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Abstract
One natural approach to probabilistic logic programming is Nilsson’s probabilistic logic. We discuss the
basic framework in the propositional setting, some reasoning ideas and extensions that allow handling
inconsistent information. We then discuss its relationship to probabilistic epistemic argumentation.
Roughly speaking, probabilistic epistemic argumentation is to classical argumentation as Nilsson’s
probabilistic logic is to classical logic. We discuss similarities and differences between the two and in
which scenarios one approach may be better suited than the other.
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1. Introduction

The goal of this paper is to introduce the reader to some interesting relationships between
probabilistic programming and probabilistic argumentation. As these terms encompass a
variety of different models, let us first clarify what the focus of this paper is. To the best of my
knowledge, the term probabilistic programming is not precisely defined. From my personal
experience, the common characteristic of the different approaches is that they combine a formal
language with probability theory in order to allow expressing uncertainty. Some approaches
focus on the programming aspect. For example, Church [1] is a scheme-like probabilistic
programming language that allows defining random variables on top of deterministic constructs.
Probabilistic programming has also been used to refer to probabilistic extensions of mathematical
programming [2]. The formal language here is the language of numerical optimization problems
described by an objective function and constraints and uncertainty can be introduced, for
example, on the coefficients of constraints. At another end of the spectrum, there are formalisms
that combine logical languages and probability theory. One influential example and the main
content of this paper is Nilsson’s probabilistic logic [3]. Somewhere in between the more logical
and the more programming-oriented approaches, there are probabilistic extensions of logic
programming languages. One popular example is Problog [4] that extends the logical core of
Prolog with uncertainty that can be expressed over facts and rules.
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Our focus here is on Nilsson’s probabilistic logic [3]. Nilsson’s ideas were not completely
new and have been invented before and reinvented later. Some ideas can even be related back
to Boole’s work [5]. Nevertheless, Nilsson’s work probably played a great part in establishing
probabilistic logic programming in Artificial Intelligence and inspired several interesting exten-
sions. Therefore, we will just refer to this particular approach to probabilistic logic as Nilsson’s
probabilistic logic to distinguish it from other approaches. From a high-level perspective, the
framework allows enriching logical formulas with probabilities such that a formula with proba-
bility 1 corresponds to a classical logical formula, a formula with probability 0 corresponds to
the negation of a classical logical formula and a formula with probability strictly between 0 and
1 balances between these extremes. Philosophically, the probabilities are usually interpreted as
degrees of belief, that is, as the subjective probability that a formula is a true. Nilsson’s idea can
be applied to many logical languages including first-order languages. However, the original
formalism seems most intuitive in the propositional setting. Later, several relational extensions
have been introduced [6, 7, 8] that, roughly speaking, propositionalize first-order languages by
using Herbrand semantics similar to classical probabilistic programming approaches. While
they do not support the full power of first-order logic, they allow talking about properties of
individuals and their relationships and the semantics is quite intuitive in many applications.
Conceptually, they are similar to probabilistic models that have been considered in the area
of statistical relational learning [9], which is also known as statistical artificial intelligence
now. Almost all extensions of Nilsson’s approach can be unified again by considering the
logical atoms (propositional or ground atoms) as random variables and noticing that the logical
constraints are essentially encoded as linear constraints over these random variables [10]. In
this paper, we will mostly focus on propositional languages because it keeps the formalism
simple. However, once the reader understands the propositional setting, she will not have
problems to generalize the ideas to the relational setting or the more general setting of linear
constraints over random variables.

Another popular knowledge representation formalism closely related to logic is argumenta-
tion. Argumentation can be roughly divided into structured approaches [11] that take account
of the logical structure of arguments and abstract approaches [12] that focus merely on the
relationships between arguments to determine which arguments can be accepted. Naturally,
also many probabilistic extensions of classical argumentation models have been considered
[13]. Probabilistic argumentation can, in fact, be seen as another instance of our working
definition of probabilistic programming. The formal language is the language of argumentation
problems and uncertainty can be introduced, for example, on arguments (degrees of acceptance)
or relationships between them. We will focus on probabilistic epistemic argumentation here
[14], which, roughly speaking is to classical abstract argumentation as Nilsson’s probabilistic
logic is to classical logic. The intuitive idea of the basic framework is that the meaning of attacks
between arguments is encoded by probabilistic constraints. For example, we may want that the
belief in an argument, should bound the belief in arguments that it attacks from above. As we
discuss later, the original framework can be related to a very weak propositional probabilistic
logic that only allows talking about atomic beliefs. The framework has been extended later by
more and expressive constraints and in its current is closely related [15] to some of the more
expressive extensions of Nilsson’s probabilistic logic.

The remainder of this paper is structured as follows: We give an introduction to Nilsson’s



probabilistic logic in Section 2. We start with a simple language in Section 2.1 and explain the
basic reasoning problem in Section 2.2. In Section 2.3, we discuss some important extensions of
the language. In particular, we explain the idea of relational extensions by means of a larger
example. We finish the section with an overview of some ideas to make probabilistic logic
inconsistency-tolerant. In Section 3, we give an analogously structured overview of epistemic
probabilistic argumentation. We do not assume any familiarity with argumentation and sketch
all necessary basics. As we will explain later, we will use some non-standard notation, to
highlight the relationships to Nilsson’s probabilistic logic. Again, we will start from the basic
framework and then discuss basic reasoning problems, extensions of the basic language, give a
larger example and explain how to make the framework robust against inconsistencies. Along
the way, we will highlight similarities and differences to Nilsson’s probabilistic logic and why
both frameworks are interesting in their own right. We close the paper with some conclusions
and some potential ideas for future research in the area.

