
Prime Implicate Normal Form for ALC Concepts

Meghyn Bienvenu

IRIT, Université Paul Sabatier
31062 Toulouse Cedex, France

bienvenu@irit.fr

Abstract. In this paper, we present a new normal form for concept
expressions in the description logic ALC which is based on a recently
introduced notion of prime implicate. We show that concepts in prime
implicate normal form enjoy a number of desirable properties which make
prime implicate normal form interesting from the viewpoint of knowledge
compilation. In particular, we prove that subsumption between ALC con-
cepts in prime implicate normal form can be carried out in polynomial
time using a simple structural subsumption algorithm reminiscent of
those used for less expressive description logics. We provide a sound and
complete algorithm for putting concepts into prime implicate normal
form, and we investigate the spatial complexity of this transformation,
showing there to be an at most doubly-exponential blowup in concept
size. At the end of the paper, we compare prime implicate normal form
to two other normal forms for ALC that have been proposed in the liter-
ature, discussing the relative merits of the different approaches. Proofs
of all results can be found in an accompanying technical report [1].

1 Introduction

Researchers have investigated a variety of strategies for coping with the high
computational complexity of reasoning. Some have looked into restricted lan-
guages for which efficient reasoning is possible. Others have focused their efforts
on the development of reasoning algorithms which perform well in practice, even
if the worst-case complexity remains high. Still others have advocated the use
of knowledge compilation [2], in which a knowledge base is put into a normal
form which admits polytime querying, the idea being that the cost of the initial
preprocessing will be offset by the computational savings made on later queries.

In the description logics community, the first two strategies have been priv-
ileged, while the third strategy, knowledge compilation, has remained largely
unexplored. The likely explanation for this phenomenon is not a lack of inter-
est on the part of this community but the simple fact that there have been no
normal forms proposed in the literature which yield tractable reasoning for any
reasonably expressive description logic.

Our paper aims to help remedy this situation by showing how prime impli-
cate normal form, a well-studied normal form for propositional logic which has
been influential in AI, can be extended to concept expressions in the description

logic ALC. The starting point for this paper is our recent study [3, 4] of prime
implicates for the modal logic K, a known notational variant of ALC. While the
definition of prime implicates proposed in [3, 4] does not immediately yield a
suitable notion of prime implicate normal form, it will play a key role in the def-
inition we propose later in this paper. We will show that concepts in our normal
form are much better behaved computationally than arbitrary ALC concepts:
it can be tested in constant time whether a concept in prime implicate normal
form is satisfiable or tautologous and in quadratic time whether two concepts
in prime implicate normal form are equivalent or if one subsumes the other.
It is also easy to approximate concepts in prime implicate normal form over a
sublanguage or up to a specified depth.

Our paper is organized as follows. In the first two sections, we recall the
basics of the description logic ALC and the notion of prime implicates in ALC.
In the following section, we propose a definition of prime implicate normal form
for ALC concepts, and we show that concepts in this form support a variety of
polynomial-time queries and transformations. We then introduce an algorithm
for putting concepts into prime implicate normal form and give some results
concerning the spatial complexity of this transformation. At the end of the paper,
we compare prime implicate normal form to two other normal forms for ALC
concepts, and then we conclude with a discussion of future work. Proofs have
been omitted for lack of space. Refer to [1] for more details.

2 Preliminaries

In this section, we recall the syntax and semantics of the description logic ALC
as well as other useful notions and some necessary notation.

