
Developing Genetic Algorithms for Boolean
Matrix Factorization

Václav Snášel, Jan Platoš, Pavel Krömer

Department of Computer Science, FEECS, VŠB – Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

{vaclav.snasel, jan.platos, pavel.kromer.fei}@vsb.cz

Developing Genetic Algorithms for Boolean

Matrix Factorization

Václav Snášel, Jan Platoš, and Pavel Krömer

Department of Computer Science, FEI, VSB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic

{vaclav.snasel, jan.platos, pavel.kromer.fei}@vsb.cz

Abstract. Matrix factorization or factor analysis is an important task
helpful in the analysis of high dimensional real world data. There are sev-
eral well known methods and algorithms for factorization of real data but
many application areas including information retrieval, pattern recogni-
tion and data mining require processing of binary rather than real data.
Unfortunately, the methods used for real matrix factorization fail in the
latter case. In this paper we introduce background and initial version of
Genetic Algorithm for binary matrix factorization.

Keywords: binary matrix factorization, genetic algorithms

1 Introduction

Many applications in computer and system science involve analysis of large scale
and often high dimensional data. When dealing with such extensive information
collections, it is usually very computationally expensive to perform some oper-
ations on the raw form of the data. Therefore, suitable methods approximating
the data in lower dimensions or with lower rank are needed. In the following,
we focus on the factorization of two-dimensional binary data (matrices, second
order tensors).

The paper is structured as follows: first, a brief introduction to matrix factor-
ization is given. In the following section, the basics of Evolutionary and Genetic
Algorithms are presented. The rest of the paper brings description of Genetic
Binary Matrix Factorization and summarizes performed computer experiments
and conclusions drawn from them.

2 Matrix Factorization

Matrix factorization (or matrix decomposition) is an important task in data
analysis and processing. A matrix factorization is the right-side matrix product
in

A ≈ F1 · F2 · . . . · Fk (1)

V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2008, pp. 61–70, ISBN 978-80-248-1746-0.

62 Václav Snášel, Jan Platoš, Pavel Krömer

for the matrix A. The number of factor matrices depends usually on the require-
ments of given application area. Most often, k = 2 or k = 3. There are several
matrix decomposition methods reducing data dimensions and simultaneously
revealing structures hidden in the data. Such methods include Singular Value
Decomposition (SVD) and Non-negative Matrix Factorization (NMF), which is
our subject of interest in this research.

2.1 Non-negative matrix factorization

Non-negative matrix factorization (NMF) [1, 7] is recently very popular unsuper-
vised learning algorithm for efficient factorization of real matrices implementing
the non-negativity constraint. NMF approximates real m× n matrix A as a
product of two non-negative matrices W and H of the dimensions m × r and
r × n respectively. Moreover, it applies that r << m and r << n.

A ≈ W · H (2)

There are several algorithms for NMF computation based on iterative minimiza-
tion of given cost function [7]. The original NMF algorithm involved minimiza-
tion of the Frobenius norm [10] defined by formulae (3).

‖A − WH‖
2

F =
∑

ij

|Aij − (WH)ij |
2

(3)

Other investigated cost measures include square of the Euclidean distance be-
tween V and its approximation (4) or Kullback-Leibler divergence D (5). For
every cost function, there are update rules (multiplicative or additive) applied
iteratively in order to reduce the distance between original matrix V and its
model [7, 10].

‖A − WH‖
2

=
∑

ij

(Aij − (WH)ij) (4)

D(A ‖ WH) =
∑

ij

(Aij log
Aij

Bij

− Aij + Bij) (5)

Promising recent NMF algorithms are based on Gradient Descent Methods
(GDM) or, extending the GDM, on Alternating Least Square computation [1,
10]. NMF was reported to give good results in extracting features or concepts
from processed data. Unfortunately, the common NMF algorithms excelling in
NMF computation for real valued matrices are unsuitable for efficient factoriza-
tion of binary matrices.

2.2 Boolean matrix factorization

Boolean matrix factorization (BMF) or Boolean factor analysis is the factoriza-
tion of data sets in binary (1, 0) alphabet based on Boolean algebra. Boolean

Developing Genetic Algorithms for Boolean Matrix Factorization 63

factor analysis is extremely important in computer applications since the natural
data representation for computerized processing is binary. Binary factorization
finds its application in data mining, information retrieval, pattern recognition,
image processing or data compression [5].