2. Nilsson’s Probabilistic Logic and Extensions

2.1. The Basic Framework

We start from a classical propositional language defined over a finite set of propositional atoms
𝒜 using the logical connectives ¬, ∧, ∨,→,↔. An interpretation 𝐼 ∶ 𝒜 → {0, 1} is a mapping
from atoms to truth values, where we associate 𝑓 𝑎𝑙𝑠𝑒 with 0 and 𝑡𝑟𝑢𝑒 with 1. We let Int denote
the set of all interpretations. The interpretation of complex formulas is defined as usual, for
example, 𝐼 (¬𝐹) = 1 − 𝐼 (𝐹) and 𝐼 (𝐹 ∧ 𝐺) = 𝐼 (𝐹) ⋅ 𝐼 (𝐺). We say that 𝐼 satisfies a formula 𝐹 iff
𝐼 (𝐹 ) = 1 and call 𝐼 a model of 𝐹 in this case. We let Mod(𝐹 ) = {𝐼 ∈ Int ∣ 𝐼 satisfies 𝐹} denote the
models of 𝐹.

The conceptual idea of Nilsson’s probabilistic logic is simple. In the language of probability
theory, we understand interpretations as elementary events and associate formulas with events
by identifying them with the set of their models. What probabilistic logic adds to probability
theory is a simple formal language to describe events. Formally, a probabilistic formula is
an expression of the form (𝐹 )[𝑝], where 𝐹 is a formula in our classical logical language and
𝑝 ∈ [0, 1] is a probability. Intuitively, (𝐹 )[𝑝] says that we believe that 𝐹 is true with probability
𝑝. Probabilistic interpretations are then probability distributions 𝑃 ∶ Int → [0, 1] (such that
∑𝐼 ∈Int 𝑃(𝐼 ) = 1) over interpretations. We extend the domain of 𝑃 to arbitrary formulas by letting
𝑃(𝐹) = ∑𝐼 ∈Mod(𝐹 ) 𝑃(𝐼 ). This definition is elegant and simple and has some immediate intuitive
consequences. For example, it is easy to check from the definition that

• 𝑃(⊤) = 1 for every tautological formula ⊤,
• 𝑃(¬𝐹) = 1 − 𝑃(𝐹),
• 𝑃(𝐹) ≤ 𝑃(𝐺) if 𝐹 logically entails 𝐺 (which means that Mod(𝐹 ) ⊆ Mod(𝐺).

A probabilistic interpretation 𝑃 satisfies a probabilistic formula (𝐹 )[𝑝] iff 𝑃(𝐹) = 𝑝. With this,
Nilsson’s propositional probabilistic logic is already completely defined.



Table 1
Two probabilistic interpretations that satisfy 𝒦1.

𝑎 𝑏 𝑃1 𝑃2
0 0 0.5 0
0 1 0 0.5
1 0 0.5 0.5
1 1 0 0

2.2. Basic Reasoning Problems

A probabilistic knowledge base 𝒦 is a finite set of probabilistic formulas. There are two
fundamental reasoning problems. The probabilistic satisfiability problem asks if there is a
probabilistic interpretation 𝑃 that satisfies every probabilistic formula in 𝒦. If 𝒦 is satisfiable,
we are interested in what 𝒦 entails about the probability of formulas. It may come as a surprise
to the reader that we actually cannot necessarily derive point probabilities. This should be clear
for the empty knowledge base as it is satisfied by every probabilistic interpretation. Therefore,
for every formula, we can only entail that the probability must be between 0 and 1. However,
even in non-trivial cases, our knowledge bases do not necessarily entail point probabilities.

Example 2.1. Consider the knowledge base 𝒦1 = {(𝑎)[0.5], (𝑎 → 𝑏)[0.5]}. Table 1 shows two
interpretations. It is easy to check from the definition that they satisfy 𝒦1. However, we have
𝑃1(𝑏) = 0 and 𝑃2(𝑏) = 0.5. By doing a more sophisticated analysis, one can actually show that
if there are two probability distribution that satisfy 𝒦 and assigns probabilities 𝑝1 and 𝑝2 to a
formula 𝐹, then for every 𝑝 ∈ [𝑝1, 𝑝2], there must be another probability distribution 𝑃 that satisfies
𝐹 and assigns probability 𝑝 to 𝐹. In other words, the entailed probabilities form an interval. In our
example, one can check that 𝒦 entails that the probability of 𝑏 must be in the interval [0, 0.5].

Since the entailed probabilities form an interval (a point probability is the special case of
an interval of length 0), the entailment problem is usually solved by computing the lower and
upper bound. This leads to two optimization problems. Given a probabilistic knowledge base
𝒦 and a formula 𝐹 over the same language, the probabilistic entailment problem is to solve the
following minimization and maximization problem:

min
𝑃

/max
𝑃

𝑃(𝐹)

subject to 𝑃 satisfies 𝒦.

