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Abstract
We model the well-known Train-Gate-Controller (railroad crossing problem) system in Event Calculus
using Goal-Direct Answer Programming realized via the s(CASP) system. Our paper illustrates the ease
with which such a cyber-physical system’s requirements specification is modeled and its properties ver-
ified relative to prior assumptions. Event calculus allows for succinct modeling of a dynamic system due
to the near-zero semantic gap between the system’s requirements specification and their event calcu-
lus encoding. This is to be distinguished from automata-theoretic approaches which have to explicitly
encode the notion of state and define explicit transitions between states. Further, Event Calculus is nat-
urally expressed in s(CASP) without need for discretization of continuous physical quantities including
time. This is due to the goal-direct answer set semantics of s(CASP) combined with constraint solving
over reals. Continuous properties require no discretization unlike other approaches to model Event
Calculus in SAT-based Answer Set solvers.

1. Introduction

Cyber-physical systems are ever increasing in their prominence in our day-to-day lives. Much
research has been published towards modeling and verifying properties of these systems. Primar-
ily timed-automata approaches have been studied and used on industrial scale applications.[1, 2].
Timed-automata approaches require an explicit notion of state and transitions between states
using clock variables. However, there have been cyber-physical systems modeled as constraint
logic programs, where there is little semantic gap between the logic programs and the intended
cyber-physical system that is modeled [3]. Techniques based on coinductive contraint logic
programming (Co-CLP) have also been applied in verifying properties of timed-automata [4, 5].
The Co-CLP techniques to study timed systems culminated in the development of Goal-Directed
Answer Set Programming [6]. More recently, the well-known Event Calculus formalism has
been used [7] along with powerful reasoning supported in Answer Set Programming. More
importantly, the work of Arias et. al extends prior work on Co-CLP to support natural reason-
ing of Cyber-physical systems, in the language of Event Calculus. Theirs is the first work to
use the s(CASP) system to model Event Calculus along with abducive reasoning supported in
Answer Set Programming. The s(CASP) system has also been used in knowledge-based methods
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that analyze faulty requirements in avionics software systems[8]. In this paper, we model the
well-known Train-Gate-Controller system in Event Calculus. We model the entire system in
s(CASP) and check the safety and liveness of the system, with prior knowledge of the physical
properties such as train speed, the response time of the controller and the rate at which the
gate rotates.

2. Background

2.1. Answer Set Programming

Answer Set Programming (ASP) is a declarative knowledge representation and reasoning
paradigm widely used in AI and Combinatorial Search Problems [9]. Every rule in an ASP
program is of the form: {𝑝 ← 𝑞1, 𝑞2, ...𝑞𝑛, 𝑛𝑜𝑡 𝑟1, 𝑛𝑜𝑡 𝑟2, ...𝑛𝑜𝑡 𝑟𝑚} where 𝑛 ≥ 0,𝑚 ≥ 0.
Intuitively, the generic rule says, infer literal 𝑝 to be true if the positive literals occurring in
the rule {𝑞1, 𝑞2, ...𝑞𝑛} are true and the negative literals {𝑟1, 𝑟2, ...𝑟𝑚} occurring in the same
rule are not provable. The not operator is the negation-as-failure operator which allows us to
infer not s as true if literal s is not provable in a given program. In addition to the above
rule form, ASP also allows the literal 𝑝 to be absent which gives rise to headless rules. Thus, a
rule of the form {□← 𝑞_1, 𝑞_2, ..., 𝑞𝑛, 𝑛𝑜𝑡 𝑟1, 𝑛𝑜𝑡 𝑟2, ...𝑛𝑜𝑡 𝑟𝑚} asserts that the conjunction
of all the literals in the rule cannot all be simultaneously true. This rule form is also referred
as a constraint as it constrains the truth value of its literals. The set of literals satisfiable in a
given ASP program constitute its answer sets (or stable models). The answers sets are computed
according to the stable model semantics [10]. Most of the answer set solvers are model-theoretic
and use SAT-solving to find models of a given program[11]. Solvers such as clingo, ground the
ASP program into literals and perform state-of-the-art SAT-solving to find stable models.

