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Abstract. Partial knowledge about geospatial categories is critical for 
knowledge modelling in the geospatial domain but is beyond the scope of 
conventional ontologies. Degree of overlaps between geospatial categories, 
especially those based on geospatial actions concepts and geospatial enitity 
concepts need to be specified in ontologies. We present an approach to encode 
probabilistic information in geospatial ontologies based on the BayesOWL 
approach. This paper presents a case study of using road network ontologies. 
Inferences within the probabilistic ontologies are discussed along with 
inferences across ontologies using common concepts of geospatial actions 
within each ontology. The results of machine-based mappings produced are 
verified with human generated mappings of concepts.   

Keywords: geospatial ontologies, probabilistic, concept mappings, human 
subjects testing.  

1   Introduction 

 Ontologies, which allow the use of probabilistic representation of categories, 
are under increasing focus [1]. Reasoning mechanisms using such probabilistic in-
formation, which not only allow inferring equivalent concepts but also the ‘most 
similar’ or the ‘least similar’ concepts are best suited for practical use of ontologies. 
Support for such mechanisms can also be found in cognitive sciences, which assume 
conceptual spaces to denote a concept [2] and distances between such spaces to 
explain the notion of similarity between two concepts [3]. Cognitive basis for the 
specification of geospatial ontologies have been favoured by many researchers [4]. 
However, current work in geospatial ontologies does not provide sufficient insight 
into the use of probabilistic knowledge in ontologies. Although mechanisms to 
specify such information have already been attempted, for the semantic web [5], such 
probabilistic ontologies have not been explored inside the geospatial domain. 

This paper aims to explore this gap and illustrates the use of probabilistic 
ontologies in the geospatial domain. We employ the approach of BayesOWL [5] to 
specify probabilistic geospatial ontologies primarily related to road network entities. 
While we draw extensively on the ideas of BayesOWL, our work mainly concentrates 
on (1) extracting and using probablistic information in geospatial ontologies, (2) 
Inferences across geospatial ontologies based on the assumption of geospatial action 
concept names, and (3) its applicability to enabling semantic reference. The use of 
probabilistic geospatial ontologies for practical tasks of semantic translations is the 
main contribution of this paper. 



2 Background 

Existing literature in geographical information science points out the significance 
of geospatial ontologies as tools to represent conceptualizations in the geospatial 
domain. Such knowledge representation tools are mostly used to resolve semantic 
differences and promote interoperability between applications across information 
communities [6]. 

 Agarwal [7] has discussed that a unified approach to ontology specification 
in the geospatial domain does not exist. Different approaches including the 
approaches of formal ontologies [8] and algebraic approaches [9], Rüther et al.  [10] 
have evolved in parallel to the conventional approaches of Description Logic (DL) 
based specifications. Geospatial ontology engineering has been also proposed to 
enable a supportive environment for knowledge representation in the geospatial 
domain [11]. However the challenges for geospatial ontologies as tools of knowledge 
representation remain unresolved to a large extent. The primary questions that need to 
be answered include the following: 
• Gomez-Perez and Benjamins [12] have stated that the number of ontologies 

specified is not large enough for their use in practical and industrial scale 
applications. This is true for the geospatial domain and practically verified 
ontologies are still to be produced. In their absence it is impossible to verify their 
utility and hence their contributions to semantic interoperability. 

• With a similar point of view, it has been discussed that the tools and principles of 
ontologies are still viewed with skepticism even after years of research. Agarwal 
[7] has pointed out that geographic concepts and categories have inherent 
indeterminacy and vagueness; especially that emerge from human reasoning and 
conceptualization. It is therefore unlikely that the semantic ambiguities can be 
resolved without accounting for the uncertainty factor. 

• Geospatial ontologies have either looked at geographic space either from the 
point of view of the geospatial entities with it or from that of geospatial actions. 
A unified view, which incorporates knowledge of geospatial actions in ontologies 
of geospatial entities and which treats both these components of knowledge as 
equally important, is necessary. Kuhn [13] advocates the inclusion of actions and 
affordances in geospatial ontologies.   