If the lower bound is 𝑙 and the upper bound is 𝑢, we write 𝒦 ⊧ (𝐹)[𝑙, 𝑢]. Both the probabilistic
satisfiability and the entailment problems are linear optimization problems [3]. However,
the number of optimization variables corresponds to the number of interpretations in the
propositional language. Therefore, the naive optimization problems grow exponentially with
respect to the number of atoms in the language. The probabilistic satisfiability problem is indeed
NP-hard even when all formulas in 𝒦 correspond to Krom clauses [16]. Recall that a Krom
clause is a literal or a disjunction of two literals and that the classical satisfiability problem for
Krom clauses (2SAT) is in 𝑃. However, it is also interesting to note that the general probabilistic
satisfiability problem remains in 𝑁𝑃, that is, is NP-complete [16]. A well established method to



deal with probabilistic satisfaction and entailment problems with hundreds of propositional
atoms is to apply column generation methods [16, 17].

2.3. Enriching the Language

Since knowledge bases generally entail interval probabilities, a first natural extension is to allow
interval probabilities in knowledge bases. Probabilistic formulas have then the form (𝐹 )[𝑙, 𝑢]
and a probabilistic interpretation 𝑃 satisfies such a formula iff 𝑙 ≤ 𝑃(𝐹) ≤ 𝑢. Computationally,
nothing changes for the satisfiability and entailment problem. The optimization problems
remain exponentially large linear optimization problems.

Another important extension are conditional probabilities. Sometimes people tend to apply
probabilistic implications instead, but it is important to note that they do not have the same
meaning. (𝐹 → 𝐺)[𝑝] says that the probability that the statement 𝐹 → 𝐺 is true is 𝑝. It does not
speak about the probability of 𝐺 under the assumption that 𝐹 is true. The latter is indeed what
conditional probability captures. Probabilistic conditionals are written in the form (𝐺 ∣ 𝐹 )[𝑙, 𝑢]
and can be read as ’the conditional probability of 𝐺 given 𝐹 is between 𝑙 and 𝑢’. Roughly speaking,
satisfaction is defined by the usual definition of conditional probability. That is, 𝑃 satisfies
(𝐺 ∣ 𝐹 )[𝑙, 𝑢] if 𝑙 ≤ 𝑃(𝐹∧𝐺)

𝑃(𝐹) ≤ 𝑢. However, this expression is undefined if 𝑃(𝐹) = 0. Therefore,
the precise definition is usually that 𝑃 satisfies (𝐺 ∣ 𝐹 )[𝑙, 𝑢] iff 𝑙 ⋅ 𝑃(𝐹 ) ≤ 𝑃(𝐹 ∧ 𝐺) ≤ 𝑢 ⋅ 𝑃(𝐹),
which is obtained from the original inequality by multiplying all terms by 𝑃(𝐹). This form
has the additional advantage that it again corresponds to linear inequalities, which means that
the probabilistic satisfiability and entailment problem again maintain the original structure.
One may try to additionally enforce the condition 𝑃(𝐹) > 0 and there is some philosophical
discussion about potential advantages and disadvantages of this stricter definition of satisfaction.
However, one can show that, in most cases, it does not make a big difference for the entailed
probabilities [18]. Let us highlight again that probabilistic implications are different from
probabilistic conditionals. To see formally that (𝐺 ∣ 𝐹 )[𝑙, 𝑢] is different from (𝐹 → 𝐺)[𝑙, 𝑢], just
notice that the satisfaction condition for (𝐹 → 𝐺)[𝑙, 𝑢] is 𝑙 ≤ 𝑃(𝐹 → 𝐺) ≤ 𝑢, or equivalently,
𝑙 ≤ 𝑃(¬𝐹 ∨ 𝐺) ≤ 𝑢, which is clearly different from the condition 𝑙 ⋅ 𝑃(𝐹 ) ≤ 𝑃(𝐹 ∧ 𝐺) ≤ 𝑢 ⋅ 𝑃(𝐹)
for (𝐺 ∣ 𝐹 )[𝑙, 𝑢].

When allowing conditionals in the knowledge base, it is natural to also allow conditionals in
queries. The entailment problem then, more generally, becomes

min
𝑃

/max
𝑃

𝑃(𝐺 ∣ 𝐹 )

subject to 𝑃 satisfies 𝒦.

For 𝐹 ≡ ⊤, one obtains the original problem. While conditional probabilities lead to a non-linear
objective function of the optimization problem, fractional programming techniques can be
applied to transform the problem into an equivalent linear optimization problem again [19, 5].

In the following, we can simply assume that probabilistic knowledge bases contain only
conditionals of the form (𝐺 ∣ 𝐹 )[𝑙, 𝑢]. For 𝑙 = 𝑢, we get the special case of point probabilities
and for 𝐹 ≡ ⊤, we get the special case of unconditional probabilistic formulas. Implementations
benefit from treating these special cases separately, but the algorithmic complexity will change
only by a constant.



Another interesting extension is to move to more expressive logical languages. A discussion
of this topic is out of scope here, but we can illustrate some key ideas in an example. Figure 1
shows a small relational knowledge base that contains some general beliefs about relationships
between some animals and domain knowledge about the bird 𝑡𝑤𝑒𝑒𝑡𝑦, the cat 𝑠𝑦 𝑙𝑣𝑒𝑠𝑡𝑒𝑟 and the
dog ℎ𝑒𝑐𝑡𝑜𝑟.

