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Abstract
Our world is increasingly shaped by Artificial Intelligence systems, from search engines over automated hiring algorithms to
self-driving cars. Being also used in high-stake decisions, their impact on the life of individuals is huge. Thus it becomes
exceedingly important to sceptically review their limitations. One alarming problem is their uptake and reinforcement
of existing social biases, as found in many different domains (criminal justice, facial recognition, credit scoring etc). It is
complemented by the inherent opaqueness of the most accurate AI systems, making it impossible to understand details of
their internal workings. The field of Explainable Artificial Intelligence is trying to address these problems. However, there are
several challenges in the field, and we will start this work by pointing them out. We put forward a set of technical pathways,
drawing from Logic Programming. Specifically, we propose using Constraint Logic Programming to construct explanations
that incorporate prior knowledge, as well as Meta-Reasoning to track model and explanation changes over time.

1. Introduction
Artificial Intelligence (AI) systems have a huge impact
on our lives. As much as they positively shape the world,
for example by supporting scientific discoveries, they
bring responsibility, specifically when applied to social
data. As shown in many application contexts, they are
susceptible to social biases. Even more, they have the
potential to increase and systematise the harm done to
already marginalised societal groups.
An example is commercial facial recognition systems,
found to be negatively biased against darker-skinned fe-
males (error rate up to 34.7% compared to 0.8% for lighter-
skinned males) [1]. Next to important questions about
bias and ethical values of AI systems, we need to discuss
their accountability, as the tragic case of the Uber car
overrunning a pedestrian suggests [2].
One main challenge we thereby face is the opaqueness of
these systems. As their internal logic is not understand-
able to humans, they are considered Black Boxes.
This work is putting forward a proposal on how to con-
struct explanations for Black Boxes, which help us to
address above questions. It thereby builds upon the field
of Explainable Artificial Intelligence (XAI) or equivalently
Interpretable Machine Learning, and Logic Programming.
After surveying the field of XAI, we pose the following
challenges, which are forming the base of the proposal:

1. A canonical definition of an explanation and its
desiderata is missing

2. Prior knowledge is not exploited in the explana-
tion process
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3. Explanations do not account for time-evolving
models

4. Explanations are not sufficiently evaluated, nor
specific to the end user

We will cover each of the points in sec. 3. But first, a
quick overview on current approaches in XAI is given, as
well as an introduction to Counterfactual Explanations
and Logic Programming (sec. 2). The technical proposal,
focusing on challenge 2 and 3, is put forward in sec. 4.

Why logic? Technical aspects of the posed questions
can be addressed by Logic. As such, we present an ap-
plication scenario for Logic Programming. It is an in-
herently interpretable and verifiable approach, and can
easily incorporate prior knowledge. It also supports meta-
reasoning, and reasoning under constraints [3] [4] [5].

Running Example A loan application scenario, in-
cluding an applicant with specific features such as age,
and the loan amount asked for. The algorithmic decision
reduces to a binary classification problem (grant/deny
loan). It is a relevant, real-world example [6] [7] [8].

2. Related work

2.1. Explainable Artificial Intelligence
The field of XAI can be described along 3 main dimen-
sions [9] [10]. First, we distinguish between construct-
ing Transparent/White Box (WB) models, and (post-hoc)
explanations for Black Boxes (BB). WB are based on in-
herently interpretable approaches such as linear models,
decision trees, or rule lists/sets. BB describe a wide set
of models, all of them being not interpretable, or not ac-
cessible. Second, explanations for BB models are either
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local or global. Local approaches focus on single data
points, e.g. LIME [11], global on the level of the whole
model by fitting an interpretable surrogate, e.g. TREPAN
[12]. An approach that bridges the gap is GLocalX [8].
Third, explanations can be model-agnostic (applicable to
any model) or model-specific (applicable to certain mod-
els only). E.g. LIME is model-agnostic, TREEPAN in its
original form model-specific.
This concept focuses on local (first), model-agnostic ex-
planation methods for Black Boxes.

