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Abstract. We propose semantic distance measures based on the crite-
rion of approximate discernibility and on evidence combination. In the
presence of incomplete knowledge, the distance measures the degree of
belief in the discernibility of two individuals by combining estimates of
basic probability masses related to a set of discriminating features. We
also suggest ways to extend this distance for comparing individuals to
concepts and concepts to other concepts.

1 Introduction

In the context of reasoning in the Semantic Web, a growing interest is being com-
mitted to alternative inductive procedures extending the scope of the methods
that can be applied to concept representations. Among them, many are based on
a notion of similarity such as case-based reasoning [4], retrieval [3], conceptual
clustering [7] or ontology matching [6]. However this notion is not easily captured
in a definition, especially in the presence of uncertainty.

As pointed out in the seminal paper [2] concerning similarity in Description
Logics (DL), most of the existing measures focus on the similarity of atomic
concepts within simple hierarchies. Besides, alternative approaches are based on
related notions of feature similarity or information content. All these approaches
have been specifically aimed at assessing concept similarity.

In the perspective of crafting inductive methods for the aforementioned tasks,
the need for a definition of a semantic similarity measure for individuals arises,
that is a problem that so far received less attention in the literature. Some dis-
similarity measures for individuals in specific DL representations have recently
been proposed which turned out to be practically effective for the targeted in-
ductive tasks [3], however they are still partly based on structural criteria which
determine also their main weakness: they can hardly scale to complex languages.

We devised a new family of dissimilarity measures for semantically annotated
resources, which can overcome the aforementioned limitations [8]. Our measures
are mainly based on Minkowski’s measures for Euclidean spaces [18] induced by
means of a method developed in the context of relational machine learning [14].



We extend the idea a notion of discernibility borrowed from rough sets theory [13]
which aims at the formal definition of vague sets (concepts) by means of their
approximations. In this paper, we propose (semi-)distance measures based on
semantic discernibility and on evidence combination [16, 5, 15].

Namely, the measures are based on the degree of discernibility of the input
individuals with respect to a committee of features, which are represented by
concept descriptions expressed in the concept language of choice. One of the ad-
vantages of these measures is that they do not rely on a particular language for
semantic annotations. However, these new measures are not to be regarded as
absolute, since they depend both on the choice (and cardinality) of the features
committee and on the knowledge base they are applied to. These measures can
easily be computed based on statistics on individuals that are likely to be main-
tained by knowledge base management systems designed for storing instances
(e.g. [10]), which can determine a potential speed-up in the measure computation
during knowledge-intensive tasks.

Furthermore, we also propose a way to extend the presented measures to
the case of assessing concept similarity by means of the notion of medoid [11],
i.e., in a categorical context, the most centrally located individual in a concept
extension w.r.t. a given metric.

The remainder of the paper is organized as follows. In the next section, we
recall the basics of approximate semantic distance measures for individuals in
a DL knowledge base. Hence, we extend the measures with a more principled
treatment of uncertainty based on evidence combination. Conclusions discuss
the applicability of these measures in further works,

2 Semantic Distance Measures

Since our method is not intended for a particular representation, in the following
we assume that resources, concepts and their relationships may be defined in
terms of a generic representation that may be mapped to some DL language
with the standard model-theoretic semantics (see the handbook [1] for a thorough
reference).

In this context, a knowledge base K = 〈T ,A〉 contains a TBox T and an
ABox A. T is a set of concept definitions. A contains assertions concerning the
world state. The set of the individuals (resources) occurring in A will be denoted
with Ind(A). Each individual can be assumed to be identified by its own URI.
Sometimes, it could be useful to make the unique names assumption on such
individuals.

As regards the inference services, our procedure requires performing instance-
checking and the related service of retrieval, which will be used for the approxi-
mations.

2.1 A Simple Semantic Metric for Individuals

Aiming at distance-based tasks, such as clustering or similarity search, we have
developed a new measure with a definition that totally depends on semantic



aspects of the individuals in the knowledge base [8], following ideas borrowed
from metric learning in clausal spaces [14].