//Animal types are disjoint //Type of some individuals

(𝑏𝑖𝑟𝑑(𝑋) ∧ 𝑐𝑎𝑡(𝑋))[0], (𝑏𝑖𝑟𝑑(𝑡𝑤𝑒𝑒𝑡𝑦))[1],
(𝑏𝑖𝑟𝑑(𝑋) ∧ 𝑑𝑜𝑔(𝑋))[0], (𝑐𝑎𝑡(𝑠𝑦 𝑙𝑣𝑒𝑠𝑡𝑒𝑟))[1],
(𝑐𝑎𝑡(𝑋) ∧ 𝑑𝑜𝑔(𝑋))[0], (𝑑𝑜𝑔(ℎ𝑒𝑐𝑡𝑜𝑟))[1]

//largerThan is asymmetric (>) //attacks is irreflexive

(𝑙𝑎𝑟𝑔𝑒𝑟𝑇ℎ𝑎𝑛(𝑋 , 𝑌 ) ∧ 𝑙𝑎𝑟𝑔𝑒𝑟𝑇ℎ𝑎𝑛(𝑌 , 𝑋))[0], (𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑋 , 𝑋))[0]

//cats are usually larger than birds //cats often attack birds

(𝑙𝑎𝑟𝑔𝑒𝑟𝑇ℎ𝑎𝑛(𝑋 , 𝑌 ) ∣ 𝑐𝑎𝑡(𝑋) ∧ 𝑏𝑖𝑟𝑑(𝑌 ))[0.9], (𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑋 , 𝑌 ) ∣ 𝑐𝑎𝑡(𝑋) ∧ 𝑏𝑖𝑟𝑑(𝑌 ))[0.8],

//animals are unlikely to attack larger animals

(𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑋 , 𝑌 ) ∣ 𝑙𝑎𝑟𝑔𝑒𝑟𝑇ℎ𝑎𝑛(𝑌 , 𝑋))[0.1].

Figure 1: Example of a relational knowledge base.

There are different ways to define the semantics of such knowledge bases, but one simple
way is to transform it into a propositional knowledge base [6, 7]. To this end, we consider
all ground atoms over a finite set of constants and use them as the propositional atoms of
our language. In our example, we simply use the constants from the knowledge base, namely
the set {𝑡𝑤𝑒𝑒𝑡𝑦 , 𝑠𝑦 𝑙𝑣𝑒𝑠𝑡𝑒𝑟 , ℎ𝑒𝑐𝑡𝑜𝑟}. For every predicate symbol, we then create a propositional
atom for every possible instantiation of the arguments. For every relational conditional, we
create a propositional conditional for every ground instance. For example, (𝑏𝑖𝑟𝑑(𝑋) ∧ 𝑐𝑎𝑡(𝑋))[0]
will be replaced with the three instantiations (𝑏𝑖𝑟𝑑(𝑡𝑤𝑒𝑒𝑡𝑦) ∧ 𝑐𝑎𝑡(𝑡𝑤𝑒𝑒𝑡𝑦))[0], (𝑏𝑖𝑟𝑑(𝑠𝑦 𝑙𝑣𝑒𝑠𝑡𝑒𝑟) ∧
𝑐𝑎𝑡(𝑠𝑦 𝑙𝑣𝑒𝑠𝑡𝑒𝑟))[0] and (𝑏𝑖𝑟𝑑(ℎ𝑒𝑐𝑡𝑜𝑟) ∧ 𝑐𝑎𝑡(ℎ𝑒𝑐𝑡𝑜𝑟))[0]. In this way, we end up with a propositional
knowledge base that we can treat as before. The number of interpretations grows quickly in
relational knowledge bases, but we can often exploit deterministic knowledge in order to keep the
number of interpretations manageable [20]. For example, (𝑏𝑖𝑟𝑑(𝑡𝑤𝑒𝑒𝑡𝑦) ∧ 𝑐𝑎𝑡(𝑡𝑤𝑒𝑒𝑡𝑦))[0] tells us
that every interpretation that interprets both 𝑏𝑖𝑟𝑑(𝑡𝑤𝑒𝑒𝑡𝑦) and 𝑐𝑎𝑡(𝑡𝑤𝑒𝑒𝑡𝑦) as true necessarily has
probability 0 and therefore can be ignored. Some results that we can infer from the knowledge
base in Figure 1 are the following:

• 𝒦 ⊧ (𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑡𝑤𝑒𝑒𝑡𝑦 , 𝑠𝑦 𝑙𝑣𝑒𝑠𝑡𝑒𝑟))[0.09, 0.19],
• 𝒦 ⊧ (𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑡𝑤𝑒𝑒𝑡𝑦 , 𝑡𝑤𝑒𝑒𝑡𝑦))[0],
• 𝒦 ⊧ (𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑡𝑤𝑒𝑒𝑡𝑦 , ℎ𝑒𝑐𝑡𝑜𝑟))[0, 1],
• 𝒦 ⊧ (𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑠𝑦 𝑙𝑣𝑒𝑠𝑡𝑒𝑟 , 𝑡𝑤𝑒𝑒𝑡𝑦))[0.8, 0.8].