Concepts expressions in ALC are built up from a set C of atomic concepts
and a set R of atomic roles according to the following recursive definition:

C ::= > |⊥ |A | ¬C |C u C |C t C | ∀R.C | ∃R.C

where A ∈ C and R ∈ R.
In analogy with classical logic, we will say that C1 u C2 is a conjunction

(or intersection) of concepts, and we will call C1 and C2 conjuncts of C1 u C2.
Likewise, we will say that D1 tD2 is a disjunction (or union) of concepts and
that D1 and D2 are its disjuncts. Where convenient we will abuse notation and
treat conjunction and disjunction as n-ary connectives. We will call a concept
propositional if it does not contain any sub-concepts of the type ∀R.C or ∃R.C.
A concept is said to be in negation normal form (NNF) if negation only appears
directly before atomic concepts. The length of a concept C, written |C|, is defined
to be the total number of occurrences of atomic concepts and roles in C. The
(role) depth of a concept C, noted δ(C), is defined to be the maximum number
of nested ∃R or ∀R appearing in C. We define a signature to be any set of atomic
roles and concepts. We define the signature of a concept C, written sig(C), to
be the set of atomic concepts and roles which appear in C.

The meaning of ALC concepts is defined via a model-theoretic semantics.
An interpretation (model) I is a pair < ∆I , ·I >, where ∆I is a non-empty set
and ·I is a function mapping each concept A ∈ C to a set AI ⊆ ∆I and each
role R ∈ R to a relation RI ⊆ ∆I ×∆I . We extend ·I to complex concepts as
follows:

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∀R.C)I = {a ∈ ∆I | ∀b. (a, b) ∈ RI ⇒ b ∈ CI}
(∃R.C)I = {a ∈ ∆I | ∃b. (a, b) ∈ RI and b ∈ CI}

A concept C is said to be satisfiable if there is some interpretation I for which
CI 6= ∅. If there is no such model, then C is said to be unsatisfiable, and we
write |= C v ⊥. A concept C is said to be tautologous, written |= > v C, just in
the case that ¬C is unsatisfiable. We say that a concept C is subsumed by D (or
that D subsumes C), written |= C v D, if for every model I we have CI ⊆ DI .
Concepts C and D are said to be equivalent, written |= C ≡ D if C subsumes D
and D subsumes C.

3 Prime Implicates in ALC

In this section, we define prime implicates for ALC concepts and point out some
of their key properties. All of the definitions and results in this section first
appeared in [3] for the modal logic K. We have adapted them to ALC using the
well-known correspondence [5] between formulae in K and concept expressions
in ALC. For more details and for proofs of the results in this section, refer to [4].

Definition 1 (Literal/Clausal/Cubal Concepts). We define literal, clausal,
and cubal concepts as follows:

L ::= > |⊥ |A | ¬A | ∀R.D | ∃R.D
Cl ::= L |Cl t Cl
Cb ::= L |Cb u Cb
D ::= > |⊥ |A | ¬A |D uD |D tD | ∀R.D | ∃R.D

where A ∈ C, R ∈ R, and L, Cl, and Cb range respectively over the sets of
literal concepts, clausal concepts, and cubal concepts.

In order to aid the presentation, we introduce the notation Prop(Cl) to refer
to the set of propositional literals which are disjuncts of the clausal concept Cl,
and we will use ∃R(Cl) (respectively ∀R(Cl)) to refer to the set of concepts C
such that ∃R.C (respectively ∀R.C) is a disjunct of Cl. For example, if Cl = At
∃R.At∃R.(Bu∃R.>)t∀S.B, then Prop(Cl) = {A}, ∃R(Cl) = {A,Bu∃R.>},

∃S(Cl) = ∀R(Cl) = ∅, and ∀S(Cl) = {B}.We will use the notation Cl \ {L} to
refer to the concept obtained from Cl by removing the disjunct L.

With a notion of clause in hand, we can define prime implicates just as in
propositional logic:

Definition 2 (Prime implicate). A clausal concept Cl is an implicate of a
concept C if and only if |= C v Cl. Cl is a prime implicate of C if and only if:

1. Cl is an implicate of C
2. If Cl′ is an implicate of C such that |= Cl′ v Cl, then |= Cl v Cl′

This definition yields the standard notion of prime implicates when restricted
to the propositional fragment of ALC. It can also be shown to satisfy a number
of properties of the propositional definition:

Proposition 1 (Finiteness). The number of prime implicates of a concept is
finite modulo logical equivalence.

