mutually disjoint and the cardinality function is
additive, a lower (upper) bound n (m) on the cardinality of the set of role fillers
FIL(S) for some role S ∈ H(R) can be reduced to an inequation of the form∑

v∈VS
v ≥ n (

∑
v∈VS

v ≤ m). VS denotes the set of variable names mapped to
partitions for a role S and is defined as VS = {v ∈ V |S ∈ α(v)}. Thus, we can
easily convert an expression of the form (≥ nS) or (≤ mS) into an inequation
using ξ such that ξ(S,≥, n) =

∑
v∈VS

v ≥ n, and ξ(S,≤,m) =
∑

v∈VS
v ≤ m.

Each variable v occurring in an inequation can be mapped to a non-negative
integer p such that assuming α(v) = {R′, R′′}, this means that #(FIL(R′) ∩
FIL(R′′)) = p and the corresponding partition P (α(v)) must have p fillers.

Satisfiability of ALCQ Expressions In general logical and arithmetic ex-
pressions in ϕ share symbols in common, therefore, their satisfiability cannot be
decided independently. For this purpose we propose a hybrid algorithm, we de-
fine a tableau for ALCQ satisfiability and describe the algorithm in the following
sections.

Definition 1 (Tableau). We define a tableau as an abstraction of a model
for a concept expression ϕ. Let T = (S,L, E) be such a tableau for an ALCQ
concept expression ϕ with S a non-empty set of individuals, L: S → 2cl(ϕ) a
mapping between each individual and a set of concepts, and E : NR → 2S×S a
mapping between each role and a set of pairs of individuals in S, then we have
some s ∈ S with ϕ ∈ L(s). For all s, t ∈ S, C,D ∈ clos(ϕ), and R, S ∈ NR, and
RT (s) = {t ∈ S|〈s, t〉 ∈ E(R)}, the following properties must hold:

1. If C ∈ L(s) then ¬̇C /∈ L(s).
2. If C uD ∈ L(s) then C ∈ L(s) and D ∈ L(s).
3. If C tD ∈ L(s) then C ∈ L(s) or D ∈ L(s).
4. If ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S) then C ∈ L(t).
5. If ∀(R\S).C ∈ L(s) and 〈s, t〉 ∈ E(R), and 〈s, t〉 /∈ E(S) then C ∈ L(t).
6. If (≥ nR) ∈ L(s) then #RT (s) ≥ n.
7. If (≤ mR) ∈ L(s) then #RT (s) ≤ m.
8. If 〈s, t〉 ∈ E(R) and R ∈ H(S), then 〈s, t〉 ∈ E(S).

Lemma 1. An ALCQ concept ϕ is satisfiable iff there exists a tableau for ϕ.
The proof is similar to the one found in [5] and property 5 of this tableau

ensures that the semantics of the ∀(R\S).C operator is preserved.

3 A Hybrid Tableau Algorithm for ALCQ
In this section, we describe a hybrid algorithm which decides the existence of
a tableau for an ALCQ concept expression ϕ. Our algorithm is hybrid because
it relies on tableau expansion rules working together with an inequation solver,
the corresponding model is represented using a so-called completion graph.

Definition 2 (Completion Graph). A completion graph is a directed graph
G = (V, E,L,LE) where each node x ∈ V is labeled with L and LE such that
L(x) denotes a set of concept expressions, L(x) ⊆ clos(ϕ), and LE(x) denotes
a set of inequations that must have a non-negative integer solution. Each edge
〈x, y〉 ∈ E is labeled with a set, L(〈x, y〉) ⊆ P, of role names.

We denote by ξx the set of inequations in LE(x) obtained by converting the
at-least and at-most restrictions in L(x). An integer solution σ for ξx maps each
variable v occurring in ξx to a non-negative integer p such that σ is a distribution
of role fillers of x. The distribution is consistent with the lower and upper bounds
expressed in arithmetic restrictions and the hierarchy in ϕr.