2.2. Counterfactuals
Counterfactuals (CF) give an answer to ”what-if” ques-
tions. Conceptually, they highlight the smallest feature
changes that are necessary to alter the (undesired) predic-
tion. A common approach to generate CF is the following
optimisation problem. Denoting the CF by 𝑥′, the origi-
nal (factual) data point by 𝑥, the prediction of the CF as
𝑓𝑤(𝑥′) and the new (desired) prediction as 𝑦 ′, it reads

𝑎𝑟𝑔min
𝑥

max
𝜆

𝜆(𝑓𝑤(𝑥′) − 𝑦 ′)2 + 𝑑(𝑥, 𝑥′) (1)

𝜆 denotes a tuning parameter. The distance 𝑑(., .) needs
to be chosen carefully, a standard choice is the Manhattan
Distance weighted by the Median Absolute Deviation.
The approach was first put forward in [6].

2.3. Logic Programming
Relevant approaches are: Constraint Logic Programming
and Meta-Reasoning. Both build on Logic Programs (LP),
bringing forward the following advantages as declara-
tive paradigms: a strict separation of knowledge and
inference, no encoded directionalities, as well as inter-
pretability and verifiability [3] [4] [5].

Constraint Logic Programming (CLP) Augmenting
LP by constraints to solve optimisation problems. They
are classified based on constraint type: (non-) linear, by
the number of involved variables (arity), by preference,
or by domain: e.g. integer on finite domains [4] [5].

Meta-Reasoning Enables reasoning over LP, and in-
tegration of knowledge. Standard Meta-Reasoning ap-
proaches such as meta-interpreters [5] can be augmented
by theories and operators over the programs [13].

3. Main Challenges

3.1. Defining Explanations
A canonical definition of explanations and its desiderata
in the domain of XAI is missing, see also [14] [15]. We
don’t attempt to do so, but rather want to point to the
following facets:

Explanation or Interpretation? Explanations are
closely related to interpretability but a distinct concept:
interpretability is a (passive) property, whereas an ex-
planation, or explainability is about an interaction, or
an exchange of information. For interpretability, the fol-
lowing definition is adopted “the ability to explain or to
present in understandable terms to a human” 2 [16].

Explanation to whom? The receiver of an explana-
tion is a specific person, in most cases a lay user [14].
What constitutes an explanation that manages to trans-
port its content well, can be learnt from literature in
the Social Sciences. Main points are that explanations
should be social/interactive, contrastive, selective, and
that probabilities do not matter much [17] [18].

Explanation of what? Not only does the audience of
the explanationmatter, but also its specific purpose, defin-
ing further form and content. Purposes can be loosely
grouped into the following: moral/ethical [19] [20], [21],
including safety concerns [16] and efforts to increase
trust in the user [11], legal motivations [6], or under-
standing/debugging [20] [22] [16].

3.2. Prior Knowledge
Prior knowledge is rarely incorporated into the expla-
nation process. An example where this matters is the
generation of CF, including some advice to change the
(unfavourable) outcome. Prior knowledge that needs to
be considered can be a real-world constraint, or a user-
based preference. Exemplary approaches put forward
are [23] [24]. The term real-world constraints is used in
our work to refer to the subset of constraints that encode
knowledge about the world.
These considerations are also relevant in our loan appli-
cation scenario. Consider the following 3

Applicant 𝑎𝑔𝑒 = 45 ∧ 𝑗𝑜𝑏 = 𝑛𝑜𝑛𝑒 ∧ 𝑎𝑚𝑜𝑢𝑛𝑡 = 10𝑘
Factual 𝑎𝑔𝑒 > 40 ∧ 𝑗𝑜𝑏 = 𝑛𝑜𝑛𝑒 ∧ 𝑎𝑚𝑜𝑢𝑛𝑡 > 5𝑘
CF 𝑎𝑔𝑒 ≤ 40 ∧ 𝑗𝑜𝑏 = 𝑛𝑜𝑛𝑒 ∧ 𝑎𝑚𝑜𝑢𝑛𝑡 ≤ 5𝑘

The CF suggests to the applicant to decrease the age and
the loan amount, while the feature ”job” stays constant.
While decreasing the age is invalidating a real-world
constraint, decreasing the loan amount could also be im-
possible for the applicant, depending on the intended use
of the loan (user-based constraint).