Proposition 2 (Covering). Every implicate of a concept subsumes some prime
implicate of the concept.

Proposition 3 (Equivalence). Every concept is equivalent to the intersection
of its prime implicates.

In [3], we proposed an algorithm for prime implicate generation. The algo-
rithm, which we refer to by Gen-Pi, has been shown to be sound and complete:

Proposition 4. The algorithm Gen-Pi always terminates, and it outputs ex-
actly the set of prime implicates of the input concept.

This algorithm will prove useful to us later on in the paper when we design
a procedure for transforming a concept into an equivalent concept in prime
implicate normal form.

4 Prime Implicate Normal Form

In this section, we introduce prime implicate normal form for ALC concepts,
show some of the nice properties it satisfies, and give an algorithm for putting
concepts into prime implicate normal form. We also give some results concerning
the size of concepts in prime implicate normal form.

4.1 Definition of Prime Implicate Normal Form

In propositional logic, a formula is said to be in prime implicate normal form
if it is the conjunction of its prime implicates. We could define prime implicate
normal form for ALC concepts in exactly the same manner, but the normal
form we obtain satisfies few of the nice properties of the propositional case.
For example, under this definition, subsumption between two concepts in prime

implicate normal form is no easier than between arbitrary ALC concepts. To
see why, consider any pair of concepts C1 and C2 in negation normal form. The
concepts ∃R.C1 and ∃R.C2 are their own prime implicates and hence are in
prime implicate normal form according to the naive definition. As C1 subsumes
C2 just in the case that ∃R.C1 subsumes ∃R.C2, we can reduce subsumption
between arbitrary concepts in NNF to subsumption between concepts in prime
implicate normal form. As the former problem is known to be Pspace-complete,
it follows that the latter is Pspace-complete as well.

We remark, however, that the problem seems to come from the fact that the
only the top layer of the concept is represented by its prime implicates, whereas
the concepts appearing behind the role restrictions are left undecomposed. One
idea then would be to require not only that the original concept be represented
by its prime implicates but also that the sub-concepts appearing in the prime
implicates be themselves represented by their prime implicates. This intuition is
at the heart of our definition of prime implicate normal form for ALC concepts:

Definition 3 (Prime Implicate Normal Form). A concept C is in prime
implicate normal form if and only if it satisfies one of the following conditions:

1. C = ⊥
2. C = >
3. 6|= C v ⊥ and 6|= > v C and C = Cl1 u ... u Clp where

(a) each prime implicate of C is equivalent to some conjunct Cli
(b) every Cli is a prime implicate of C such that

i. if D is a disjunct of Cli, then 6|= Cli ≡ Cli \ {D}
ii. |∃R(Cli)| ≤ 1 for every role R

iii. if E ∈ ∃R(Cli) ∪ ∀R(Cli) for some R, then E is in prime implicate
normal form

iv. if E ∈ ∃R(Cli) and F ∈ ∀R(Cli), then |= E v F

Let us briefly go over the different points of the definition. The first two items
state that all unsatisfiable concepts must be represented as ⊥ and all tautologous
concepts must be represented as >. All other concepts are to be represented as
an intersection of their prime implicates, but we place some strong restrictions
on how the prime implicates themselves are represented. First, we require that
the prime implicates do not contain any unnecessary disjuncts (part (i) of condi-
tion (b)). We also stipulate that they contain at most one existential restriction
per role (part (ii)) and that the concepts appearing behind the existential and
universal restrictions be themselves in prime implicate normal form (part (iii)).
Finally, we demand that if a prime implicate contains disjuncts ∃R.E and ∀R.F
then E and F are such that |= E v F (part (iv)). This requirement may seem a
little less intuitive than the others, but it ensures that our subsumption algorithm
can treat the universal restrictions separately from the existential restrictions.