Lemma 2 (Satisfiability of arithmetic expressions). The at-least and at-
most restrictions in L(x) are satisfiable w.r.t ϕr iff the encoded system ξx of
inequations in LE(x) admits a non-negative integer solution.4

A node x in V is said to contain a clash if either (i) {C, ¬̇C} ⊆ L(x), or (ii)
the set of inequations ξx ⊆ LE(x) does not admit a non-negative integer solution.
Case (ii) is decided by the inequation solver. When no rules are applicable or
there is a clash, a completion graph is said to be complete.

To decide the satisfiability of a concept expression ϕ, the algorithm starts
with the completion graph G = ({x}, ∅ ,{ϕ}, ∅). G is then expanded by applying
the expansion rules given in Fig. 1 until no more rules are applicable or a clash
occurs. When G is complete and there is no clash, this means that the arithmetic
expressions are satisfied as well as the logical ones: we have a model and the
algorithm returns that ϕ is satisfiable.

Strategy of Rule Application We assign the fil-Rule the lowest priority;
All other rules can be fired in arbitrary order. This strategy ensures that all
arithmetic expressions for a node x are encoded and satisfied by the inequation
solver before creating any role fillers. Which means that role fillers created are
never merged nor removed from the graph; a distribution of role fillers either
survives into a complete graph model or fails due to a clash. Note that this
strategy can also help in early clash detection in the case when a clash is triggered
by the inequation solver even before any role fillers are created.
4 This lemma is an adapted form of Theorem 1 in [6].

u-Rule If C uD ∈ L(x), and {C, D} * L(x)
then set L(x) = L(x) ∪ {C, D}.

t-Rule If C tD ∈ L(x), and {C, D} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {C} or set L(x) = L(x) ∪ {D}.

∀-Rule If ∀R.C ∈ L(x) and R ∈ L(〈x, y〉) with C /∈ L(y)
then set L(y) = L(y) ∪ {C}.

∀(\)-Rule If ∀(R\S).C ∈ L(x), and there exists y such that
R ∈ L(〈x, y〉) and S /∈ L(〈x, y〉)
then set L(y) = L(y) ∪ {C}.

≤-Rule If (≤ nR) ∈ L(x) and ξ(R,≤, n) /∈ LE(x)
then set LE(x) = LE(x) ∪ ξ(R,≤, n).

ch-Rule If there exists v occurring in LE(x) with {v ≥ 1,v ≤ 0} ∩ LE(x) = ∅
then set LE(x) = LE(x) ∪ {v ≥ 1} or set LE(x) = LE(x) ∪ {v ≤ 0}.

≥-Rule If (≥ nR) ∈ L(x) and ξ(R,≥, n) /∈ LE(x)
then set LE(x) = LE(x) ∪ ξ(R,≥, n).

fil-Rule If there exists v occurring in LE(x) such that
(i) σ(v) = m with m > 0, and
(ii) there are no m nodes y1 . . . ym with

L(〈x, yi〉) = α(v) for 1 ≤ i ≤ m
then create m new nodes y1 . . . ym and

set L(〈x, yi〉) = α(v) for 1 ≤ i ≤ m.

Fig. 1. Expansion rules for ALCQ

3.1 Explaining the Rules

The u-Rule, t-Rule and the ∀-Rule rules are similar to the ones in the standard
tableaux rules for ALC [1, 5].

∀(\)-Rule. This rule is used to ensure the semantics of the new operator ∀(R\S).D
which is based on set difference between roles and is defined in Sect. 2. This rule
ensures that all R-fillers are labelled, and together with the ch-Rule ensure
the same effect of the choose-rule in [1] needed to detect the unsatisfiability of
concepts like ((≥ 3R.C) u (≤ 1R.D) u (≤ 1R.¬D)).