The BMF can be defined in a similar manner as NMF [11, 12, 14]. Consider
binary1 matrix A of the dimension m × n as a Boolean product of two binary
matrices W and H of the dimensions m × r and r × n respectively. Let r be a
subject to r << m and r << n. Then, BMF is searching for best W and Hthat
approximate A:

A ≈ W ⊗ H (6)

where ⊗ stands for Boolean matrix multiplication.
The appeal of BMF lies in the fact that computerized data are binary in its

essence and BMF is intensively investigated.
Keprt [5, 6] introduced BMF algorithms based on formal concepts and blind

search. Meeds [8] et al. presented BMF model for factorization of dyadic data,
however, Meeds’ decomposition features one non-binary (integer) factor.

3 Evolutionary Algorithms

Evolutionary algorithms (EA) are family of iterative stochastic search and op-
timization methods based on mimicking successful optimization strategies ob-
served in nature [2–4, 9]. The essence of EAs lies in the emulation of Darwinian
evolution utilizing the concepts of Mendelian inheritance for the use in computer
science and applications [2]. Together with fuzzy sets, neural networks and frac-
tals, evolutionary algorithms are among the fundamental members of the class
of soft computing methods.

EA operate with population (also known as pool) of artificial individuals
(referred often as items or chromosomes) encoding possible problem solutions.
Encoded individuals are evaluated using objective function which assigns a fit-
ness value to each individual. Fitness value represents the quality (ranking) of
each individual as solution of given problem. Competing individuals search the
problem domain towards optimal solution [4].

For the purpose of EAs, a proper encoding representing solutions of given
problem as encoded chromosomes suitable for evolutionary search process, is
necessary. Finding proper encoding is non-trivial problem dependent task af-
fecting the performance and results of evolutionary search while solving given
problem. The solutions might be encoded into binary strings, real vectors or
more complex, often tree-like, hierarchical structures, depending on the needs of
particular application.

The iterative phase of evolutionary search process starts with an initial popu-
lation of individuals that can be generated randomly or seeded with potentially
good solutions. Artificial evolution consists of iterative application of genetic

1 Matrix A is binary iff ∀ij : [a]ij = 0 ∨ [a]ij = 1

64 Václav Snášel, Jan Platoš, Pavel Krömer

operators (selection, crossover, mutation), introducing to the algorithm evolu-
tionary principles such as inheritance, survival of the fittest and random per-
turbations. Current population of problem solutions is modified with the aim to
form new and hopefully better population to be used in next generation. Iter-
ative evolution of problem solutions ends after satisfying specified termination
criteria and especially the criterion of finding optimal solution. After terminat-
ing the search process, evolution winner is decoded and presented as the most
optimal solution found.

EAs are successful general adaptable concept with good results in many ar-
eas. The class of evolutionary techniques consists of more particular algorithms
having numerous variants, forged and tuned for specific problem domains. The
family of evolutionary algorithms consists of genetic algorithms, genetic pro-
gramming, evolutionary strategies and evolutionary programming.

3.1 Genetic algorithms

Genetic algorithms (GA) introduced by John Holland and extended by David
Goldberg are wide applied and highly successful EA variant. Basic workflow of
originally proposed standard generational GA is:

I. Define objective function
II. Encode initial population of possible solutions as fixed length binary strings

and evaluate chromosomes in initial population using objective function
III. Create new population (evolutionary search for better solutions):

a. Select suitable chromosomes for reproduction (parents)
b. Apply crossover operator on parents with respect to crossover probability

to produce new chromosomes (offspring)
c. Apply mutation operator on offspring chromosomes with respect to mu-

tation probability. Add newly constituted chromosomes to new popula-
tion

d. Until the size of new population is smaller than size of current population
go back to a.

e. Replace current population by new population
IV. Evaluate current population using objective function
V. Check termination criteria; if not satisfied go back to III.

There are variants of standard generational GA. The differences are mostly
in particular selection, crossover, mutation and replacement strategy [4].

4 Genetic Binary Matrix Factorization

In this paper, we to propose a Genetic Algorithm for Binary Matrix Factorization
(Genetic BMF - GBMF). For that, we first analzye the factors that are to be
found by the algorithm and define an algorithm suggesting initial values of the
factors.

Developing Genetic Algorithms for Boolean Matrix Factorization 65

4.1 Binary factors

The factors W and H found by NMF algorithm by Lee and Seung can be straight-
forwardly interpreted. Columns of W are basis vectors of column space of A and
columns of H are weights associated with the base vectors. In order to find out
interpretation of the matrix factorization task for GA which might be different,
consider a graph-like representation of a matrix:

A =





1 1 0
0 1 0
1 1 0



 ≡ G ≈ WH =





1 0
0 1
0 0





(

1 1 0
0 1 0

)

≡ G′ (7)

Then, the factorization can be seen as a task of finding tripartite graph G′

that will exclusively preserve the arcs between the pairs of ‘edge’ vertices from
G in the form of a two step long paths through a ‘middle layer’. Intuitively, the
number of vertices in middle layer corresponds to r in NMF. The graphs G and
G′ from 7 can be depicted as follows:

When adopting this notion of Boolean matrix factorization, the interpreta-
tion of factors W and H slightly differs from the interpretation of NMF factors.
The rows of H are base vectors of row space of A and rows of W are associated
weights.