2.2. Goal-Directed Answer Set Programming

Model-theoretic semantics of ASP and their associated solvers are widely used for several
industrial applications [11]. However, first order answer set programs with function symbols
are infinite and are not finitely groundable. Goal-Directed Answer Set Programming enables
computation of answer sets for programs that are not finitely groundable [12, 13]. The s(CASP)
system and its predecessor s(ASP) are answer set solvers that compute stable models without
grounding. The s(CASP) system does not compute the entire model, rather computes partial
models given a query say ?- q(X). If the query q(X) succeeds, the s(CASP) system produces
all the consistent literals that support the q(X) in the given ASP program while also producing
a justification tree for q(X). Thus s(CASP) while producing partial models, provides a proof-
theoretic semantics for ASP. Due to the query driven nature of s(CASP), we can also query ?-
not q(X). Then, s(CASP) produces bindings for X if q(X) is not provable in the given ASP
program. To achieve this without grounding, s(CASP) uses constructive negation and completion
semantics for the not operator [12]. s(CASP) also provides constraint solving over reals which
allows us to precisely model physical quantities that are continuous including dense time.
Details about the s(CASP) system can be found elsewhere [13].



2.3. Modeling Cyber-Physical Systems with Event Calculus

Event Calculus [14] is a logical formalism used to describe dynamic domains in terms of fluents
and events in the domain. Fluents are properties of the system that change over time while
events cause changes to fluents. Also, the Event Calculus provides axioms to explicitly capture
the frame problem. We say holdsAt(F, T) in EC, if the fluent F is true at time T. Further, we
use initiates(E, F, T) to denote that fluent F is enabled by event E if E occurs at time
T. Also, fluent F is captured by commonsense law of inertia. Similar to initiates/3, we
have terminates(E, F, T) and releases(E, F, T) to mean, if E occurs at time T, then
F ceases to hold and released from commonsense law of inertia respectively. To describe initial
states of these dynamic systems, EC uses initiallyP(F) to denote that fluent F is true initially.
Similarly initiallyN(F) is used to depict fluent F is false to begin with. Finally, EC allows us
to express continuously changing fluents using trajectories. In EC, trajectory(F1, T1, F2,
T2) implies that fluent F2 is true at T2 if F1 is initiated by some event at T1. These notions,
couple with event calculus axioms give rise to powerful modeling capabilities of cyber-physical
systems. In this paper we focus on the Basic Event Calculus (BEC) axioms [15]. There are
however more general versions of Event Calculus in literature. In the context of cyber-physical
systems, fluents correspond to state of the sensors or components while the events represent
actuator actions. This allows for a natural and succint mapping of a cyber-physical system
description into event calculus. For example, consider the reactor temperature control system
with a reactor core and two control rods similar to [5]. The temperature of reactor core should
be within a certain threshold 𝜃𝑙𝑜𝑤 to 𝜃ℎ𝑖𝑔ℎ. Initially the temperature of the core is 𝜃𝑙𝑜𝑤. If rod1
(rod2) is inserted into the core, then temperature of the core decreases at a certain rate 𝑟1 (𝑟2).
This situation is easily expressed in EC as follows:

1 fluent(reactor_core_temperature(T)).
2 fluent(rod_one_in).
3 fluent(rod_two_in).
4 event(insert_rod_one).
5 event(insert_rod_one).
6 initiates(insert_rod_one, rod_one_in, T).
7 initiates(insert_rod_two, rod_two_in T).
8 initiallyN(rod_one_in). initiallyN(rod_two_in).
9 initiallyP(reactor_core_temperature(tlow).

10 trajectory(rod_one_in, T1, reactor_core_temperature(Temp2), T2) :-
11 holdsAt(reactor_core_temperature(Temp1),
12 Temp2 #= Temp1 - (T2 - T1) * R1.
13 trajectory(rod_two_in, T1, reactor_core_temperature(Temp2), T2) :-
14 holdsAt(reactor_core_temperature(Temp1),
15 Temp2 #= Temp1 - (T2 - T1) * R2.

Now, inferences about the behavior of the sytem can be made by combining the above rules
with the axioms of EC. We show EC axioms in s(CASP) in the following.



2.4. Event Calculus using Goal-directed s(CASP) system

We use the axioms from Basic Event Calculus. We do not show the classical first-order logic
encoding of the axioms, rather we directly map the axioms into s(CASP) code as shown below.