The first example shows again that we may entail interval probabilities even if all conditionals
in the knowledge base contain point probabilities. The rough intuitive reasoning in this example
is as follows: We know that 𝑡𝑤𝑒𝑒𝑡𝑦 is a bird and that 𝑠𝑦 𝑙𝑣𝑒𝑠𝑡𝑒𝑟 is a cat. Therefore, there is a 90%
chance that 𝑠𝑦 𝑙𝑣𝑒𝑠𝑡𝑒𝑟 is larger than 𝑡𝑤𝑒𝑒𝑡𝑦. In this case, there is only a 10% chance that 𝑡𝑤𝑒𝑒𝑡𝑦
attacks 𝑠𝑦 𝑙𝑣𝑒𝑠𝑡𝑒𝑟. This makes up for the lower bound 0.09. However, there is also a 10% chance
that 𝑠𝑦 𝑙𝑣𝑒𝑠𝑡𝑒𝑟 is not larger than 𝑡𝑤𝑒𝑒𝑡𝑦. In this case, we can say nothing about the probability
that 𝑡𝑤𝑒𝑒𝑡𝑦 attacks 𝑠𝑦 𝑙𝑣𝑒𝑠𝑡𝑒𝑟, which basically makes up for the 10% uncertainty that are reflected
in the upper bound 0.19. The probabilities in this example have been computed with the Java
library Log4KR that can be downloaded as part of the Kreator project1. The documentation of
the library can be found in the appendix of [20].

Finally, let us mention that the language can be extended further indefinitely. For example,
one can take the logical closure of probabilistic formulas (probabilistic formulas are then the
atoms of a boolean language) or assign probabilities to probabilistic formulas that express
the degree of belief that the degree of belief in the original formula is correct (second-order
probabilities). This ideas can be applied repeatedly, so that an infinite number of possible
extensions of the basic language exists. However, the computational problems also become
significantly harder, so that we will not discuss these extensions here. A systematic investigation
and classification of such extensions can be found in [21].

2.4. Dealing with Inconsistencies

When a classical knowledge base is inconsistent, it entails everything. This is one of the few
properties that do not generalize from classical to Nilsson’s probabilistic logic immediately.
When a probabilistic knowledge base is inconsistent, there is no interpretation that satisfies
the knowledge base. Therefore, the optimization problem corresponding to the probabilistic
entailment problem simply has no solution. One may close the definition gap by just saying
that it entails arbitrary conditionals in this case to maintain consistency with classical logic. In
practice, it does not make a big difference because the entailment results would bemeaningless in
this case. What seems more important is a way to deal with inconsistent knowledge bases. Like
in classical logic, one could try to repair the knowledge base or define new reasoning procedures
that can derive non-trivial results from inconsistent knowledge bases. Some examples for
approaches to repair inconsistent probabilistic knowledge bases can be found in [22, 23, 24].
Some inconsistency-tolerant reasoning approaches can be found in [25, 26].

We discuss the inconsistency-tolerant reasoning approach in [26] in a little bit more detail
because it allows generalizing many reasoning problems (including the probabilistic entailment
problem) to inconsistent knowledge bases without changing their asymptotic complexity. The
conceptual idea is very simple. The probabilistic entailment problem is undefined when a
knowledge base is unsatisfiable. To overcome the problem, one can consider probability distri-
butions that satisfy the knowledge base ’as well as possible’. One way to do this is to consider
probability distributions that violate the knowledge base in a minimal way. The violation can
be measured with respect to the linear constraints that encode the meaning of conditionals in
the knowledge base [27]. It is interesting to note that the problem of computing the degree

1https://sourceforge.net/projects/kreator-ide/

https://sourceforge.net/projects/kreator-ide/


of violation can be solved by a linear optimization problem with almost the same structure
as the probabilistic satisfiability problem. Once the degree of violation has been computed, a
generalized probabilistic entailment problem can be solved by a linear optimization problem
with almost the same structure as the probabilistic entailment problem. In particular, if the
knowledge base is consistent, the generalized probabilistic entailment results are equal to the
standard probabilistic entailment results. Furthermore, the generalized probabilistic entailment
problem has a continuity property that guarantees that when a knowledge base is close to a
consistent knowledge base, the generalized reasoning results will be close to the reasoning
results under the consistent knowledge base [10]. Hence, by replacing probabilistic satisfiability
tests with a computation of minimal violation, and replacing probabilistic entailment with
generalized probabilistic entailment, Nilsson’s probabilistic logic can be made robust against
inconsistencies without making the computational problems harder. In a similar way, it can be
extended to stratified knowledge bases where conditionals partitioned with respect to priorities
[28].

3. Probabilistic Epistemic Argumentation and Extensions

3.1. The Basic Framework

While Nilsson’s probabilistic logic extends classical logic, probabilistic epistemic argumentation
[14] extends classical abstract argumentation [12]. While classical logic basically asks for
the consequences of a set of formulas, classical abstract argumentation basically asks for the
acceptable arguments among arguments that may attack each other. In general, there is not a
unique answer, but no ormultiple sets of arguments may be acceptable. Due to this characteristic,
probabilistic epistemic argumentation does not generalize classical argumentation as smoothly
as probabilistic logic generalizes classical logic. Probabilistic epistemic argumentation is similar
to probabilistic logic in the sense that the goal is to assign a unique degree of belief to every
argument (as opposed to having multiple possible answers). The degree of belief is again
represented by a probability interval (including the special case of point probabilities).

Instead of a set of propositional atoms, we now have a set of abstract arguments that we again
denote by𝒜. For our purposes, an argument is simply something that can be accepted or rejected.
We refer to [29] for a more sophisticated discussion. Instead of having conditionals that express
relationships between propositional atoms, we now have edges that express relationships
between arguments. In the most basic framework, there are only attack edges. Intuitively, if 𝑎
attacks 𝑏, then accepting 𝑎 should imply that we reject 𝑏. An argumentation framework can
then be defined as a pair (𝒜 ,Att) consisting of a set of arguments 𝒜 and a set Att ⊆ 𝒜 × 𝒜 of
attacks between them. With a slight abuse of notation, we let Att(𝑎) = {𝑏 ∈ 𝒜 ∣ (𝑏, 𝑎) ∈ Att}
denote the attackers of argument 𝑎.