Indeed, for our purposes, we needed functions to measure the (dis)similarity
of individuals. However individuals do not have a syntactic (or algebraic) struc-
ture that can be compared. Then the underlying idea is that. on a semantic level,
similar individuals should behave similarly with respect to the same concepts. A
way for assessing the similarity of individuals in a knowledge base can be based
on the comparison of their semantics along a number of dimensions represented
by a set of concept descriptions (henceforth referred to as the committee). Partic-
ularly, the rationale of the measure is to compare them on the grounds of their
behavior w.r.t. a given set of concept descriptions, say F = {F1, F2, . . . , Fk},
which stands as a group of discriminating features expressed in the language
taken into account.

We begin with defining the behavior of an individual w.r.t. a certain concept
in terms of projecting it in this dimension:

Definition 2.1 (projection function). Given a concept Fi ∈ F, the related
projection function

πi : Ind(A) 7→ {0, 1/2, 1}

is defined:
∀a ∈ Ind(A)

πi(a) :=

 1 K |= Fi(a)
0 K |= ¬Fi(a)

1/2 otherwise

The case of πi(a) = 1/2 corresponds to the case when a reasoner cannot give
the truth value for a certain membership query. This is due to the Open World
Assumption normally made in this context. Hence, as in the classic probabilistic
models uncertainty is coped with by considering a uniform distribution over the
possible cases.

Now the discernibility functions related to the committee concepts which
compare the two input individuals w.r.t. these concepts through their projec-
tions:

Definition 2.2 (discernibility function). Given a feature concept Fi ∈ F,
the related discernibility function

δi : Ind(A)× Ind(A) 7→ [0, 1]

is defined as follows:
∀(a, b) ∈ Ind(A)× Ind(A)

δi(a, b) = |πi(a)− πi(b)|

Finally, a whole family of distance functions for individuals inspired to Minkowski’s
distances Lp [18] can be defined as follows [8]:



Definition 2.3 (dissimilarity measures). Let K = 〈T ,A〉 be a knowledge
base. Given a set of concept descriptions F = {F1, F2, . . . , Fk}, a family of dis-
similarity measures {dF

p}p∈IN, contains functions

dF
p : Ind(A)× Ind(A) 7→ [0, 1]

defined
∀(a, b) ∈ Ind(A)× Ind(A):

dF
p(a, b) :=

Lp(πi(a), πi(b))
|F|

=
1
k

p

√√√√ k∑
i=1

δi(a, b)p

Note that k depends on F and the effect of the factor 1/k is just to normalize
the norms w.r.t. the number of features that are involved. It is worthwhile to re-
call that these measures are not absolute, then they should be also be considered
w.r.t. the committee of choice, hence comparisons across different committees
may not be meaningful. Larger committees are likely to decrease the measures
because of the normalizing factor yet these values is affected also by the degree
of redundancy of the features employed.

2.2 Example

Let us consider a knowledge base in a DL language made up of a TBox:
T = { Female ≡ ¬Male,

Parent ≡ ∀child.Being u ∃child.Being,
Father ≡ Male u Parent,
FatherWithoutSons ≡ Father u ∀child.Female

}
and of an ABox:
A = { Being(ZEUS),Being(APOLLO),Being(HERCULES),Being(HERA),

Male(ZEUS),Male(APOLLO),Male(HERCULES),
Parent(ZEUS),Parent(APOLLO),¬Father(HERA),
God(ZEUS),God(APOLLO),God(HERA),¬God(HERCULES),
hasChild(ZEUS,APOLLO), hasChild(HERA,APOLLO),
hasChild(ZEUS,HERCULES),

}
Suppose F = {F1, F2, F3, F4} = {Male,God,Parent,FatherWithoutSons}. Let us
compute the distances (with p = 1):
dF
1(ZEUS,HERA) = (|1− 0|+ |1− 1|+ |1− 1|+ |0− 0|) /4 = 1/4

dF
1(HERA,APOLLO) = (|0− 1|+ |1− 1|+ |1− 1|+ |0− 1/2|) /4 = 3/8

dF
1(APOLLO,HERCULES) = (|1− 1|+ |1− 0|+ |1− 1/2|+ |1/2− 1/2|) /4 = 3/8

dF
1(HERCULES,ZEUS) = (|1− 1|+ |0− 1|+ |1/2− 1|+ |1/2− 0|) /4 = 1/2

dF
1(HERA,HERCULES) = (|0− 1|+ |1− 0|+ |1− 1/2|+ |0− 1/2|) /4 = 3/4

dF
1(APOLLO,ZEUS) = (|1− 1|+ |1− 1|+ |1− 1|+ |1/2− 0|) /4 = 1/8



2.3 Discussion

It is easy to prove that these dissimilarity functions have the standard properties
for semi-distances [8]:

Proposition 2.1 (semi-distance). For a fixed feature set F and p > 0, given
any three instances a, b, c ∈ Ind(A). it holds that:

1. dF
p(a, b) ≥ 0 and dF

p(a, b) = 0 if a = b

2. dF
p(a, b) = dF

p(b, a)
3. dF

p(a, c) ≤ dF
p(a, b) + dF

p(b, c)

This measure is not a distance since it does not hold that a = b if dF
p(a, b) = 0.

This is the case of indiscernible individuals with respect to the given committee
of features F. However, if the unique names assumption were made then one may
define a supplementary dimension for the committee (a sort of meta-feature F0)
based on equality, such that:
∀(a, b) ∈ Ind(A)× Ind(A)

δ0(a, b) :=
{

0 a = b
1 a 6= b

and then

dF
p(a, b) :=

1
k + 1

p

√√√√ k∑
i=0

δi(a, b)p

The resulting measures are distance measures.
Compared to other proposed dissimilarity measures [2, 3], the presented func-

tions do not depend on the constructors of a specific language, rather they re-
quire only (retrieval or) instance-checking for computing the projections through
class-membership queries to the knowledge base.

The complexity of measuring he dissimilarity of two individuals depends on
the complexity of such inferences (see [1], Ch. 3). Note also that the projec-
tions that determine the measure can be computed (or derived from statistics
maintained on the knowledge base) before the actual distance application, thus
determining a speed-up in the computation of the measure. This is very impor-
tant for algorithms that massively use this distance, such as all instance-based
methods.

So far we made the assumption that F may represent a sufficient number
of (possibly redundant) features that are able to discriminate really different
individuals. The choice of the concepts to be included – feature selection – may
be crucial. Therefore, we have devised specific optimization algorithms founded
in randomized search which are able to find optimal choices of discriminating
concept committees [8, 7].

The fitness function to be optimized is based on the discernibility factor [13]
of the committee. Given the whole set of individuals Ind(A) (or just a hold-
out sample to be used to induce an optimal measure) HS ⊆ Ind(A) the fitness



function to be maximized is:

discernibility(F,HS ) :=
∑

(a,b)∈HS2

k∑
i=1

δi(a, b)

However, the results obtained so far with knowledge bases drawn from ontol-
ogy libraries [7, 9] show that (a selection) of the (primitive and defined) concepts
is often sufficient to induce satisfactory dissimilarity measures.

3 Dissimilarity Measures Based on Uncertainty

The measure defined in the previous section deals with uncertainty in a uniform
way: in particular, the degree of discernibility of two individuals is null when
they have the same behavior w.r.t. the same feature, even in the presence of
total uncertainty of class-membership for both. When uncertainty regards only
one projection, then they are considered partially (possibly) similar.

We would like to make this uncertainty more explicit1. One way to deal with
uncertainty would be considering intervals rather than numbers in [0,1] as a
measure of dissimilarity. This is similar to the case of imprecise probabilities [17].

In order to extend the measure, we propose an epistemic definition based on
rules for combining evidence [5, 15]. The ultimate aim is to assess the distance
between two individuals as a combination of the evidence that they differ based
on some selected features (as in the previous section).

The distance measure that is to be defined is again based on the degree of
belief of discernibility of individuals w.r.t. such features. To this purpose the
probability masses of the basic events (class-membership) have to be assessed.
However, in this case we will not treat uncertainty in the classic probabilistic
way (uniform probability). Rather, we intend to take into account uncertainty
in the computation.

The new dissimilarity measure will be derived as a combination of the degree
of belief in the discernibility of the individuals w.r.t. each single feature. Before
introducing the combination rule (that will have the measure as a specialization),
the basic probability assignments have to be considered, especially for the cases
when instance-checking is not able to provide a certain answer.