4.2 Properties of Our Normal Form

We will show later in the paper that our definition is well-founded by proving
that every concept can be rewritten as an equivalent concept in prime implicate

normal form, but first we motivate the interest of doing so by exhibiting some
of the nice properties of concepts in prime implicate normal form.

Tractable Querying The most important criterion when choosing a normal
form for compilation is the set of polynomial time queries that the normal form
supports. In [2], the authors enumerate a set of queries which they then use
to compare different normal forms for propositional logic. Of the eight queries
they consider, four are well-defined for ALC: satisfiability-testing, tautology-
testing, subsumption, and equivalence-testing. We show that for concepts in
prime implicate normal form, all four queries are computable in polynomial
time.

For satisfiability and tautology-testing, there is nothing to prove since by
definition a concept C in prime implicate normal form is unsatisfiable just in
the case that C = ⊥ and is tautologous just in the case that C = >. For
subsumption and equivalence, we provide a structural subsumption algorithm
Π-Subsume which decides subsumption between concepts in prime implicate
normal form.

Function Π-Subsume(C1, C2): decides if |= C1 v C2

1. If C1 = ⊥ or C2 = >, return yes.
2. Return no if C1 = > and C2 6= > or C2 = ⊥ and C1 6= ⊥.
3. For each conjunct G of C2

Set MatchFound = no
For each conjunct H of C1

Set MatchFound = yes if the following three conditions hold:
(a) Prop(H) ⊆ Prop(G)
(b) if E ∈ ∃R(H), then Π-Subsume(E, E′)=yes for some E′ ∈ ∃R(G)
(c) if F ∈ ∀R(H), then Π-Subsume(F , F ′)=yes for some F ′ ∈ ∀R(G)

If MatchFound = no, return no.
Return yes.

We briefly explain the functioning of Π-Subsume. The first two steps treat
limit cases where one or both of the concepts is unsatisfiable or tautologous.
For all other pairs of concepts, we proceed to Step 3, in which we perform a
structural comparison of the two concepts. We know from Proposition 3 that a
concept C1 is subsumed by a concept C2 just in the case that C1 is subsumed
by each of the prime implicates of C2. Moreover, it follows from Proposition 2
that C1 is subsumed by a prime implicate D of C2 if and only if some prime
implicate of C1 is subsumed by D. As concepts in prime implicate normal form
are conjunctions of their prime implicates, testing whether C2 subsumes C1

comes down to testing whether each conjunct of C2 subsumes some conjunct of
C1. If we hadn’t placed any requirements on the form of the conjuncts, then this
problem would be as hard as subsumption in general. But since C1 and C2 are in
prime implicate normal form, their conjuncts have a particular structure which
makes subsumption easy to test. We first check that the propositional literals in
the first conjunct all appear in the second conjunct. We then call Π-Subsume on
sub-concepts appearing in the two conjuncts in order to ensure that each of the
existential and universal restrictions appearing in the first conjunct is subsumed

by an existential or universal restriction in the second. The algorithm performs
these checks on each possible pair of conjuncts and returns no if it finds some
conjunct of C2 which does not subsume any conjunct of C1. If no such conjunct
is found, the algorithm returns yes since every conjunct of C2 has been shown
to subsume a conjunct of C1, which means that C2 subsumes C1.

Proposition 5. If C1 and C2 are both in prime implicate normal form, then the
algorithm Π-Subsume outputs yes on input (C1, C2) if and only if |= C1 v C2.

Proposition 6. The algorithm Π-Subsume terminates in linear time in |C1| |C2|
(hence quadratic time in |C1|+ |C2|) when given concepts C1 and C2 as input.

Our algorithm requires that both input concepts be in prime implicate normal
form. However, it is not always necessary for the second concept to be in prime
implicate normal form to obtain polynomial time subsumption, as the following
proposition demonstrates:

Proposition 7. Let C be a concept in prime implicate normal form, and let
D be a disjunction of propositional literals and concepts of the form ∃R.Cl or
∀R.Cl where Cl is a propositional clause. Then it can be decided in linear time
in |C| (and quadratic time in |D|) whether |= C v D.