The goal of probabilistic epistemic argumentation is to add a degree of belief to every
argument. To this end, we proceed similar to probabilistic logic. We start again by defining
interpretations 𝐼 ∶ 𝒜 ← {0, 1} that can accept (1) or reject (0) arguments. In the context of
abstract argumentation, it is more common to consider sets of accepted arguments instead, but
we use interpretations here to highlight the similarity. Note that there is a 1-1-correspondence
between the two because every interpretation can be associated with the set of arguments that



it accepts and vice versa. We let again Int denote the set of all interpretations and consider
probability distributions 𝑃 ∶ Int → [0, 1] (such that ∑𝐼 ∈Int 𝑃(𝐼 ) = 1) over interpretations. The
question is now, when does a probabilistic interpretation 𝑃 satisfy an argumentation framework
(𝒜 ,Att)? To answer this question, probabilistic epistemic argumentation allows defining the
meaning of attack edges by constraints over probability distributions. While many different
options exist, we present only a small selection from [30] here. We say that 𝑃 respects

Rationality if (𝑎, 𝑏) ∈ Att and 𝑃(𝑎) > 0.5 implies that 𝑃(𝑏) ≤ 0.5,

Coherence if (𝑎, 𝑏) ∈ Att implies that 𝑃(𝑏) ≤ 1 − 𝑃(𝑎),

Foundedness if Att(𝑎) = ∅ implies 𝑃(𝑎) = 1,

Optimism if 𝑃(𝑎) ≥ 1 − ∑𝑏∈Att(𝑎) 𝑃(𝑏).

To understand the intuition of these constraints, it is important to know that probability 0.5 is
associated with indifference, whereas probabilities greater than 0.5 tend towards acceptance
and probabilities smaller than 0.5 tend towards rejection. Intuitively, the constraints generalize
ideas from classical abstract argumentation. Rationality states that if 𝑎 attacks 𝑏 and we accept
𝑎, then we should not accept 𝑏. Coherence encodes the same idea in a more continuous way. As
our belief in 𝑎 increases, our belief in 𝑏 must decrease. Foundedness generalizes Dung’s idea
that arguments can be accepted when it can be successfully argued against their attackers [12].
In the context of an unattacked argument, it simply means that the argument can be accepted.
Foundedness demands the belief in such an argument is 1. Optimism respects this idea, but may
also give a non-trivial lower bound for attacked arguments. The lower bound linearly decreases
with respect to the belief in the attackers of an argument.

A probabilistic epistemic argumentation framework can now be seen as a triple (𝒜 ,Att, 𝒞 )
consisting of an argumentation framework and a collection of constraints like Coherence and
Optimism. A probability distribution 𝑃 satisfies the framework iff it satisfies all constraints in 𝒞.

3.2. Basic Reasoning Problems

In order to compute degrees of belief, we can proceed analogously to probabilistic logic. Among
all propbability distributions that satisfy a probabilistic epistemic argumentation framework
(𝒜 ,Att, 𝒞 ), we minimize and maximize the probability of an argument to obtain the lower
and the upper bound for the belief, respectively. As these beliefs can only be computed if the
argumentation framework is satisfiable, it also makes sense to consider a satisfiability problem.
Formally, the probabilistic epistemic satisfiability problem asks if a given probabilistic epistemic
argumentation framework is satisfiable. The probabilistic epistemic entailment problem takes an
argument 𝑎 as additional input and asks for the solutions of the following minimization and
maximization problem:

min
𝑃

/max
𝑃

𝑃(𝑎)

subject to 𝑃 satisfies (𝒜 ,Att, 𝒞 ).

The difficulty of the probabilistic epistemic entailment problem depends on the nature of the
constraints contained in 𝒞. The constraints proposed in [30] are almost all linear. The only



exception is the Rationality constraint. Recall that it states that a probability distribution must
satisfy 𝑃(𝑏) ≤ 0.5 whenever (𝑎, 𝑏) ∈ Att and 𝑃(𝑎) > 0.5. This is equivalent to saying that for all
(𝑎, 𝑏) ∈ Att, we must have 𝑃(𝑎) ≤ 0.5 or 𝑃(𝑏) ≤ 0.5, where the or is the logical inclusive or. This
is a disjunction of two linear constraints that is computationally difficult to handle. However,
all other constraints in [30] can be brought into the form

𝑘
∑
𝑖=1

𝑐𝑖 ⋅ 𝑃(𝑎𝑖) ≤ 𝑐0,

where 𝑎1, … , 𝑎𝑘 ∈ 𝒜 are arguments and 𝑐0, … , 𝑐𝑛 ∈ ℝ. Note that this form also encompasses
equalities because an equality∑𝑘