≤-Rule and ≥-Rule. These rules are responsible for encoding the arithmetic
expressions in the label L(x) of a node x into a set (ξx) of inequations maintained
in LE(x). An inequation solver is always active and is responsible for finding an
integer solution σ for ξx or triggering a clash if no solution is possible (see
Definition 2). As long as each inequation added by one of these rules does not
trigger a clash, it means that the arithmetic expressions can be satisfied and
there exists a possible distribution of role fillers.

ch-Rule. This rule is used to check for empty partitions. Given a set of inequa-
tions in the label (LE) of a node x and a variable v corresponding to a partition
α(v) in P, we distinguish between two cases:

– (i) The case when a partition must be empty; this can happen when re-
strictions of individuals assigned to this partition trigger a clash. For in-
stance, if {∀R1.C, ∀R2.¬C} ⊆ L(x) then an individual y assigned to a par-
tition P (α(v)) such that {R1, R2} ⊆ α(v) and v ∈ LE(x) triggers a clash
{C,¬C} ⊆ L(y) and therefore P (α(v)) must be empty.

– (ii) The case when a partition can have at least one individual; if a partition
can have one individual without causing any logical clash, this means that
we can have m (m ≥ 1)5 individuals also in this partition without a clash.

Since the inequation solver is unaware of logical restrictions of filler domains
we allow an explicit distinction between cases (i) and (ii). We do this by non-
deterministically assigning ≤ 0 or ≥ 1 for each variable v occurring in LE(x).

fil-Rule. This rule is used to generate role fillers for a node x depending on the
distribution (solution) returned by the inequation solver. The rule is fired for
every partition α(v) and it generates the role fillers assigned to this partition by
the inequation solver if they are not yet created, it creates m role fillers such
that σ(v) = m. Since every partition is an intersection of role fillers, individuals
assigned to a partition can be fillers of more than one role, α(v) returns the set
of the corresponding role names for the partition P (α(v)) and is therefore used
to set the edge label between x and each role filler y.

Detailed Example To better illustrate the calculus, we consider the simple
example of testing the satisfiability of (≥ 5S.C u ≥ 5S.¬Du ≤ 2S.(C u ¬D)).
After re-writing the arithmetic expressions we need to test the satisfiability of
arithmetic and universal restrictions w.r.t ϕr with (≥ 5S′ u ≥ 5S′′ u ≤ 2S′′′) as
arithmetic restrictions, ϕr ={S′ v S, S′′ v S, S′′′ v S}, and (∀S′.C u ∀S′′.¬D u
∀S′′′.(C u¬D)u∀(S\S′′′).(¬C tD)) as universal restrictions. To get all possible
partitions between S-fillers, we can compute the power set of {S, S′, S′′, S′′′} and
drop the partitions that do not satisfy the sub-role relationships in ϕr. Since S is
in each partition, we can drop it from the set and assume it is implied. Then P
= {{S′},{S′′},{S′′′},{S′S′′} , {S′S′′′}, {S′′S′′′}, {S′S′′S′′′}} and V = {vS′ , vS′′ ,
vS′′′ , vS′S′′ , vS′S′′′ , vS′′S′′′ , vS′S′′S′′′}. After applying the ≥-Rule twice and the ≤-
Rule once we get LE(x) = ξx such that

ξx =

vS′ + vS′S′′ + vS′S′′′ + vS′S′′S′′′ ≥ 5
vS′′ + vS′S′′ + vS′′S′′′ + vS′S′′S′′′ ≥ 5
vS′′′ + vS′S′′′ + vS′′S′′′ + vS′S′′S′′′ ≤ 2

 (1)

After applying the ch-Rule until it is not applicable anymore we might come
up with the case where vS′S′′S′′′ ≥ 1 and all other variables are ≤ 0. A clash is
detected since no solution is possible for ξx and the model does not survive.

Considering another model with different choices for the ch-Rule rule such
as vS′S′′ ≥ 1 while other variables are zero, the inequation solver returns a
solution σ where σ(vS′S′′) = 5. The fil -Rule becomes applicable since there are
5 The value of m is decided by the inequation solver.

no fillers, and creates 5 new filler nodes y1, . . . , y5 such that L(〈x, yi〉) = α(vS′S′′)
= {S′, S′′} for 1 ≤ i ≤ 5. The ∀-Rule is applicable twice and L(yi) = {C,¬D}
for 1 ≤ i ≤ 5. The ∀(\)-Rule becomes applicable and L(yi) = {C,¬D, (¬CtD)}.
After applying the t-Rule each of the possible choices ends up in a clash.