3.3. Changing Models
Explanations do not take into account that a model (and
thus the explanation) can change over time. However,

2Emphasis added.
3Adapted from LORE [25]. The form is the same, content is

changed. LORE provides each a local factual and a counterfactual
rule as explanation.



this is not realistic in deployment. The model can change
if the training data distribution shifts, e.g. by new incom-
ing data points, and retraining, or by adjustments at the
model itself, e.g. following a new regulation. Explana-
tions need, therefore, to be extended by a time dimension.
In the loan application scenario, it would be important
to see which parts of an explanation change over time,
specifically if we want to provide counterfactuals as ac-
tionable advice. As pointed out by [26], the danger is
that although recommendations are followed, the model
does not alter its prediction because it changed as well.

3.4. Customisation + Evaluation
Customisation Explanations are, in their final version,
user-specific and thus need to be adapted to the audience
[14]. This goes together with the specific purpose of the
explanation (see 3.1).
Consider the loan application scenario. The bank clerk
who is in charge of communicating the loan decision
needs similar information to the applicant. For example,
both might be interested in advice on how to change an
undesired outcome (purpose: moral/ethical, legal). How-
ever, the manager of the bank is not interested in receiv-
ing explanations in such details, but rather in summary
statistics, or general information about how decisions
were derived (purpose: understanding). Still, explana-
tions could be generated under the same framework, e.g.
local explanations by LORE [25], an aggregation by GLo-
calX [8], building upon the former.

Evaluation Alarmingly little has been done in this
field yet: considering the case of CF explanations, a recent
survey found that only 21% of the approaches are vali-
dated with human subject experiments [27]. However,
the call for evaluations based on this type of experiments
is not new, and holds for the whole field [16]. If com-
putational evaluation is preferred, attention needs to be
drawn to carefully validate the proxy variables that are
used to simulate human behaviour [27].
In our loan application scenario, an ideal evaluation
would involve human subject experiments with the ap-
plicant, the bank clerk, and the manager separately.

4. The (technical) path forward
In this section, we put forward concrete ideas to address
two of the above challenges (3.2 and 3.3). It is out of scope
of this proposal to answer to the full set of challenges.

4.1. Prior Knowledge
To compute CF that incorporate prior knowledge, we
revisit CLP. The CF generation is encoded as an optimi-

sation problem over the distance between the factual and
the CF 4, subject to the following constraints 5:

• the prediction is opposite to the factual prediction
(binary decision problem)

• restricting the domain/range
• restricting feasibility (immutable/actionable), in-

cluding encoding relations/monotonicity
• enforcing diversity/sparsity

Whereas the first constraint is absolutely necessary, oth-
ers depend on the use-case of the CF. When focusing
on understanding/debugging the model, no other con-
straints, or a restricted set (e.g. domain/range) suffices.
This also holds, if we want to learn about bias in the de-
cision pipeline. If we are rather interested in actionable
advice, the full set of the posed constraints can be used.
Real-world constraints are mandatory in these cases, oth-
ers depend on the person that is subject to the decision.
The first constraint is mandatory, but hardest to encode,
as we cannot call the BB from within the logic program.
A possible solution connects our idea to LORE [25]. This
method provides local explanations as of logic rules. The
rules are read from a decision tree, which is grown on
the local neighbourhood around the instance that is in
focus. Using the split criteria put forward by the tree, we
can construct regions which hold possible CF, and use
these as inputs for the optimisation problem.
For other types of constraints, we provide exemplary
implementations, based on Prolog/Eclipse [28] [29]. A
CF feature is denoted by subscript CF, the original by F.

Range Constraints Restricting the numerical range
in one or both directions, by absolute numbers or relative
to a constant (line 1/2). Another option (line 3) allows
the variable to take only very specific values. In the loan
application scenario, this could be the total loan duration,
encoded in months, allowed to change in multiples of
three (quarterly).

1| age_CF #>= 0.
2| initial_payment_CF #<= 0.2 * loan_amount.
3| (loan_duration_CF mod 3) #= 0.

Feasibility Constraints Immutable features (line 1),
actionable depending on its previous value such as age
in our scenario (line 2) or depending on the change of
another feature. In our scenario, this could be the first
instalment to be paid, that needs to increase if the total
loan amount (now a variable) does (line 3-7).