Geospatial ontologies are in need of innovative approaches to ensure their practical 
use. In order that geospatial conceptualizations can be encoded in ontologies, 
emerging techniques in ontological specifications and knowledge representation need 
to be adapted and experimented in the geospatial domain. These include probabilistic 
ontologies and inclusion of knowledge about geospatial actions and their hierarchies 
[14]. 

2.1 Need for probabilistic frameworks 

We have already mentioned that uncertainties are abundant in categories of geospatial 
entities. Zhang and Goodchild [15] state “…and in the face of fuzziness, Boolean 
logic is surely less versatile in dealing with discourse that is full of heuristic 
metaphors, linguistic hedges and other forms of subjectivity”. One of the arguments 
against knowledge engineering based on conventional ontologies has been against the 
use of rigid categories as opposed to partial, incomplete, or probablistic categories of 
the real world. It is also important to note that differences between such real world 



categories are measurable in terms of a similarity (or a dissimilarity) score. As 
opposed to crisp, binary classification of instances into a certain geospatial category, 
it is usual to express the relative suitability of an instance to a category (such as Road) 
in comparison to others (say, Motorway). Note that the definition of the category itself 
is precise but there is only a probability, given the current knowledge about inclusions 
and overlaps between categories that a certain instance fits into a certain category. 
Although there is a tendency to associate probablistic cateogories with natural 
geospatial entities we need to note, that since our categories are precise, using 
examples of man-made entities from the transportation domain is appropriate as well. 

To comprehend the notion of uncertainity or partial information, which we 
attempt to address it, is important to understand that there are overlaps between 
categories modelled within an ontology. For example, while modelling concepts of a 
road network ontology (shown in Fig 1), besides knowing that a class FootPath 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 (a) Representation of five classes of a road network ontology. While Highway and 
Street are subclasses of Road, Footpath is a subclass of Path. Evidently this representation 
shows that Highway and Footpath are small subclasses of Road and Path respectively. Street 
has a major overlap with Path allthough it is not a subclass. (b) Representation of the five 
classes as a subsumption relation in a conventional ontology (note that in this diagram, arrows 
point to the subclass).   
is a subclass of class Path, one may also know and wish to express that “Footpath is a 
small subclass of the class Path”; or in another case where a class Street and Path are 
not logically related, one may still want to say that “Street and Path are largely 
overlapped with each other”. Users of ontologies would therefore like to know how 
close is a Street from a Road or a degree of similarity between Road and Street. Such 
tasks are beyond the scope of conventional ontologies [5], as partial knowledge is 
ignored as shown in the subsumption hierarchy of figure 1(a). Therefore, a 
mechanism to specify probabilistic ontologies and carry out reasoning tasks on them 
is also critical for practical use of geospatial ontologies. 

Probabilistic specifications have a strong relation in the context of using 
affordances and functions of geospatial entities in ontologies. The concept of 
categorization of manmade geospatial entities such as roads and road network 
components is closely associated with the functions or actions that they afford. Often, 
the association of such functions with certain entities is not deterministic and context 
sensitive. However, based on personal experience, humans are able to provide a 
relative value of the association between an entity and a function. Thus a Motorway is 
more strongly associated to the function of driving as compared to a Street or a Path. 
At the same time, we can argue that Driving is not associated to Footpaths. In a 
probabilistic ontology framework, the associations between entities and functions can 
be specified as probabilistic linkages. The overlaps of categories such as Road or 



Footpath and things that afford driving as shown in Figure 2 below are such links and 
we attempt to use such overlaps in probabilistic ontologies. 

 
 

 
 
 
 
 
 
 
 
 

Figure 2 Sample representation of overlaps between some entity concepts and action based 
concepts for road networks in the UK. While ellipses with solid borders represent geospatial 
entities, the ellipses with dashed borders represent abstract concepts based on the entities that 
afford certain geospatial action.  