A model with vS′ ≥ 1, vS′′ ≥ 1, vS′S′′S′′′ ≥ 1 and all other variables ≤ 0, has a
solution σ with σ(vS′S′′S′′′) = 2, σ(vS′) = 3, and σ(vS′′) = 3. This model survives
into a completion graph G with the nodes x, x1, x2, y1, . . . , y3, z1, . . . , z3 such
that for 1 ≤ i ≤ 2, 1 ≤ j ≤ 3 we have:

L(〈x, xi〉) = {S′, S′′, S′′′}, L(〈x, yj〉) = {S′}, L(〈x, zj〉) = {S′′},
L(xi) = {C,¬D}, L(yi) = {C, D}, L(zi) = {¬C,¬D}
Considering the worst case analysis for this example, there are 27 cases for

the ch-Rule. Whereas, with a tableau calculus [5] there are at least 210 cases
for the Choose-rule given that 10 fillers are created by the ≥-Rule, not to forget
the cases to add for the ≤-Rule when pairs of individuals are considered to be
merged among the 10 fillers in order to satisfy the at-most restriction.

3.2 Proofs

Lemma 3. Given an ALCQ concept ϕ and a complete and clash free completion
graph G for ϕ. Let x be a node in VG, C, D ∈ NC, R ∈ NR, we define ϕa =
{E ∈ L(x) |E is of the form ≥ nR, ≤ mR} as the set of at-least and at-most
restrictions to be satisfied for x. A solution σ for the encoding ξx of ϕa (i) does
not violate the hierarchy ϕr introduced during preprocessing, and (ii) does not
violate a restriction implied by any other operator used in ϕ.

Proof. Our hybrid algorithm depends on an inequation solver to decide the sat-
isfiability of arithmetic expressions (ϕa) encoded into ξx. Due to Lemma 2 and
assuming the inequation solver is decidable, given a solution σ for ξx the tableau
expansion rules take care of constructing a completion graph for role fillers based
on the distribution reflected by σ. The algorithm needs to make sure that this
distribution is consistent with ϕr and all restrictions implied byALCQ operators.
We distinguish the following two cases:

– (i) If the distribution is not consistent with ϕr, then for some R′ v R ∈
ϕr, there exists an R′-filler y assigned to a partition L such that P (L) =
(FIL(R′, x) \ FIL(R, x)) which means that R′ ∈ L and R /∈ L. This case
is not possible, partitions such as L are eliminated from P and cannot be
assigned any fillers.

– (ii) If the distribution is not consistent with other restrictions such as a
universal restriction, then for some ∀S.D ∈ L(x), we have a node y such
that S ∈ L(〈x, y〉) and {¬D} ∈ L(y). The ∀-Rule becomes applicable to x
and D is added to L(y). Having {D,¬D} ⊆ L(y) is not possible since G is
assumed to be clash free. Similarly, we can prove that restrictions implied
by the ∀\, and (u, t, ¬) operators cannot be violated.

Lemma 4 (Termination). Given an ALCQ concept expression ϕ, the proposed
hybrid algorithm terminates.

Proof. Let l = #clos(ϕ), r = #NR and max be the maximum number used in
an arithmetic expression. Termination is guaranteed due to the following:

– The expansion rules do not remove any nodes from the graph, nor remove
concepts from node labels nor change edge labels.

– For each node, the number of times that the fil -Rule or the ch-Rule can be
applied is bounded by the size of P. All other rules are applied at most once.

– The number of fillers created for each node is bounded by max×|NR|.
– Nodes are labeled with non-empty subsets of clos(ϕ) and edges with subsets

of NR. Since we do not admit any TBox, this means that there can be at
most 22lr different possible labeling for a pair of nodes and an edge. No cyclic
descriptions are allowed which means that we do not need to implement any
blocking strategies and the completion graph is a finite tree.

– Getting a solution for the inequations will not affect termination of the ex-
pansion rules since we assume that the inequation solver always terminates.

Lemma 5 (Soundness). If the expansion rules can be applied to ϕ such that
they yield a complete and clash-free completion graph, then ϕ has a tableau.