As in previous works [3], we may estimate the concept extensions recurring to
their retrieval [1], i.e. the individuals of the ABox that can be proved to belong
to a concept. Thus, in case of uncertainty, the basic probabilities masses for each
feature concept, can be approximated2 in the following way:

1 We are referring to a notion of epistemic (rather than aleatory) probability [15],
which seems more suitable for our purposes. See Shafer’s introductory chapter in [16]
on this distinction.

2 In case of a certain answer received from the reasoner, the probability mass amounts
to 0 or 1.



∀i ∈ {1, . . . , k}

mi(K |= Fi(a)) ≈ |retrieval(Fi,K)|/|Ind(A)|
mi(K |= ¬Fi(a)) ≈ |retrieval(¬Fi,K)|/|Ind(A)|

mi(K |= Fi(a) ∨ K |= ¬Fi(a)) ≈ 1−mi(K |= Fi(a))−mi(K |= ¬Fi(a))

where the retrieval(·, ·) operator returns the individuals which can be proven to
be members of the argument concept in the context of the current knowledge
base [1]. The rationale is that the larger the (estimated) extension the more
likely is for individuals to belong to the concept. These approximated probability
masses become more precise as more information is acquired. Alternatively, these
masses could come with the ontology as a supplementary for of prior knowledge.

As in the previous section, we define a discernibility function related to a
fixed concept which measures the amount of evidence that two input individuals
may be separated by that concept:

Definition 3.1 (discernibility function). Given a feature concept Fi ∈ F,
the related discernibility function

δi : Ind(A)× Ind(A) 7→ [0, 1]

is defined as follows:
∀(a, b) ∈ Ind(A)× Ind(A)

δi(a, b) :=


mi(K |= ¬Fi(b)) if K |= Fi(a)
mi(K |= Fi(b)) else if K |= ¬Fi(a)
δi(b, a) else if K |= Fi(b) ∨ K |= ¬Fi(b)
2 ·mi(K |= Fi(a)) ·mi(K |= ¬Fi(b)) otherwise

The extreme values {0, 1} are returned when the answers from the instance-
checking service are certain for both individuals. If the first individual is an
instance of the i-th feature (resp., its complement) then the discernibility de-
pends on the belief of class-membership to the complement concept of the other
individual. Otherwise, if there is uncertainty for the former individual but not
for the latter, the function changes its perspective, swapping the roles of the
two individuals. Finally, in case there were uncertainty for both individuals, the
discernibility is computed as the chance that they may belong one to the feature
concept and one to its complement,

The combined degree of belief in the case of discernible individuals, assessed
using the mixing combination rule [12, 15], can give a measure of the semantic
distance between them.

Definition 3.2 (weighted average measure). Given an ABox A, a dissim-
ilarity measure for the individuals in A

dF
avg : Ind(A)× Ind(A) 7→ [0, 1]



is defined as follows:
∀(a, b) ∈ Ind(A)× Ind(A)

dF
avg(a, b) :=

k∑
i=1

wiδi(a, b)

The choices for the weights are various. The most straightforward one is, of
course, considering uniform weights: wi = 1/k. Another one is

wi =
ui

u

where

ui =
1

|Ind(A) \ retrieval(Fk,K)|
and u =

k∑
i=1

ui

It is easy to see that this can be considered as a generalization of the measure
defined in the previous section (for p = 1).

3.1 Discussion

It can be proved that function has the standard properties for semi-distances:

Proposition 3.1 (semi-distance). For a fixed choice of weights {wi}k
i=1, func-

tion dF
avg is a semi-distance.

The underlying idea for the measure is to combine the belief of the dissimi-
larity of the two input individuals provided by several sources, that are related
to the feature concepts. In the original framework for evidence composition the
various sources are supposed to be independent, which is generally unlikely to
hold. Yet, from a practical viewpoint, overlooking this property for the sake of
simplicity may still lead to effective methods, as the Näıve Bayes approach in
Machine Learning demonstrates.

It could also be criticized that the subsumption hierarchy has not been ex-
plicitly involved. However, this may be actually yielded as a side-effect of the
possible partial redundancy of the various concepts, which has an impact on
their extensions and thus on the related projection function. A tradeoff is to be
made between the number of features employed and the computational effort
required for computing the related projection functions.