The previous proposition can be extended to the entire class of concepts in
NNF which do not contain conjunction while maintaining linear complexity in
the first argument. Unfortunately, the complexity in the second argument is no
longer polynomial since we need to test whether the query concept is a tautology
and testing whether an arbitrary ALC concept in NNF without conjunction is a
tautology is an NP-complete problem [6].

We should also point out that the above category of concepts is just one
example of a tractable class of query concepts. There are a variety of different
syntactic conditions which can be placed on query concepts in order to guarantee
polynomial subsumption.

Tractable Transformations Another criterion for choosing a normal form
is the type of polynomial time transformations it permits. One of the most
important transformations in propositional logic is forgetting (cf. [7]), in which
we remove from a formula all reference to a given set of symbols while retaining
as much of the formula’s information as possible. Forgetting turns out to be
closely related to the notion of uniform interpolation:

Definition 4 (L-interpolant). A concept C is said to be the uniform inter-
polant of a concept D with respect to the signature L, or simply the L-interpolant
of D, if and only if Sig(C) ⊆ L, |= D v C, and |= C v E for every concept E
such that |= D v E and Sig(E) ⊆ L.

Forgetting and uniform interpolation are two ways of looking at the same oper-
ation: the result of forgetting the signature S from a concept C is precisely the
Sig(C) \ S-interpolant of C.

We can show that L-interpolants are easily computable when a concept is in
prime implicate normal form. The algorithm is omitted for lack of space but is
extremely simple: we traverse the concept removing those clausal subconcepts
which contain a disjunct A or ¬A with A 6∈ L or a disjunct of the form ∃R.D or
∀R.D with R 6∈ L.

Proposition 8. The L-interpolant of a concept C in prime implicate normal
form can be generated in linear time in the size of C.

We also consider a different type of interpolation, in which instead of restrict-
ing our attention to concepts on a given signature we focus on concepts having
less than a given depth:

Definition 5 (n-interpolant). A concept C is the n-interpolant of a concept
D if and only if δ(C) ≤ n, |= D v C, and |= C v E for every concept E such
that |= D v E and δ(E) ≤ n.

The n-interpolant of a concept is easy to compute when the concept is in
prime implicate normal form. We simply make a pass through the concept and
when we reach a subconcept ∃R.D or ∀R.D appearing at level n− 1, we remove
from D all conjuncts which are not propositional concepts.

Proposition 9. The n-interpolant of a concept C in prime implicate normal
form can be generated in linear time in |C|.

4.3 Computing Prime Implicate Normal Form

We present below the algorithm Pinf which transforms a given concept into an
equivalent concept in prime implicate normal form.

Function Pinf(C) : returns a concept in prime implicate normal form equivalent to C
1. If |= C v ⊥, return ⊥. If |= > v C, return >.
2. Set Σ = Gen-Pi(C).
3. For each P in Σ

(i) For each role R: if ∃R(P) = {D1, ..., Dm} where m > 1, replace the disjuncts
∃R.D1, ..., ∃R.Dm in P with the single disjunct ∃R.(D1 t ... tDm)

(ii) For each role R: if ∃R(P) = {D} and ∀R(P) = {E1, ...En}, replace each
disjunct ∀R.Ei in P by ∀R.(Ei tD)

(iii) For each disjunct D in P : if |= P ≡ P \ {D}, replace P by P \ {D}.
(iv) For each disjunctQR.D in P withQ ∈ {∃, ∀}, replaceQR.D byQR.Pinf(D).