 
It is important to note that translation of meanings of symbols used to represent 
certain entities between two agents is directly related to the affordances of the entities 
with respect to different geospatial actions. Affordances and functions are always in 
relation to a certain agent and its goals [16]. This requires that the mapping of 
functions and entities be updated on the basis of the context in hand. Our framework 
seeks to provide a mechanism for flexible translations based on reviseable 
probabilistic values of enitity-action linkages in a given context. Such mechanisms to 
specify contexts are critical for enabling pragmatics as discussed by Brodaric (2007). 

2.1 Ontologies as Bayesian Networks  

PR-OWL [1] and BayesOWL [5] are two approaches that use a BN based 
representation of ontologies. Of these, BayesOWL provides an approach for 
specification and reasoning. 

Ding et al [5] developed a mechanism of expressing OWL ontologies as Bayesian 
networks termed as BayesOWL. The important steps to construct such ontologies are 
as below: 
Construction of the Directed Acyclic Graph (DAG): The entity classes to be used are 

listed first and the topmost (most universal) concept is added to the top of the DAG 
as a node. Child concepts of this concept are added below the parent concept as 
individual nodes and the complete DAG is created by constructing the links. Each 
node has only 2 states (True, False) 

Regular Nodes and L Nodes: The nodes created above are called Regular nodes. 
There are another category of nodes called L Nodes, which help in constructing 
Union, Intersection, Disjoint and Equivalent relationships. Since we do not use any 
of these relationships in our ontologies we shall ignore construction of L Nodes. 

Allocating conditional probabilities: Regular nodes (other than the top node) have one 
conditional probability value each for its parent node. It is suggested that such 
conditional probability values are learnt from text classification techniques. We use 
the relatedness values from WordNet similarity modules to derive these values. 

 Applying IPFP iterations to impose P Space: Finally with given CPT values it is 
important for the network to learn the real values given the probability constraints to 
arrive at a condition where all LNodes are true. This is achieved by an Iterative 



Proportional Fitting Procedure (IPFP) [17]. In case there are no L Nodes to be 
considered, this iterative step can be overlooked. 

The principal reasoning tasks in our Bayesian network are based on computation of 
joint probability distributions and utilize the three methods suggested by Ding et 
al[5]. These are: 
• Concept Satisfiablity: if a concept based on certain states of given nodes in the 

network can exist. This is defined by verifying if P (e|t) = 0, where e is the given 
concept. For example already as discussed in § 1.2, given that a concept belongs 
to Motorway (thus P(t)=1) it cannot be a member of “Entities that afford 
walking” P (e|t) = 0 . Hence a concept of a Motorway, which affords walking, is 
not satisfied as per the representation in Figure 2.  

• Concept Overlap: the degree of overlap between a given concept and any other 
concept in the network is determined by P (e|C,t). Thus in Figure 2 we see that 
the overlap between Road and “Entities that afford walking” is significant 
whereas overlap between Motorway and the later is null. 

• Concept similarity: The advocated measure of similarity is based on Jaccard 
coefficient provided by Rijsbergen [18]. This measure is the ratio of the 
probability that an instance of the top level concept is a member of either of the 
two classes, with respect to the probability that the instance is a member of both 
the classes. The value ranges from 0 to 1. To demonstrate this if we assume that 
the overlap between classes as shown in figure 2, we know that the probability 
that an instance is a Motorway given that it is a Road is P(C|e); given that the 
likelihood that any instance of a road network entity (i) is a Road (say P(e))  (ii) 
is a Motorway (say P(C) . The similarity between the two concepts is equal to  

MSC(e,C) = P(e ∩ C) / P(e∪C). 
                                    = P(e,C) / (P(e) + P(C) – P(e,C)) 

(2) 

In case one of the classes is a subclass of the other, as in the case of a Road and a 
Motorway, the value of P(C,e) turns out to be 1 since any instance of Motorway is 
also an instance of Road. Thus in this case M SC (e,C) = 1 and MSC(e,C)=P(e)/P(C) 
which means that most similar concept among subclasses of a given class is its most 
specific subsumer. On the other hand, if P(C,e) = 0 for any case (and hence 
MSC(e,C)=0), it means that the two concepts are most disimilar. We use these 
equations extensively for our case studies and for further clarification of the 
computations the reader may refer to the explaination of BayesOWL [5].    