𝑖=1 𝑐𝑖 ⋅ 𝑃(𝑎𝑖) = 𝑐0 is equivalent to two inequalities∑𝑘
𝑖=1 𝑐𝑖 ⋅ 𝑃(𝑎𝑖) ≤

𝑐0 and ∑𝑘
𝑖=1 𝑐𝑖 ⋅ 𝑃(𝑎𝑖) ≥ 𝑐0. Constraints of this general form are called linear atomic constraints

and one can show that the probabilistic epistemic satisfiability and entailment problems can
be solved in linear time when only linear atomic constraints are involved [31]. Intuitively,
the reason for this is that the constraints only involve probabilities over atomic arguments.
Therefore, one can show that probability distributions 𝑃 ∶ Int → [0, 1] can be replaced with
probability labellings 𝑃 ∶ 𝒜 → [0, 1] that assign probabilities to arguments directly without
changing the semantics. Note, in particular, that the probabilistic epistemic satisfiability problem
is indeed simpler than the probabilistic satisfiability problem over Krom clauses that is NP-hard
as we discussed before. For the same reason that probabilistic satisfiability over Krom clauses is
NP-hard, allowing the conjunction or disjunction of two arguments in constraints immediately
renders the probabilistic epistemic satisfiability problem NP-hard [31].

3.3. Enriching the Language

A first natural extension of the basic framework is to not only consider attack, but also support
edges. This corresponds to the idea of bipolar abstract argumentation [32, 33]. A bipolar
abstract argumentation framework is a triple (𝒜 ,Att, Sup) that adds an additional support
relation Sup ⊆ 𝒜 ×𝒜 of attacks between them. As before, with a slight abuse of notation, we let
Sup(𝑎) = {𝑏 ∈ 𝒜 ∣ (𝑏, 𝑎) ∈ Sup} denote the supporters of argument 𝑎. There is some philosophical
discussion about how support should be defined, but one natural idea is to consider it as the
opposite of attack [34]. Whereas an attacker weakens the attacked argument, a supporter should
strengthen it. One may then introduce symmetric constraints for support. For example, we
could say that 𝑃 respects

S-Rationality if (𝑎, 𝑏) ∈ Sup and 𝑃(𝑎) > 0.5 implies that 𝑃(𝑏) > 0.5,

S-Coherence if (𝑎, 𝑏) ∈ Sup implies that 𝑃(𝑏) ≥ 𝑃(𝑎).

The ideas are symmetrical to Rationality and Coherence for attacks. S-Rationality says, in-
tuitively, that if 𝑎 supports 𝑏 and we accept 𝑎, then we must accept 𝑏 as well. S-Coherence
again encodes a similar idea in a continuous way. As the belief in 𝑎 increases, our belief in 𝑏
must increase as well. Similar to the attack constraints, S-Rationality is a difficult non-linear
constraint that corresponds to a discjunction of two constraints. S-Coherence is a linear atomic
constraint. As we discussed before, the probabilistic epistemic satisfiability and entailment
problems can be solved in polynomial time for linear atomic constraints.



Figure 2: A simple medical decision support scenario.

The most general extension of probabilistic epistemic argumentation has been discussed in
[15] recently. Constraints can now involve probabilities over arguments connected by logical
connectives. This basic form corresponds to probabilities over propositional formulas (where
arguments take the role of propositional atoms) like in Nilsson’s probabilistic logic. These
probability statements can be combined linearly and used in constraints with (in-)equality
and strict inequality. The former basically corresponds to the basic constraints considered in
probabilistic logic. Probabilistic formulas over arguments can also be connected via logical
connectives analogous to the idea of taking the logical closure of probabilistic constraints. In
this most general form, the framework of probabilistic epistemic argumentation is basically
equivalent to probabilistic logic. A natural question is then, do we really need probabilistic
epistemic argumentation? Personally, I would argue that the answer is yes. This is for the same
reason that we need probabilistic logic, even though we have the more general probability theory.
What Nilsson’s probabilistic logic adds to probability theory is a formal language to conveniently
describe events at a higher level of abstraction. Probabilistic epistemic argumentation can
potentially add another layer of abstraction. Instead of having to define a knowledge base
with probabilistic formulas, the user can build up an argumentation graph. This, of course,
requires that building blocks in the graph can be associated with constraints automatically. It
therefore seems worthwhile to invest more time in associating argumentation structure with
more complex probabilistic logical constraints similar to what happened in the basic framework
with atomic constraints like Coherence and Foundedness.

To illustrate the idea, let us consider the argumentation graph in Figure 2 from [31], where
solid edges denote attack and dashed edges denote support relations between arguments. The
scenario is that we want to decide between two alternatives for treating a muscle injury.
Treatment 𝑇1 involves immobilizing the limb for some weeks before starting physical therapy.



𝒜 ∅ 𝒞0 𝒞1 𝒞2 𝒞3 𝒞4 𝒞5 𝒞6
𝑇1 [0, 1] 0.5 0 1 [0, 1] 0 [0, 1] [0, 0.25]
𝑇2 [0, 1] 0.5 [0, 1] 0 0 1 [0, 1] [0.75, 1]
𝐴1 [0, 1] 0.5 1 0 [0, 1] [0, 1] [0, 1] [0.75, 1]
𝐴2 [0, 1] 0.5 0 1 [0, 1] 0 [0, 1] [0, 0.25]
𝐴3 [0, 1] 0.5 [0, 1] [0, 1] 1 0 [0, 1] [0, 0.25]
𝐴4 [0, 1] 0.5 [0, 1] 0 0 1 [0, 1] [0.75, 1]
𝑆1 [0, 1] 0.5 1 0 [0, 1] [0, 1] [0, 1] [0.75, 1]
𝑆2 [0, 1] 0.5 0 1 [0, 1] 0 0 [0, 0.25]
𝑆3 [0, 1] 0.5 [0, 1] [0, 1] 1 0 0 [0, 0.25]
𝑆4 [0, 1] 0.5 [0, 1] 0 0 1 [0, 1] [0.75, 1]
𝑆5 [0, 1] 0.5 [0, 1] 0 0 [0, 1] 1 [0.75, 1]

Table 2
Some entailment results for the BAF in Figure 2 using Coherence and S-Coherence for encoding the
meaning of edges and additional constraints on the probabilities of arguments. The directly constrained
arguments are highlighted in red.