4. Return
d
P∈Σ P .

The first step of our algorithm is to check whether the inputted concept is
unsatisfiable or tautologous, in which case we return respectively ⊥ or >. For
all other concepts, we continue on to Step 2, where we use Gen-Pi to generate
the set of prime implicates of the inputted concept. We then modify the prime
implicates so that they satisfy the conditions of Definition 3. We first check to
see whether there are multiple existential restrictions for a single role, in which
case we group them into a single existential restriction. We then make sure that

the concepts behind the universal restrictions are in the proper form by unioning
them with the concept behind the existential restriction. We next check if each
of the concepts in the clausal concept is necessary, and we remove all literal
concepts which are found to be redundant. After that, we consider the concepts
appearing behind a universal or existential restriction, and we put each of them
into prime implicate normal form. Finally, in Step 4, we return the intersection
of these modified prime implicates.

Proposition 10. The algorithm Pinf always terminates, and the concept it
returns is a concept in prime implicate normal form which is equivalent to the
inputted concept.

It is well-known that in propositional logic the transformation to prime im-
plicate normal form can result in a singly-exponential blowup in the size of the
formula (cf. [8]). For ALC concepts, the blowup can be doubly-exponential...

Proposition 11. There exists a concept C such that the smallest equivalent
concept in prime implicate normal form has length doubly-exponential in |C|.

... but is never more than doubly-exponential:

Proposition 12. Every concept C is equivalent to a concept in prime implicate
normal form whose length is at most doubly-exponential in |C|.

5 Related Work

Most of the subsumption algorithms that have been proposed for subproposi-
tional description logics involve a normalization step in which concepts are put
into some type of normal form. There has been relatively little work however
on normal forms for more expressive description logics like ALC which support
disjunction. Two notable exceptions are the disjunctive form introduced for the
mu-calculus in [9] and adapted to ALC in [10] and the linkless normal form for
ALC recently proposed in [11].

5.1 Disjunctive Form

When restricted to propositional logic, the disjunctive form for ALC concepts
defined in [10] corresponds to standard disjunctive normal form (DNF). It fol-
lows that tautology-testing, subsumption, and equivalence-testing for concepts
in disjunctive form must all be co-NP-hard since the problem of testing whether
a formula in DNF is a tautology is known to be co-NP-complete. Satisfiability-
testing remains polynomial [9]. Disjunctive form is better behaved when it comes
to transformations: it is shown in [10] that the L-interpolants of concepts in dis-
junctive form can be generated in linear time, and a similar result can be shown
to hold for n-interpolants. As the transformation to disjunctive form involves an
at most singly-exponential blowup [10], disjunctive form can be used to produce
singly-exponential L- and n-interpolants. Indeed, disjunctive form is used in [10]
to prove the existence of singly-exponential-size L-interpolants.

5.2 Linkless Normal Form

In [11], the authors show how linkless normal form can be extended from proposi-
tional formulae (cf. [12]) to concepts inALC. We can show that tautology-testing,
subsumption, and equivalence-testing for linkless concepts are all co-NP-hard us-
ing a reduction to the DNF tautology problem. The authors of [11] have shown
that satisfiability can be checked in linear time. They have also shown that the
transformation to linkless normal form involves only a singly-exponential blowup
in concept size and that subsumption can be carried out in linear time when the
query concept is a disjunction of atomic literal concepts and of role restrictions
followed by atomic literal concepts (this class is properly contained in the class of
query concepts we introduced in Proposition 7). It was conjectured in [11] that
L-interpolants of concepts in linkless normal form can be easily generated, but
the complexity of both L- and n-interpolant generation is currently unknown.

5.3 Comparison

The results in this section suggest that prime implicate normal form is better
suited than both disjunctive form and linkless normal form for the purposes of
knowledge compilation, as prime implicate normal form supports the same class
of polynomial transformations and a wider range of polynomial time queries. In
particular, the fact that subsumption is polynomial between concepts in prime
implicate normal form means that we can test whether an arbitrary query con-
cept subsumes a concept in prime implicate normal form by first putting the
(presumably small) query concept into prime implicate normal form and then
using structural subsumption. For the other two normal forms, there is currently
no procedure for posing arbitrary queries to compiled concepts.