Proof. A tableau T can be obtained from a clash-free completion graph G by
mapping nodes in G to individuals in T which can be defined from G as T
= (S,L′, E) such that: S = V ; L′(x) = L(x); and E(R) = {〈x, y〉 ∈ E |R ∈
L(〈x, y〉)}. T is then a tableau for ϕ due to the following:

Properties 1,2, and 3 of a tableau are satisfied because G is clash-free and
complete. For property 4, assume ∀S.C ∈ L′(x) and 〈x, y〉 ∈ E(S) then C ∈ L′(y),
otherwise the ∀-Rule would be applicable. Property 5 is similarly satisfied.

Property 6 and property 7 of a tableau cannot be violated due to Lemma 2
and due to the lowest priority of the fil-Rule. Role fillers are created only after
making sure that all arithmetic expressions for a node x are satisfied by having
a distribution of these fillers (a non-negative integer solution for the inequations
in LE(x)) otherwise G would not be complete. Therefore, for each (≥ nS) ∈
L′(x) and (≤ mS) ∈ L′(x), #ST (x) ≥ n and #ST (x) ≤ m are valid.

The definition of R-filler takes into account the role hierarchies introduced
at pre-processing and ensures that property 8 is always satisfied. ¤

Lemma 6 (Completeness). If ϕ has a tableau, then the expansion rules can
be applied to ϕ such that they yield a complete and clash-free completion graph.

Proof. The proof is inspired by the one found in [5]. Let T = (S,L′, E) be a
tableau for ϕ, T can be used to guide the application of the expansion rules. So
that our proof is self contained, we redefine the mapping function π from [5] and
extend it so that it can handle the properties defined in our tableau. π is defined
as a mapping from nodes in the graph G to individuals in S, inductively with
the generation of new nodes, such that for each x, y ∈ VG and a role R ∈ NR we
have:

1. L(x) ⊆ L′(π(x))

2. if 〈x, y〉 ∈ EG and S ∈ L(〈x, y〉), then 〈π(x), π(y)〉 ∈ E(S)
3. ξ(R,≥, n) ∈ LE(x) implies #RT (π(x)) ≥ n
4. ξ(R,≤, n) ∈ LE(x) implies #RT (π(x)) ≤ n

The claim is that having a completion graph G that satisfies the properties
of π we can apply the expansion rules defined in Fig. 1 to G without violating
the properties of π. Initially G consists of a single node x0 such that ϕ ∈ L(x0).
Since we can have a tableau T for G, we can set s0 = π(x0) for some s0 ∈ S with
ϕ ∈ L′(s0). Whenever we can apply the expansion rules to G, the properties of
π are not violated: applying the u-Rule, the t-Rule, the ∀-Rule or the ∀(\)-Rule
strictly extends the label of a node x without violating the above properties due
to properties 1-5 of a tableau. Let us consider applying the other rules:

– The ch-Rule: This rule strictly extends the system of inequations that is in
the label LE of a node x. It non-deterministically assigns a cardinality (0 or
≥ 1) for role fillers partitions that are not assigned any value, and therefore
no properties of π can be violated.

– The ≥-Rule and ≤-Rule: If (≥ nR), (≤ mR) ∈ L(x), then (≥ nR), (≤ mR)
∈ L′(π(x)), this implies that #RT (π(x)) ≥ n, #RT (π(x)) ≤ m, (properties
6 and 7 of a tableau). Applying the ≥-Rule, ≤-Rule extends LE(x) with
ξ(R,≥, n), ξ(R,≤, m) which is still conform with the properties of π and
those of a tableau.

– The fil-Rule: When no other rule is applicable to x, this means that every
(≥ nR), (≤ mR) ∈ L(x) is converted to ξ(R,≥, n), ξ(R,≤,m) ∈ LE(x).
For each ξ(R,≥, n) ∈ LE(x) we have (≥ nR) ∈ L′(π(x)) and #RT (π(x)) ≥
n which implies that there are at least v1 . . . vn distinct individuals in S
such that 〈π(x), vi〉 ∈ E(R) for 1 ≤ i ≤ n. A distribution of R-fillers is
encoded in a solution σ for LE(x). With each application j of this rule,
pj new nodes y1j . . . ypj are created such that 1 ≤ pj ≤ n, 〈x, ypj 〉 ∈ E,
R ∈ L(〈x, ypj 〉). After all variable solutions are exhausted and the rule is not
applicable anymore, the number of all pj nodes created satisfies (p1 + p2 +
. . . pj ≥ n), by setting π = π[y11 → v1 . . . yp1 → vp, y21 → vp1+1 . . . yp2 →
v(p1+p2), . . . ypj → v(p1+p2...+pj)]. One can easily see that the properties of π
are satisfied.