4.2 Constructive algorithm for suggesting base vectors of boolean
matrix row space (CAS)

In order to provide the genetic algorithm with better than random initial popu-
lation, a constructive algorithm for suggesting base vectors of matrix row space
is defined:

I. Compute the cardinality (number of 1 elements) of the rows of A; divide
rows of A to classes AC per cardinality. Let W and H be ’empty’. Let k = 0.

II. Randomly pick up row AC
i from the row class with lowest cardinality. Let

j = 0.
III. For base row hj in H :

a. Check whether hj is covered2 by AC
i . If not, attach AC

i to H as hk, and
set W [i, k] = 1. Increase k and go back to II. In case hj is covered by
AC

i , go to II.
b. Let W [i, j] = 1. Let AC

i = AC
i - wj .

c. If AC
i is not zero vector, go back to II.

The rows of the matrix A can be then constructed using linear combinations
of the rows of H .
2 i.e. hj − AC

i = o where o = (0, 0, . . . , 0) is zero vector.

66 Václav Snášel, Jan Platoš, Pavel Krömer

4.3 Genetic algorithm for binary matrix factorization

We propose a genetic algorithm for BMF. It will exploit the initial factors
constructed using the algorithm introduced in previous section. The objective
function will be Hamming distance between reconstructed and original matrix.
Crossover will aim to modify weights factor (matrix W) and mutation will pri-
marily aim to alter basis vectors (matrix H). The algorithm can be summarized
as follows:

I. Create initial population of N (WH) chromosomes and evaluate
II. Evolve population

a. Select suitable chromosomes for reproduction (parents)
b. Apply crossover on matrix W of selected parents.
c. With very small probability, mutate W

d. Mutate H

e. Migrate offspring chromosomes to population
III. Evaluate current population using objective function
IV. Check termination criteria; if not satisfied go back to II.

The evaluation of chromosomes in population is implemented as comparison of
original matrix V to the product of W and H . The fitness function is based on
Euclidean distance between V and WH :

f =
1

√

∑

i

∑

j(V [i, j] − WH [i, j])2
(8)

The termination criteria were based on specified threshold defining minimum
acceptance of evolved solution and maximum number of generations processed.
The maximu number of generations was se to 1000 and the minimum acceptance
0.3.

In this way, the algorithm explores different combinations of base vectors (via
crossover) and simultaneously adjust the base vector suggestions. Evolutionary
principles will be applied and the factor interpretation maintained.

5 Experimental Algorithm Evaluation

This section provides summary on computer experiments conducted in order to
verify proposed algorithms.

5.1 Evaluation of CAS algorithm

In 4.2 was defined a constructiove algorithm to suggest base vectors for initial
matrix factors. We have compared the average error obtained after using random
initial factors and initial factors suggested by CAS for several random square
matrices. For every matrix dimension n, we have computed the average error
(i.e. Hamming distance) between original matrix and its reconstruction. The

Developing Genetic Algorithms for Boolean Matrix Factorization 67

Table 1. Comparing average error of random initial factors and CAS suggested initial
factors .

N Random CAS

32 513, 82 216
64 2047, 49 915
128 8195, 1 3809
256 32775, 3 15492
512 131070 63268

Fig. 1. The comparison of Random initial error and CAS initial error.

dimension was reduced to n
2

and the experiment was repeated 100 times for
each n.

Obviously, the error produced by random initial factors is aproximately twice
as big as the error obtained when using CAS initial factors.

5.2 Evaluation of GBMF algorithm

GBMF was implemented and run for some testing binary matrices. Black and
white images were chosen as representation of input and output binary matrices
for the ease of visual interpretatin of the results.

In all cases, GBMF was run with the following parameters: a population of
50 prospective factors, probability of crossover 0.9 and probability of mutation
0.2. GBMF was executed for 5000 generations.

The algorithm was first tested on a set of bar images. Testing bar images
contained white background and black bars – vertical or horizontal lines gener-

68 Václav Snášel, Jan Platoš, Pavel Krömer

ated with certain probability (0.2 for horizontal bar and 0.3 for vertical bar).
The dimension of testing images was 15 × 25 pixels.

Initially, a small collection of 6 bar images (shown in figure 5.2) was processed
by the algorithm to reduce its dimension to 3.