Treatment 𝑇2 starts physical therapy immediately. The arguments 𝐴1, …𝐴4 state reasons for
or against the two treatments. Arguments 𝑆1, … , 𝑆5 represent studies that, in turn, support or
attack 𝐴1, …𝐴4 or, in case of 𝑆5, attack other studies. We use Coherence and S-Coherence to
encode the meaning of attack and support edges. For the associated optimization problems, we
basically add one linear constraint for every edge. Table 2 shows some probabilistic epistemic
entailment results when adding additional constraints on the belief in arguments (shown in
red in the respective columns). For example, in the second column, we assume that we are
indifferent about the studies (probability 0.5). As a result, we are also indifferent about the
treatment. In the fourth column, we assume that we fully accept the second study (probability 1).
This enforces that we fully accept treatment 𝑇1 and reject treatment 𝑇2. The probabilities in this
example have been computed with the Java library Attractor2 that supports polynomial-time
reasoning over linear atomic constraints.

Some ideas for more sophisticated general-purpose constraints and general design templates
for probabilistic epistemic argumentation graphs can be found in [35].

3.4. Dealing with Inconsistencies

Given the close relationship between probabilistic logic and probabilistic epistemic argumen-
tation, one can apply the same ideas to deal with inconsistencies. One inconsistency-tolerant
version of the probabilistic epistemic entailment problem has been discussed in [30]. However,
as opposed to the generalized probabilistic entailment problem that we discussed before, the
formulation makes the optimization problems actually harder. It should be possible, however, to
use the same ideas like in [26] to get an inconsistency-tolerant version that maintains the linear
structure of the optimization problems. In particular, the complexity for this generalization
should remain polynomial for linear atomic constraints. Investigating this direction further, is
one interesting direction for future work in this area.

2https://sourceforge.net/projects/attractorproject/

https://sourceforge.net/projects/attractorproject/


4. Conclusions and Some Potential Research Directions

We discussed relationships between Nilsson’s probabilistic logic and probabilistic epistemic
argumentation. While both are closely related, there are twomain differencesworth highlighting.
First, the atomic fragment that is not of considerable interest in the logical setting, is interesting
from an abstract argumentation perspective and allows solving simple reasoning problems
in a quite intuitive and computationally efficient way. Second, argumentation graphs allow
modelling reasoning problems in a way that can be more intuitive for domain experts without
logical background. Hence, while probabilistic logic adds a formal language to describe events to
probability theory, probabilistic epistemic argumentation adds a graphical language to describe
probabilistic reasoning problems. From a probabilistic programming perspective, one could
say that probabilistic logic turns probability theory into a logical programming language while
probabilistic epistemic argumentation turns it into a graphical programming language.

The question which research directions are most interesting is, of course, very subjective.
In my opinion, the main difference between probabilistic logic and the more expressive (and
computationally expensive) forms of probabilistic epistemic argumentation is that users can
potentially model reasoning problems in a more intuitive graphical way. Therefore, one interest-
ing direction for future research in probabilistic epistemic argumentation is to look deeper into
ways how to automatically extract meaningful probabilistic constraints from argumentation
graphs.

It seems indeed that the logical formalism of probabilistic epistemic argumentation has now
become equivalent to extensions of Nilsson’s probabilistic logic that have been studied before.
Therefore, it may be worthwhile to take a step back and to unify the results in the two areas.
The framework of linear probabilistic knowledge bases [10] has been used before to unify
different probabilistic logical languages and can be extended easily to also capture probabilistic
argumentation problems with linear constraints. This is more than a technical exercise because
it allows implementing general-purpose reasoners that can be used and optimized for multiple
formalisms simultaneously. For example, the Java library Log4KR that we mentioned before
transforms knowledge bases in different propositional and relational dialects of probabilistic
logic into linear constraints and solves them in a uniform way. By adding probabilistic epistemic
argumentation to this framework, satisfiability tests, entailment algorithms and generalized
(inconsistency-tolerant) entailment algorithms for probabilistic logic become immediately
available for probabilistic epistemic argumentation.

We did not have space to talk much about relational probabilistic logics, but they are, of
course, a very interesting topic in their own right. The main challenge when using Herbrand
semantics is that the number of ground atoms grows rapidly. Lifted inference approaches
[36] try exploiting symmetries to control the blowup. While some similar ideas have been
considered for probabilistic logics [37, 38], it seems worthwhile revisiting the state-of-the-art
and to evaluate which recent ideas can be transferred to probabilistic logic. It seems also
interesting to investigate to which extent relational probabilistic logics can be applied to add
expressiveness to probabilistic epistemic argumentation. For example, one could associate
arguments with constants, consider a unary predicate accept that expresses acceptance of an
argument and binary predicates like attack and support for edges to allow both uncertainty
about arguments and relationships between them.
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