The resulting graph G is clash free and complete due to the following properties:

1. G cannot contain a node x such that {C, ¬̇C} ⊆ L(x) since L(x) ⊆ L′(π(x))
and property 1 of the definition of a tableau would be violated.

2. G cannot contain a node x such that LE(x) is unsolvable. If LE(x) is unsolv-
able, this means that for some role R ∈ NR we have {ξ(R,≤, n), ξ(R,≥, m)}
⊆ LE(x), and we can have no possible distribution of R-fillers to satisfy
{≥ mR,≤ nR} ⊆ L(x), hence property 6 and/or 7 of a tableau would be
violated due to the equivalence properties between ξ(R,≤, n), ξ(R,≥,m) ∈
LE(x) and (#RT (π(x)) ≤ n), and (#RT (π(x)) ≥ m) respectively.

The completeness of our hybrid algorithm is thus proved.

4 Discussion

In this paper we have presented a hybrid tableau algorithm that efficiently han-
dles numerical restrictions of ALCQ concept descriptions. The reasoning algo-
rithm is improved by means of a more informed search where the size of the
completion graph is reduced to the minimum. The hybrid algorithm fills the
gaps between tableau algorithms [1, 5] which do not adequately handle numer-
ical reasoning, and the arithmetic reasoning for description logic in [7] where
no calculus was proposed and all the input is reduced to equation solving. This
paper proves correctness of the hybrid algorithm as a decision procedure for
testing satisfiability of ALCQ concepts, whereas [3] provides no proof for the
recursive algorithm it proposes. In contrast with [3], this hybrid algorithm is
potential to be extended to handle more expressive languages. This algorithm
enjoys the benefits of using an arithmetic reasoner such as relatively faster rea-
soning and insensitivity to the values of numbers used in arithmetic expressions.
On the other hand by collecting all number restrictions and then trying to satisfy
them with minimum number of fillers, we reduce the size of the model and avoid
creating role fillers when an arithmetic clash is triggered.

For reasons of simplicity we introduced this hybrid approach with a simple
logic such as ALCQ with empty TBox and empty role hierarchy. However, it
is not hard to see that this calculus can be easily adapted to work with role
hierarchies and general TBoxes. Such an extension is part of ongoing work where
we study an optimal way of creating role fillers using one proxy individual (one
representative individual) as proposed in the signature calculus [2]. Finally, a
prototype implemention based on this calculus for the DL ALCHQ is completed
and preliminary results demonstrate a promising improvement in performance
for satisfiability tests.

References

1. Baader, F., and Sattler, U. An overview of tableau algorithms for description
logics. Studia Logica 69 (2001), 5–40.

2. Haarslev, V., and Möller, R. Optimizing reasoning in description logics with
qualified number restrictions. In Description Logics (2001).

3. Haarslev, V., Timmann, M., and Möller, R. Combining tableaux and algebraic
methods for reasoning with qualified number restrictions. In Description Logics
(2001), pp. 152–161.

4. Hollunder, B., and Baader, F. Qualifying number restrictions in concept lan-
guages. In Proc. of KR-91 , pp. 335–346.

5. Horrocks, I., Sattler, U., and Tobies, S. Practical reasoning for expressive
description logics. In Proc. of LPAR-99 (1999), pp. 161–180.

6. Ohlbach, H. J., and Koehler, J. Role hierarchies and number restrictions. In
Description Logics (1997).

7. Ohlbach, H. J., and Koehler, J. Modal logics description logics and arithmetic
reasoning. Artificial Intelligence 109, 1-2 (1999), 1–31.