1| birthplace_CF #= birthplace_F.
2| age_CF #>= age_F.
3| dependency(loan_amount_CF, loan_amount_F,

4Optimal encoding of distance is an open problem. As a start,
(a combination of) the 𝐿1, 𝐿2 or 𝐿𝑖𝑛𝑓 norm can be used.

5Loosely based on [7].



4| instalment_CF, instalment_F) :-
5| ((loan_amount_CF - loan_amount_F) #> 0
6| -> instalment_CF #> instalment_F
7| ; instalment_CF #>= instalment_F).

Our approach is inspired by (1) [24] [30] (using SAT/
causal framework) and (2) [23] [31] [32] [33] (using ILP/
MILP). However, there are two main points that distin-
guishes the approach put forward: first, the focus is
clearly on creating explanations for any BB. Approaches
(1) are generally agnostic, but the model internals need
to be known, in (2) only linear or additive models are
considered. Second, to the best of our knowledge, this is
the first approach using LP to generate CF.

4.2. Changing Models
This problem can be addressed by Meta-Reasoning. The
standard meta-interpreter is extended by theories [13].
We introduce the meta-interpreter (line 1-8). Also, we
will need the union operator (line 9-14) 6.

1| solve(true, _).
2| solve((G1,G2), T) :- solve(G1, T), solve(G2, T).
3| solve(A, T) :- clause_in_th(A, B, T),
4| solve(B, T).
5| clause_in_th(A, B, T) :-
6| clause(A, (theory(T), B)).
7| clause_in_th(A, true, T) :-
8| clause(A, theory(T)).
9| solve(A, union(T1, T2)) :-
10| clause_in_th(A, B, T1),
11| solve(B, union(T1, T2)).
12| solve(A, union(T1, T2)) :-
13| clause_in_th(A, B, T2),
14| solve(B, union(T1, T2)).

Now, let us look at a simple toy example. We specify
two different time points (𝑡1/𝑡2), each defined by a set
of rules (line 1-15) and facts (line 16-21), mirroring the
change of the model/applicant over time.

1| theory(rule_t1).
2| grant(Person) :- theory(rule_t1),
3| highincome(Person), savings(Person).
4| grant(Person) :- theory(rule_t1),
5| car(Person), savings(Person).
6| deny(Person) :- theory(rule_t1),
7| lowincome(Person), savings(Person).
8| theory(rule_t2).
9| grant(Person) :- theory(rule_t2),
10| highincome(Person), savings(Person).
11| grant(Person) :- theory(rule_t2),
12| car(Person), highincome(Person).
13| deny(Person) :- theory(rule_t2),
15| lowincome(Person), savings(Person).
16| theory(fact_t1).
17| savings(applicant) :- theory(fact_t1).

6Code contributed by F. Turini.

18| lowincome(applicant) :- theory(fact_t1).
19| theory(fact_t2).
20| savings(applicant) :- theory(fact_t2).
21| highincome(applicant) :- theory(fact_t2).

According to the rules and facts at 𝑡1, the applicant will
not receive a loan (deny). The following changes can
be advised, based on information available at 𝑡1, e.g. by
generating a CF: to increase the income (line 2/3), or to
buy a car (line 4/5). Whereas increasing the income will
change the prediction at 𝑡2 (line 9/10), buying a car will
not, as we observe a change in this rule (line 11/12). We
update the facts at 𝑡2 according to the first advice and
check this outcome by posing the following query, which
returns Person = applicant .

1| cf_condition(Person) :-
2| solve(deny(Person), union(rule_t1, fact_t1)),
3| solve(grant(Person), union(rule_t2, fact_t2)).

Although we presented only a toy example, that is re-
stricted in applicability, we could demonstrate the impor-
tance of reasoning over time. As a possible next step, we
propose integrating [25] or [8], and reasoning directly
over the extracted BB explanations.