%% BEC Axiom 1
stoppedIn(T1, F, T2) :-

T1 #< T, T #< T2,
terminates(E, F, T),
happens(E, T).

stoppedIn(T1, F, T2) :-
T1 #< T, T #< T2,
releases(E, F, T),
happens(E, T).

%% BEC Axiom 2
startedIn(T1, F, T2) :-

T1 #< T, T #< T2,
initiates(E, F, T),
happens(E, T).

startedIn(T1, F, T2) :-
T1 #< T, T #< T2,
releases(E, F, T),
happens(E, T).

%% BEC Axiom 3
holdsAt(F2, T2) :-

initiates(E, F1, T1),
happens(E, T1),
trajectory(F1, T1, F2, T2),
not stoppedIn(T1, F1, T2).

%% BEC Axiom 4
holdsAt(F, T) :-

0 #< T,
initiallyP(F),
not stoppedIn(0, F, T).

%% BEC Axiom 5
-holdsAt(F, T) :-

0 #< T,
initiallyN(F),
not startedIn(0, F, T).

%% BEC Axiom 6
holdsAt(F, T2) :-

T1 #< T2,
initiates(E, F, T1),
happens(E, T1),
not stoppedIn(T1, F, T2).

%% BEC Axiom 7
-holdsAt(F, T2) :-

T1 #< T2,
terminates(E, F, T1),
happens(E, T1),
not stoppedIn(T1, F, T2).

Axioms 1 and 2 are abstractions. They capture the notions that a fluent F may be stopped
(started) in a time interval (𝑡1, 𝑡2) by some events that initiate (terminate) and occur in the inter-
val (𝑡1, 𝑡2). Informally, Axioms 6 and 7 say that a fluent F starts to hold (not hold) immediately,
provided an event E that initiates F (terminates F) occurs, and, the fluent F is itself is not stopped
(not started) from there on. Axioms 4 and 5 capture the persistence of a fluent F that holds (not
holds) initially and is not stopped (started) in the time interval (0, 𝑡). Here, 0 is used to denote
beginning of time. Axiom 3 enables a fluent F2 to be depend on a fluent F1 and vary according
to some function of F1,T1 and T2. The direct mapping of EC Axioms is possible due to s(CASP)
capability to support continuous time. Further, the semantics of not operator is based upon
Clarke’s completion semantics for negation-as-failure [16, 17]. Due to the completion semantics,
dual rules are generated for not stoppedIn(T1, F, T2) and not startedIn(T1, F, T2). These dual



rules enable the circumscription of the consequences of events as required by EC semantics.
Therefore, to the best of our knowledge, s(CASP) is the only logic programming system that
encodes EC with dense time and provides a faithful implementation of circumscription of EC
axioms [18]. This is to be distinguished from SAT-based ASP solvers that can only reason
over a discretized version of time. Also, other logic programming systems do not implement a
robust negation-as-failure operator with completion semantics [19]. Rigorous treatment of EC
translation into s(CASP) can be found elsewhere [18].

3. Modeling the Train-Gate-Controller system in Event Calculus

The train-gate-controller is a cyber-physical system commonly used to study modeling and
verification of properties of the system [3]. The system consists of a train in motion, passing
through the gate area. The gate-controller should signal gate closure in a timely fashion. As
we present next, s(CASP) allows for succinct modeling of the train’s motion, the movement of
the gate and the controller behaviour. Due to the availability of constraint solving over reals,
continuous properties such as uniform motion are easily expressed.

Assume that the train changes its position uniformly at a rate of 10 units per second. The
gate area is at position 40. Once the train reaches the gate area, we consider the train being in
the gate area. Initially the gate is open and is inclined vertically at an angle of zero degrees.
The controller should signal the closing of the gate before the train arrives in the gate area. The
gate also uniformly changes its angle of inclination when it is in motion. When the gate angle
becomes 90 degrees, the gate is closed and inclined horizontally. We next provide the fluents
and events associated with this cyber-physical system.

fluent(passing) % Train is passing through the gate area
fluent(leaving) % Train has exited the gate area and is leaving
fluent(position(X)) % Train is some position X
fluent(gate_angle(A)) % Gate is inclined vertically at an angle A
fluent(opened) % The gate is completely opened
fluent(closed) % The gate is completely closed

event(train_in) % Controller detects that the train is in the gate area
event(signal_lower) % Controller signals gate closure
event(signal_raise) % Controller signals that the gate be raised
event(gate_close) % Signifies the gate is completely closed
event(gate_open) % Signifies the gate is completely open
event(train_exit) % Train has exited the gate area

The causal effects of the events in the system are as follows. They should be straightforward
to follow.