Fig. 2. Input bar images.

Fig. 3. Reconstructed bar images.

Fig. 4. Obtained base images.

Next, the progam was used to process in the same way a collection of 25 face
images taken from the facial expression collection. The images were transformed
from grayscale original to black and white (so they could be interpreted as binary
matrices). The dimension of testing images was 19 × 19 pixels.

In both cases delivered the algorithm a set of images (i.e. matrices) which
clearly share some elements with the original input. Albeit some base images were
obtained, they did not contain distinguished features as for instance when using
NMF for non-binary matrices. Moreover, the black and white images used for
algorithm evaluation are not typical real world binary matrices. Also both binary
and real-valued pseudorandom matrices do not contain features significant for
matrices describing real world phenomena (i.e. in economics, physics etc.).

6 Conclusions and Future Work

In this paper, we have introduced initial version of a genetic algorithm for binary
matrix factorization. In order to define Genetic Algorithm oriented approach to

Developing Genetic Algorithms for Boolean Matrix Factorization 69

Fig. 5. Input face images.

Fig. 6. Reconstructed face images.

Fig. 7. Obtained base faces.

BMF, an interpretation of binary factors was presented. Next, an algorithm for
lossless BMF was used to create initial binary factors. Genetic BMF was defined,
implemented and applied on first sample problems. In the future, we will focus on
tuning the GBMF mplementation and evaluation of the algorithm on real world
binary matrices. Some matrix properties such as sparsity might be exploited for
algorithm modification.

70 Václav Snášel, Jan Platoš, Pavel Krömer

References

1. Michael W. Berry, Murray Browne, Amy N. Langville, Paul V. Pauca, and
Robert J. Plemmons. Algorithms and applications for approximate nonnegative
matrix factorization.

2. Ulrich Bodenhofer. Genetic Algorithms: Theory and Applications. Lecture notes,
Fuzzy Logic Laboratorium Linz-Hagenberg, Winter 2003/2004.

3. Mehrdad Dianati, Insop Song, and Mark Treiber. An introduction to genetic algo-
rithms and evolution strategies. Technical report, University of Waterloo, Ontario,
N2L 3G1, Canada, July 2002.

4. Gareth Jones. Genetic and evolutionary algorithms. In Paul von Rague, editor,
Encyclopedia of Computational Chemistry. John Wiley and Sons, 1998.

5. Ales Keprt. Using blind search and formal concepts for binary factor analysis. In
Václav Snásel, Jaroslav Pokorný, and Karel Richta, editors, DATESO, volume 98
of CEUR Workshop Proceedings, pages 128–140. CEUR-WS.org, 2004.

6. Ales Keprt and Václav Snásel. Binary factor analysis with help of formal concepts.
In Václav Snásel and Radim Belohlávek, editors, CLA, volume 110 of CEUR Work-

shop Proceedings. CEUR-WS.org, 2004.
7. Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix fac-

torization. In NIPS, pages 556–562, 2000.
8. Edward Meeds, Zoubin Ghahramani, Radford M. Neal, and Sam T. Roweis. Mod-

eling dyadic data with binary latent factors. In B. Schölkopf, J. Platt, and T. Hoff-
man, editors, Advances in Neural Information Processing Systems 19, pages 977–
984. MIT Press, Cambridge, MA, 2007.

9. Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, 1996.

10. Farial Shahnaz, Michael W. Berry, V. Paul Pauca, and Robert J. Plemmons. Doc-
ument clustering using nonnegative matrix factorization. Inf. Process. Manage.,
42(2):373–386, 2006.

11. Moravec, P., Snášel, V., Frolov, A. A., Húsek, D., Řezanková, H., Polyakov, P.: Im-
age Analysis by Methods of Dimension Reduction. IEEE CISIM 2007: Elk, Poland,
Pages 272–277

12. Snášel, V., Húsek, D., Frolov, A. A., Řezanková, H., Moravec, P., Polyakov P.: Bars
Problem Solving - New Neural Network Method and Comparison. MICAI 2007:
LNCS 4827 Springer 2007, Pages 671–682

13. Spellman, P.T., Sherlock, G., Zhang, M.Q., Anders, V.I.K., Eisen, M.B., Brown, P.,
Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes
of the yeast saccharomyces cerevisiae by microarray hybridization. In: Molecular
Biology of the Cell 9. (1998) Pages 3273–3297

14. Zhang, Z., Tao Li, T., Ding, C., Zhang, Xiang-Sun: Binary Matrix Factorization
with Applications. In Proceedings of 2007 IEEE International Conference on Data
Mining (ICDM 2007),