5. Conclusion
This paper presented two concrete ideas that apply LP
to address challenges in XAI. Specifically, we proposed a
CLP-based approach to generate CF that can incorporate
prior knowledge, and a Meta-Reasoning approach to ac-
count for changes in models and explanations.
As such, they can be seen as one answer to the GDPR,
to provide ”meaningful information about the logic in-
volved” [34] to any person under an automated decision.
To summarise, we want to point out two aspects of the
field of XAI: first, it is a highly interdisciplinary endeavour
that will only manage to address the challenges of AI, and
its own, by calling to participation scholars from Com-
puter Science, Social Sciences, Law and others. Second,
explanations are always context-dependent, addressing a
specific problem, user group, and purpose. This needs
to be considered when they are constructed, used, and
evaluated.

Acknowledgments
I want to thank my supervisors Salvatore Ruggieri and
Franco Turini for many fruitful discussions and advice.
This work is supported by the project “NoBias - Artificial
Intelligence without Bias,” which has received funding
from the European Union’s Horizon 2020 research and
innovation programme, under the Marie Skłodowska-
Curie (Innovative Training Network) grant agreement
no. 860630.



References
[1] J. Buolamwini, T. Gebru, Gender shades: Intersec-

tional accuracy disparities in commercial gender
classification, in: FAT, volume 81 of Proceedings of
Machine Learning Research, PMLR, 2018, pp. 77–91.

[2] BBC News, Tech, Uber’s self-driving operator
charged over fatal crash, 2020. URL: https://www.
bbc.com/news/technology-54175359.

[3] A. Cropper, S. Dumancic, Inductive logic pro-
gramming at 30: a new introduction, CoRR
abs/2008.07912 (2020).

[4] S. J. Russell, P. Norvig, Artificial Intelligence: A
Modern Approach, 2 ed., Pearson Education, 2003.

[5] K. Apt, From logic programming to Prolog, Prentice
Hall, London New York, 1997.

[6] S. Wachter, B. D. Mittelstadt, C. Russell, Coun-
terfactual explanations without opening the black
box: Automated decisions and the GDPR, CoRR
abs/1711.00399 (2017).

[7] A. Karimi, G. Barthe, B. Schölkopf, I. Valera,
A survey of algorithmic recourse: definitions,
formulations, solutions, and prospects, CoRR
abs/2010.04050 (2020).

[8] M. Setzu, R. Guidotti, A. Monreale, F. Turini, D. Pe-
dreschi, F. Giannotti, Glocalx - from local to global
explanations of black box AI models, Artif. Intell.
294 (2021) 103457.

[9] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Gi-
annotti, D. Pedreschi, A survey of methods for ex-
plaining black box models, ACM Comput. Surv. 51
(2019) 93:1–93:42.

[10] C. Molnar, Interpretable Machine Learn-
ing, 2019. https://christophm.github.io/
interpretable-ml-book/.

[11] M. T. Ribeiro, S. Singh, C. Guestrin, ”why should
I trust you?”: Explaining the predictions of any
classifier, in: KDD, ACM, 2016, pp. 1135–1144.

[12] M. W. Craven, J. W. Shavlik, Extracting tree-
structured representations of trained networks, in:
NIPS, MIT Press, 1995, pp. 24–30.

[13] A. Brogi, P. Mancarella, D. Pedreschi, F. Turini, The-
ory construction in computational logic, in: ICLP
Workshop on Construction of Logic Programs, Wi-
ley, 1991, pp. 241–250.

[14] B. D. Mittelstadt, C. Russell, S. Wachter, Explain-
ing explanations in AI, in: FAT, ACM, 2019, pp.
279–288.

[15] Z. C. Lipton, The mythos of model interpretability,
Commun. ACM 61 (2018) 36–43.

[16] F. Doshi-Velez, B. Kim, Towards a rigorous sci-
ence of interpretable machine learning, 2017.
arXiv:1702.08608 .

[17] T. Miller, P. Howe, L. Sonenberg, Explainable AI:
beware of inmates running the asylum or: How

I learnt to stop worrying and love the social and
behavioural sciences, CoRR abs/1712.00547 (2017).

[18] T. Miller, Explanation in artificial intelligence: In-
sights from the social sciences, Artif. Intell. 267
(2019) 1–38.