1 initiates(in,passing,T).
2 initiates(lower,lowering,T).
3 initiates(close,closed,T).

4 initiates(exit,leaving,T).
5 initiates(raise,rising,T).
6 initiates(open,opened,T).



7 terminates(lower,opened,T).
8 terminates(close,lowering,T).
9 terminates(exit,passing,T).

10 terminates(raise,closed,T).
11 terminates(open,rising,T).

In the following, train_speed(S), angle_lower_rate(L), angle_rise_rate(R)
denote respectively, that the speed of the train is S, the rate at which the gate lowers is L and
the rate at which the gate rises is R. We now describe the conditions under which various events
happen. The motion of the train itself is modeled as a trajectory. This is show below:

trajectory(started, T1, position(X), T2) :-
train_speed(S), T2 #> T1, X #= (T2 - T1) * S.

Similarly, the change in inclination of the gate angle is also modeled as a trajectory, depending
upon whether event(lower) or event(raise) happen. If the gate is lowering (rising), then
the gate inclination steadily decreases (increases)1.

1 gate_angle_lower(A, T2) :-
2 happens(lower, T),
3 angle_lower_rate(L),
4 T2 #> T,
5 A#=(T2-T1)*L.

6 gate_angle_rise(A, T2):-
7 happens(raise, T),
8 angle_rise_rate(R),
9 T2 #> T,

10 A #= 90 - (T2-T1)*R.

The events mentioned previously happen when the fluents cross a certain threshold. For
example, we consider train to be in the gate area when it has reached a position value =
10. Similarly, the controller signals lower_gate when the train position crosses value = 5.
Similarly, exit is signalled when the train crosses position = 20. The gate is completely open
(close) when its vertical angle decreases (increases) to 0 degrees (90 degrees). Finally, the
controller signals gate rising when it detects that the train is leaving the gate area, immediately
after passing through the gate area. All transitions in the train position, gate angle are resolved
at a sampling window of 0.1 s. That is, the controller can detect changes in continuous quantities
at a temporal precision of 0.1 s. This is a reasonable assumption made to make the controller
behave in a realistic manner. If we used a temporal precision of 0, then the controller can detect
instantaneous changes in continuous values, which is impossible in a real-world system. We
use the infimum on the 0.1 second interval, to signify the precise instance when the transition
of train position or gate angle crosses a threshold.

1 happens(train_in, T) :-
2 holdsAt(position(X1), T1),
3 holdsAt(position(X2), T2),
4 X1 #< 10, X2 #>= 10,
5 sampling_window(W),
6 T2 #< T1 + W, T2 #> T1,

7 infimum(T2, T).
8 happens(lower_gate, T) :-
9 holdsAt(position(X1),

T1),→˓

10 holdsAt(position(X2), T2),
11 X1 #< 5, X2 #>= 5,

1We treat gate_angle_lower and gate_angle_rise as derived fluents. They can also be modeled as tra-
jectories



12 sampling_window(W),
13 T2 #< T1 + W, T2 #> T1,
14 infimum(T2, T).
15 happens(gate_close, T) :-
16 gate_angle_lower(A1, T1),
17 gate_angle_lower(A2, T2),
18 A1 #< 90, A2 #>= 90,
19 sampling_window(W),
20 T2 #< T1 + W, T2 #> T1,
21 infimum(T2, T).
22 happens(gate_open, T) :-
23 gate_angle_rise(A1, T1),
24 gate_angle_erise(A2, T2),
25 A1 #> 0, A2 #=< 0,
26 sampling_window(W),

27 T2 #< T1 + W, T2 #> T1,
28 infimum(T2, T).
29 happens(gate_raise, T) :-
30 holdsAt(passing, T1),
31 holdsAt(leaving, T2),
32 sampling_window(W),
33 T2 #< T1 + W, T2 #> T1,
34 infimum(T2, T).
35 happens(train_exit, T) :-
36 holdsAt(position(X1), T1),
37 holdsAt(position(X2), T2),
38 X1 #< 20, X2 #>= 20,
39 sampling_window(W),
40 T2 #< T1 + W, T2 #> T1,
41 infimum(T2, T).