3 Case Study: Ontologies from traffic code texts 

Traffic code texts such as the Highway Code of UK1 (HWC) and the New York 
Driver’s Manual2 (NYDM) are examples of formal texts, which not only mention the 
entities in a road network but also specify the permissible actions in the respective 
geographic jurisdiction.  Kuhn has advocated the extraction of ontologies from such 
formal texts. Our case study involves the extraction of such ontologies from each of 
these traffic codes. We extract most frequently occurring entities and construct 
hierarchies of such entities. We also extract most frequently occurring actions in 
relation to these entities and construct hierarchies of actions as well. A further text 
analysis provides co-occurrence values of entity-action pairs, which are used to 
establish linkages between entities and their actions. 

                                                           
1 www.highwaycode.gov.uk/ 
2 http://www.nydmv.state.ny.us/dmanual/ 



 In this section we discuss the extraction of probabilistic ontologies based on 
the text analysis. We also discuss the inferences obtained from such ontologies as 
opposed to conventional ontologies. It is important to note that the extraction of 
ontologies in this case is based on linguistic analysis and although analysis of formal 
texts is suggested to be a good source for building ontologies, our main purpose is to 
demonstrate the use of a probabilistic framework for geospatial ontologies. It is to be 
noted that linguistic analysis is not the cornerstone of our framework for probabilistic 
ontologies; rather, it serves as one of the tools, which assists in building such 
ontologies. Nevertheless, simplistic ontologies (as Directed Acyclic Graphs) have 
been developed from analysis of formal texts and we further the same methodology 
by using probabilistic values in the place of binary values for affordances of different 
road network entities.    

3.1 Ontology extraction 

The steps listed in § 2.1 are used to construct the BN based ontologies. The 
important constituents required for these are extracted from the text as follows. 

1. Both texts are subjected to a Part Of Speech (POS) analysis which not only 
analyze the part of speech but also provides the sense of the words [19]. 

2. The most frequently occurring entities are used to construct a hierarchy of 
geospatial entities using hypernyms relations of noun terms from the 
WordNet lexicon [20]. 

3. Similarly hierarchies of geospatial action terms are used to construct the 
hierarchy of actions. Hypernym relations between verbs are used to construct 
such hierarchies. 

4. WordNet-similarity modules [21] are used to extract the conditional 
probabilities between class and subclass relations in the two hierarchies. The 
CPTs thus obtained allow us to construct individual BayesOWL ontologies 
of entities and actions separately. 

5. We go beyond this step by using the linkages between noun-verb pairs from 
the text analysis to link the two hierarchies together. A table of enitity 
concepts along with their assesed values of affordance for the given 
geospatial action concepts is used. The combined DAGs from the two texts 
are represented in figure 3 and 4 respectively. We need to clarify that the 
node denoting action concepts, when used in a combined DAG, represents 
the class of road network entities, which afford that particular action. Since 
the top concept for action concepts is move, we assume the top concept to be 
“all road network entities which afford the action move” 



 
Figure 3 DAG extracted from the NYDM text, in the form of a Bayesian Network 
containing both geospatial enitity concepts (on the left with first letters in capitals) 
and action concepts (on the right). Edges within an BayesOWL ontology 

3.2 Ontology reasoning and database ontologies 

The main purpose of our experiments was to evaluate the utility of the developed 
Bayesian network based ontologies to carry out inferencing tasks for our case study. 

 

 

Figure 4 DAG extracted from the UK Highway code tex similar to Figure 4 above. 
Note that some new entity concepts (Motorway  and Footpath) appear and some 
(Crosswalk and Expressway) are missing. The action concepts, however, remain 
consistent.  



3.2.1 Inferences within an ontology 

Given the Bayesian network ontologies as shown in figure 3 and 4, we now proceed 
to determine the most similar matches and most dissimilar matches within the same 
ontology. This is done using the notion of concept similarity described in § 2.2.  We 
try to obtain the action concept matches in relation to the entity concepts. Table 2 
depicts the results. 