[19] E. Ntoutsi, P. Fafalios, U. Gadiraju, V. Iosi-
fidis, W. Nejdl, M. Vidal, S. Ruggieri, F. Turini,
S. Papadopoulos, E. Krasanakis, I. Kompatsiaris,
K. Kinder-Kurlanda, C. Wagner, F. Karimi, M. Fer-
nández, H. Alani, B. Berendt, T. Kruegel, C. Heinze,
K. Broelemann, G. Kasneci, T. Tiropanis, S. Staab,
Bias in data-driven artificial intelligence systems
- an introductory survey, Wiley Interdiscip. Rev.
Data Min. Knowl. Discov. 10 (2020).

[20] D. Pedreschi, F. Giannotti, R. Guidotti, A. Monreale,
S. Ruggieri, F. Turini, Meaningful explanations of
black box AI decision systems, in: AAAI, AAAI
Press, 2019, pp. 9780–9784.

[21] M. J. Kusner, J. R. Loftus, C. Russell, R. Silva, Coun-
terfactual fairness, in: NIPS, 2017, pp. 4066–4076.

[22] P. Lertvittayakumjorn, L. Specia, F. Toni, FIND:
human-in-the-loop debugging deep text classifiers,
in: EMNLP (1), Association for Computational Lin-
guistics, 2020, pp. 332–348.

[23] B. Ustun, A. Spangher, Y. Liu, Actionable recourse
in linear classification, in: FAT, ACM, 2019, pp.
10–19.

[24] A. Karimi, G. Barthe, B. Balle, I. Valera, Model-
agnostic counterfactual explanations for conse-
quential decisions, in: AISTATS, volume 108 of
Proceedings of Machine Learning Research, PMLR,
2020, pp. 895–905.

[25] R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi,
F. Turini, F. Giannotti, Local rule-based expla-
nations of black box decision systems, CoRR
abs/1805.10820 (2018).

[26] S. Barocas, A. D. Selbst, M. Raghavan, The hidden
assumptions behind counterfactual explanations
and principal reasons, in: FAT*, ACM, 2020, pp.
80–89.

[27] M. T. Keane, E. M. Kenny, E. Delaney, B. Smyth,
If only we had better counterfactual explanations:
Five key deficits to rectify in the evaluation of coun-
terfactual XAI techniques, CoRR abs/2103.01035
(2021).

[28] SWI Prolog, Website swi-prolog, 2021. URL: https:
//www.swi-prolog.org/.

[29] Eclipse, Website eclipse, 2021. URL: https://
eclipseclp.org/.

[30] A. Karimi, B. Schölkopf, I. Valera, Algorithmic re-
course: from counterfactual explanations to inter-
ventions, in: FAccT, ACM, 2021, pp. 353–362.

[31] C. Russell, Efficient search for diverse coherent
explanations, in: FAT, ACM, 2019, pp. 20–28.

[32] K. Kanamori, T. Takagi, K. Kobayashi, H. Arimura,

https://www.bbc.com/news/technology-54175359
https://www.bbc.com/news/technology-54175359
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
http://arxiv.org/abs/1702.08608
https://www.swi-prolog.org/
https://www.swi-prolog.org/
https://eclipseclp.org/
https://eclipseclp.org/


DACE: distribution-aware counterfactual explana-
tion bymixed-integer linear optimization, in: IJCAI,
ijcai.org, 2020, pp. 2855–2862.

[33] Z. Cui, W. Chen, Y. He, Y. Chen, Optimal action
extraction for random forests and boosted trees, in:
KDD, ACM, 2015, pp. 179–188.

[34] European Union, General data protec-
tion regulation, 2016. URL: https://gdpr.eu/
article-15-right-of-access/.

https://gdpr.eu/article-15-right-of-access/
https://gdpr.eu/article-15-right-of-access/

	1 Introduction
	2 Related work
	2.1 Explainable Artificial Intelligence
	2.2 Counterfactuals
	2.3 Logic Programming

	3 Main Challenges
	3.1 Defining Explanations
	3.2 Prior Knowledge
	3.3 Changing Models
	3.4 Customisation + Evaluation

	4 The (technical) path forward
	4.1 Prior Knowledge
	4.2 Changing Models

	5 Conclusion