With the above modeling, we query s(CASP) to check various properties relative to the
train speed and gate angle rotations. We can ask the question, whether the system is safe.
That is, when the train is passing through the gate area, is it possible that the gate is open (or
rising). This is expressed by the query ?- holdsAt(passing, T), holdsAt(open, T).
Similarly, we can test the liveness of the system, to check if the gate eventually becomes open
after becoming closed, using : ?- holdsAt(closed, T1), holdsAt(open, T2), T2 .>.
T1. Note that, we consider only a single train crossing the gate area. The system is modeled in
a way that there is a single track and the trains follow the set trajectory when approaching the
gate area. We can also calculate the speed with which the train should approach the gate area,
for the controller to respond and the gate to be closed in time. The constraint solving power of
s(CASP) (and CLP(R)) simplifies the constraints and reduces the speed to a formula in terms
of the angle lower and angle rise rate. For example, if we set the train to be moving too fast,
then the controller cannot respond in time. In such a case, the gate might still be lowering when
the train has crossed the gate area. Such scenarios are easily detected in our modeling.

3.1. Checking Safety and Liveness of Train-Gate-Controller

From the encoding explained above, let us assume that train speed is 1 unit per second, gate
angle lower rate is 30 degrees per second and gate angle rise rate is 40 degrees per second.
Given these parameters, ?- happens(train_in, T) produces binding T = 11. That is,
the train enters the gate area at time 11. Similarly, based on above definitions and assumed
speed and angle rotation parameters, the train exits the gate area at time T = 21. That is, the
query ?- happens(train_exit, T) produces the binding T = 21. Therefore, the query ?-
holdsAt(passing, T) yields the binding T > 11 and T =< 21. Based on these bindings
when the train passes through the gate area, we can check the safety of the system. We can
define what it means for the system to be unsafe. In our case, the system is in an unsafe state if
the gate is either open/lowering/rising when the train is passing through the gate area. That is,



Query Running Time (s)
?- holdsAt(passing, T) 0.0006
?- unsafe [true] 1.467
?- unsafe [no models[ 2.082
?- live [true] 0.288
?- live [no models] 1.914

Table 1
Running times of sample queries

1 unsafe :- holdsAt(passing, T), holdsAt(rising, T).
2 unsafe :- holdsAt(passing, T), holdsAt(opened, T).
3 unsafe :- holdsAt(passing, T), holdsAt(lowering, T).

Then, asking s(CASP) the query ?- unsafe yields no models. That is, the system is safe with
respect to the assumed parameters. However, if the gate lowers at a slower rate, then it cannot
be closed by the time the train is passing. If we lower the gate angle rate to 10 degrees per
second instead of 30 degrees per second, the query ?- unsafe produces a model. Similar to
safety, we can check liveness of the sytem. That is, we can check if the gate becomes opened
after being closed at the time of train passing. This is easily expressed as:

live :-
holdsAt(passing,T),holdsAt(closed,T),holdsAt(opened,T1),T1 #> T.

Similar to safety, if we reduce the rate at which the gate angle rises, say from the original 40
degress per second to 10 degrees per second, the gate will not be open within a maximum time
of 30 seconds. We can set 30 seconds within which the gate should be open. With this maximum
time limit, the liveness can be checked. Table 1 lists the running times for the above queries
in the s(CASP) system. The queries were run on a Quad code Intel(R) Core(TM) i7-10510U
CPU @ 1.80Ghz. In general, running the discretized versions on clingo take a long time at the
grounding stage itself due to the huge size of the grounded program.

4. Conclusion and Future Work

We have shown the ease of modeling cyber-physical systems requirement specifications in
EC/s(CASP) and verification of their safety and liveness. We intend to apply our techniques
to the Generalized Railroad crossing problem and industrial examples handled by UPPAAL
tool. Also, given the EC/s(CASP) description of a cyber-physical system, one should be able to
derive the timed-automata implementing the system. For instance, given the railroad crossing
problem, we should be able to synthesize the timed-automata for the controller. We leave this
for future work.
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