 
Table 2 Most similar and most dissimilar entity concepts of the verb concepts with in 
the same ontology. These are calculated on the basis of the similarity score  

Entity Concept Occurs in Most similar action 
concept 

Most dissimilar action 
concept 

Crosswalk NYDM cross move,go 
Expressway NYDM drive cross 
Footpath HWC cross drive 
Highway NYDM/HWC drive drive walk go,move 
Motorway HWC drive cross,walk 
Path NYDM/HWC move,go cross cross move,go 
Road NYDM/HWC drive drive cross,walk cross,walk 
Street NYDM/HWC cross,walk cross,walk go Go 
Way NYDM/HWC move,go move,go cross cross,walk 

 
3.2.2 Reasoning across ontologies with common functions 
Finally we arrive at the bigger and more practical task of reasoning across ontologies. 
Since our two texts have differences in the list of geospatial entity concepts (the 
Highway code contains mention of Footpath and Motorway whereas the NY driver’s 
manual mentions Crosswalk and Expressway, our task is to obtain the degree of 
overlap between these two concepts and the most similar concepts given their 
linkages with the common function concepts. To do this, we make an assumption that 
action concepts remain invariant across the ontologies such that the meanings of walk 
or drive remain the same (although the meaning of a Road and a Highway can differ). 
We create a virtual node for each node of the given ontology in the target ontology 
based on its conditional probabilities in respect to the action concepts (common to 
both ontologies). Thereafter we obtain the most similar and most dissimilar concepts 
based on the approach already used in § 3.2.1. Table 3 lists these top matches 
obtained from the two BNs. 

  
Table 3 Most similar and dissimilar concepts of (i) the HWC in the NYDM and the 
NYDM in the HWC 

 
HWC 

Concept 
Most 

similar 
entity 

Most 
dissimilar 
entity 

NYDM 
Concept 

Most 
similar 
entity 

Most 
dissimilar 
entity 

Footpath Path Expressway Way Way Motorway 
Highway Way Street Street Way Street 
Motorway Road Crosswalk Road Road Street 
Path Path Expressway Path Path Motorway 
Road Road Expressway Highway Path Street 
Street Path Street Expressway Road Street 
Way Way Expressway Crosswalk Path Motorway 



4 Psycholinguistic Verification 

We have already stated that a simplistic evaluation of the machine based values of 
similarity and hence the mapping between concepts of two ontologies is not 
appropriate. This section explains human subjects testing based on the first case study 
and tries to compare the results of the machine based mappings vis-à-vis human 
generated ones. 

4.1 Human Subjects testing 

Human subject testing was conducted for 20 participants who were native English 
speakers or were highly proficient speakers and long-term residents of English-
speaking countries. Participants were given two sets of cards, which had names of 
road network entities from each ontology (the Highway Code and NY Driver’s 
Manual). The cards bearing names of Highway Code concepts were arranged in one 
row. Participants were asked to arrange the cards bearing NY Driver’s Manual 
concepts in such a way that the entities that they believed were most similar were kept 
closest. After this task was completed, they were asked to flip the cards and read the 
sections of the texts relevant to the respective entities, which occurred in the 
corresponding traffic code texts. These sections provided information about the 
different actions that were permissible on that particular road network entity. After 
taking as much time as they needed to read the cards, participants repeated the 
matching task. 

 The mappings generated before and after flipping the cards (and hence 
before and after the knowledge about entity functions was available) were recorded 
and analyzed. The tests took not more than 20 minutes and were administered with no 
interference once the initial instructions were given. All 20 participants volunteered 
willingly and were debriefed at the end of the tests. 