On the other hand, disjunctive form and linkless normal form have the ad-
vantage of a lower spatial complexity. This means that if one is using a normal
form for the sole purpose of generating L- and n-interpolants, then disjunctive
form is more appropriate since it produces singly-exponential-sized interpolants,
whereas those obtained using prime implicate normal form may have doubly-
exponential size.

6 Conclusion and Future Work

The main contribution of this paper is the introduction of prime implicate normal
form as a new normal form for concepts in the description logic ALC. We have
shown that prime implicate normal form has a number of interesting properties
which make it suitable for knowledge compilation, some of which are not satisfied
by other normal forms proposed in the literature. We also provided an algorithm
for transforming concepts into equivalent concepts in prime implicate normal
form and proved that the transformation involves an at most doubly-exponential
blowup in concept size.

In future work we would like to implement our prime implicate normal form
transformation and our structural subsumption algorithm to see what kind of

performance they give in practice. This should help us to identify the type of
situations in which the benefits gained by a concept being in prime implicate
normal form outweigh the cost of putting it in this form.

Another interesting question for future research is how our normal form can
be extended to handle even more expressive description logics. We expect that
the extension to languages with nominals should be relatively straightforward,
but that number restrictions and inverse roles will prove more challenging.

We also want to address what is probably the most important limitation of
our work, namely the fact that our normal form treats concept expressions rather
than TBoxes. We expect that the extension to TBoxes will be highly non-trivial,
but we feel this is a question worth pursuing since it could potentially provide a
new tool for dealing with the high complexity of TBox reasoning.

References

1. Bienvenu, M.: Prime implicate normal form for ALC concepts. Technical Re-
port IRIT/RR–2008-6–FR, IRIT, Université Paul Sabatier (2008) Available at
http://www.irit.fr/ Meghyn.Bienvenu/papers/BienvenuRR-2008-6.pdf.

2. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial
Intelligence Research 17 (2002) 229–264

3. Bienvenu, M.: Prime implicates and prime implicants in modal logic. In: Proceed-
ings of the Twenty-Second Conference on Artificial Intelligence (AAAI-07). (2007)
397–384

4. Bienvenu, M.: Prime implicates and prime implicants in modal logic: Extended
and revised version. Research report IRIT/RR–2007-17–FR, IRIT, Université Paul
Sabatier, Toulouse (2007)

5. Schild, K.: A correspondence theory for terminological logics: preliminary report.
In: Proceedings of IJCAI-91, 12th International Joint Conference on Artificial In-
telligence. (1991) 466–471

6. Donini, F.M., Hollunder, B., Lenzerini, M., Marchetti Spaccamela, A., Nardi, D.,
Nutt, W.: The complexity of existential qualification in concept languages. Arti-
ficial Intelligence 53 (1992) 309–327

7. Lang, J., Liberatore, P., Marquis, P.: Propositional independence: Formula-variable
independence and forgetting. Journal of Artificial Intelligence Research 18 (2003)
391–443

8. Chandra, A., Markowsky, G.: On the number of prime implicants. Discrete Math-
ematics 24 (1978) 7–11

9. Janin, D., Walukiewicz, I.: Automata for the modal mu-calculus and related results.
In: Proceedings of the Twentieth International Symposium on the Mathematical
Foundations of Computer Science (MFCS’95). Volume 969 of Lecture Notes in
Computer Science., Springer (1995) 552–562

10. ten Cate, B., Conradie, W., Marx, M., Venema, Y.: Definitorially complete descrip-
tion logics. In: Proceedings of the Tenth International Conference on Principles of
Knowledge Representation and Reasoning (KR06). (2006) 79–89

11. Furbach, U., Obermaier, C.: Knowledge compilation for description logics. In: Pro-
ceedings of the 3rd Workshop on Knowledge Engineering and Software Engineering
(KESE). (2007)

12. Murray, N., Rosenthal, E.: Dissolution: Making paths vanish. Journal of the ACM
40(3) (1993) 504–535