The discriminating power of each feature concept can be weighted in terms
of information and entropy measures. Namely, the degree of information yielded
by each of these features can be estimated as follows:

Hi(a, b) = −
∑
A⊆Θ

mi(A) log(mi(A))



where 2Θ, w.r.t. the frame of discernment3 [16, 15] Θ = {D,D}. then, the sum∑
(a,b)∈HS

Hi(a, b)

provides a measure of the utility of the discernibility function related to each
feature which can be used in randomized optimization algorithms.

3.2 Extensions

Following the rationale of the average link criterion used in agglomerative clus-
tering [11], the measures can be extended to the case of concepts, by recurring
to the notion of medoids.

The medoid of a group of individuals is the individual that has the highest
similarity w.r.t. the others. Formally. given a group G = {a1, a2, . . . , an}, the
medoid is defined:

medoid(G) = argmin
a∈G

n∑
j=1

d(a, aj)

Now, given two concepts C1, C2, we can consider the two corresponding
groups of individuals obtained by retrieval Ri = {a ∈ Ind(A) | K |= Ci(a)},
and their resp. medoids mi = medoid(Ri) for i = 1, 2 w.r.t. a given measure
dF

p (for some p > 0 and committee F). Then the function for concepts can be
defined as follows:

dF
p(C1, C2) := dF

p(m1,m2)

Similarly, if the distance of an individual a to a concept C has to be assessed,
one could consider the nearest (resp. farthest) individual in the concept extension
or its medoid. Let m = medoid(retrieval(C)) w.r.t. a given measure dF

p. Then the
measure for this case can be defined as follows:

dF
p(a,C) := dF

p(a,m)

Of course these approximate measures become more and more precise as the
knowledge base is populated with an increasing number of individuals.

4 Concluding Remarks

We have proposed the definition of dissimilarity measures over spaces of individ-
uals in a knowledge base. The measures are not language-dependent, differently
from other previous proposals [3], yet they are parameterized on a committee of
concepts. Optimal committees can be found via randomized search methods [8].

3 Here D stands for the case of discernible individuals w.r.t. Fi, D for the opposite case,
and some probability mass may be assigned also to the uncertain case represented
by {D, D}.



Besides, we have extended the measures to cope with cases of uncertainty by
means of a simple evidence combination method.

One of the advantages of the measures is that their computation can be
very efficient in cases when statistics (on class-membership) are maintained by
the KBMS [10]. As previously mentioned, the subsumption relationships among
concepts in the committee is not explicitly exploited in the measure for making
the relative distances more accurate. The extension to the case of concept dis-
tance may also be improved. Hence, scalability should be guaranteed as far as a
good committee has been found and does not change also because of the local-
ity properties observed for instances in several domains (e.g. social or biological
networks).

A refinement of the committee may become necessary only when a degrada-
tion of the discernibility factor is detected due to the availability of somewhat
new individuals. This may involve further tasks such as novelty or concept drift
detection.

4.1 Applications

The measures have been integrated in an instance-based learning system im-
plementing a nearest-neighbor learning algorithm: an experimentation on per-
forming semantic-based retrieval proved the effectiveness of the new measures,
compared to the outcomes obtained adopting other measures [3]. It is worthwhile
to mention that results where not particularly affected by feature selection: often
using the very concepts defined in the knowledge base provides good committees
which are able to discern among the different individuals [9].

We are also exploiting the implementation of these measures for performing
conceptual clustering [11], where (a hierarchy of) clusters is created by grouping
instances on the grounds of their similarity, possibly triggering the induction of
new emerging concepts [7].

4.2 Extensions

The measure may have a wide range of application of distance-based methods to
knowledge bases. For example, logic approaches to ontology matching [6] may be
backed up by the usage of our measures, especially when concepts to be matched
across different terminologies are known to share a common set of individuals.
Ontology matching could be a phase in a larger process aimed at data integration.
Moreover metrics could also support a process of (semi-)automated classification
of new data also as a first step towards ontology evolution.

Another problem that could be tackled by means of dissimilarity measures
could be the ranking of the answers provided by a matchmaking algorithm based
on the similarity between the concept representing the query and the retrieved
individuals.
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