4.2 Analysis 

Table 4 below summarizes some of the mappings generated from the human subject 
tests. We note that most dissimilar mappings are not reported here for sake of 
simplicity. We note that other than the cases of Street and Motorway most similar 
mappings also appear in machine-based mappings.  
It is also important to note that the covariance of the mapping values in respect to age 
and gender was found to be insignificant (0.06). The variance of mappings produced  
Table 4: Human generated mappings. Most similar and dissimilar concepts of the 
HWC in the NYDM  

 
before reading the texts about entity functions after reading the texts about entity functions 
NYDM 

Concept 
Most 

similar entity 
Values (0 to 3) NYDM 

Concept 
Most 

similar entity 
Value (0 to 3) 

Way Way 2.7 Way Way 1.8 
Street Street 2.7 Street Street 2.85 
Road Road 2.65 Road Road 2.95 
Path Path 2.5 Path Path 1.2 
Highway Highway 0.875 Highway Road 1.25 
Expressway Motorway 2.55 Expressway Motorway 2.5 
Crosswalk Footpath 0.95 Crosswalk Path 1.0 

 



by subjects who have driven in both countries was found to be slightly lower than 
those who have driven only in one but this was fairly insignificant (0.09). 

We have already discussed that there is a close resemblance in the machine based 
mappings and the human based mappings although they are not identical. It is 
possible to report precision and recall of the mappings in terms of false positives 
(when a true match is overlooked) and false negatives (when a incorrect match is 
reported), using a unique name assumption (assuming that entities which have same 
names in both ontologies are the same entities). This is not a good evaluation of the 
performance of the machine based mapping because naming heterogeneity is 
abundant in most cases. For example, the term Highway is used differently in the 
HWC and the NYDM and this is concurrent with the use of the word in the two 
countries as well.  This is also evident from the results of our human subject tests. 
Thus evaluation of machine-based mappings warrants the use of human subjects 
testing to ascertain the goodness of the results.  

  The Graph 2 (below) compares the precision and recall values based on the 
unique name assumption and on the mappings produced by the human subject tests. 
The recall value remains the same (mainly due to the mismatch of the entity Street in 
the machine-based mappings). However recall has been shown to improve.  
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5 Conclusions and Future Work 
We have reported on a mechanism to design probabilistic ontologies in the geospatial 
domain. The use of text analysis to obtain information to construct such ontologies 
was discussed. Inferences based on such probabilistic geospatial ontologies provided 
results such as most similar and most dissimilar concepts within and across 
ontologies. Such results are comparable to human generated mappings. The precision 
and recall of ontology mapping exercises was found to be good with unique name 
assumptions of entities. The performance improved when human generated mappings 
were used as benchmarks. We summarize our conclusions from these case studies as 
follows: 
1) Ontologies of geospatial entities need to be extended with probabilistic 

frameworks in order to enable rich and practical inferences such as concept 
similarity and concept overlaps. 

2) It is possible to use both hierarchies of geospatial entities as well as geospatial 
actions and link them with probabilistic knowledge about affordances of 
geospatial entities.  

Graph 3 Comparing evaluations of machine-based mapping in the (i) absence  
or with Unique Name Assumption) and (ii) presence of human mapping values 



3) The use of probabilistic geospatial ontologies for mappings between most similar 
entities mimics, to a large extent, the human mechanism of semantic translations 
of entity names.  Our results provide support to the hypothesis that knowledge 
about geospatial actions and affordances to such actions are a critical part of 
geospatial knowledge. 

 
This is only a first step in our experimental validation and our experience has 

shown that there exist many themes for future work. These include 
(1) Inclusion of Disjoint, Equivalent, Intersection and Union relations: For 
simplification of our case study these relations were avoided although these relations 
can be easily determined from WordNet during text analysis. Using such relations in 
future will require use of some iterative algorithm such as Decomposed IPFP in order 
to enforce truth conditions of the LNodes in BayesOWL [17]. 
(2) Testing on industrial scale: this experiment, although at a prototype scale aims, in 
the end, to solve semantic problems, which occur at industrial scale.  
(3) Machine based learning: The human mappings, especially that of the experts, are 
considered as the ideal mappings. Human interactions and judgments for most similar 
concepts can be used to improve heuristics involved in specification of entity-action 
linkages. 
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