
s(CASP) for SWI-Prolog
Jan Wielemaker1,2, Joaquín Arias3 and Gopal Gupta4

1SWI-Prolog Solutions b.v., Amsterdam, The Netherlands
2Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
3Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles (Madrid), Spain
4The University of Texas at Dallas, Dallas, USA

Abstract
s(CASP) is related to ASP. Unlike ASP, which is traditionally solved using grounding and a SAT solver,
s(CASP) is solved using top-down goal directed search without grounding. This allows s(CASP) to solve
problems that cannot be grounded, while the generated proof tree is a good basis for giving a justification
for the answer. s(CASP) supports both negation as failure (NAF) and classical negation. These features
make s(CASP) particularly suitable for commonsense reasoning tasks that require a justification of the
answer. Currently, scasp is an executable generated using Ciao.

We ported s(CASP) to SWI-Prolog. The primary aim of this is to provide s(CASP) as a library that
allows for embedding and managing multiple s(CASP) programs from multiple threads. Here, ‘Manag-
ing’ means being able to construct and modify an s(CASP) program dynamically and dynamically run
queries against s(CASP) programs.

Keywords
s(CASP), answer set programming, multi-paradigm, Prolog,

1. Introduction

Answer Set Programming (ASP) [1] is nowadays an established paradigm in the logic program-
ming community. Traditionally, ASP notably targets difficult search problems. ASP solvers
normally ground the input program and then use a SAT solver to find stable models.1 Disadvan-
tages of this technique is that not all programs have a finite grounding and that it is hard to
generate a human understandable justification for an answer [2]. In contrast, s(CASP) [3] is goal
directed (like Prolog) and does not ground the program. As a result it can integrate Constraint
Logic Programming (CLP) that allows, for example, to express 𝑋 > 3 without any further
knowledge about 𝑋 . In addition, the solver produces a stack that represents how each atom
or its negation has been derived. This stack is input to the justification generation. s(CASP) is
implemented as a meta interpreter in Prolog.

While s(CASP) is, in its current implementation, not particularly suitable for hard problems, it
is suitable for automation of reasoning tasks normally carried out by humans such as reasoning

GDE’21: ICLP’21 (Virtual) Workshop on Goal-directed Execution of Answer Set Programs, September 20, 2021
 jan@swi-prolog.com (J. Wielemaker); joaquin.arias@urjc.es (J. Arias); gupta@utdallas.edu (G. Gupta)
� 0000-0001-5574-5673 (J. Wielemaker); 0000-0003-4148-311X (J. Arias); 0000-0001-9727-0362 (G. Gupta)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1Being completely declarative, ASP solvers are not restricted in the techniques they use to find an answer set.
Modern solvers are high optimised.

mailto:jan@swi-prolog.com
mailto:joaquin.arias@urjc.es
mailto:gupta@utdallas.edu
https://orcid.org/0000-0001-5574-5673
https://orcid.org/0000-0003-4148-311X
https://orcid.org/0000-0001-9727-0362
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

in legal or medical domains. s(CASP) is claimed to be suitable for Commonsense Reasoning.2

As the family of ASP languages is purely declarative without any side effects the solvers
require some other language that prepares the ASP program, runs the solver and takes action
depending on the output of the solver. Prolog is an ideal language for embedding ASP systems
because manipulating clauses, handling bindings to logical variables, reasoning about the
model and interpreting the justification all fit perfectly with Prolog. In our case, the s(CASP)
implementation is already in Prolog and produces possible bindings, models and justifications
on backtracking.

This article explains our port of s(CASP) to SWI-Prolog and discusses several alternatives to
making s(CASP) accessible from Prolog. We report on unfinished work. This article is primarily
input for discussion.

2. Porting s(CASP) to SWI-Prolog

The GIT repository https://gitlab.software.imdea.org/ciao-lang/sCASP provides the source for
s(CASP) for Ciao. The source reuses the compiler of s(ASP) by Kyle Marple [4]. Operation
between variables in the s(ASP) implementation are handled ‘manually’. The s(ASP) execution
maintains a mapping between variables names and their current bindings (values as well as
disequality constraints). The s(CASP) execution lets Prolog take care of all operations that it
can handle natively, instead of interpreting them. Therefore, a large part of the environment
for the s(CASP) program is carried implicitly in the Prolog environment. Since s(CASP) and
Prolog shared many characteristics (e.g., the behavior of variables), this results in flexibility of
implementation and gives a large performance improvement. [3]

We ported s(CASP) to SWI-Prolog. The aim of this project is twofold: (1) create a uniform
codebase, avoiding duplicate work and dead code that resulted from building s(CASP) (using
Ciao style) on top of s(ASP) (using SWI-Prolog style) and (2) provide s(CASP) as an embedded
language in Prolog in addition to the stand-alone executable. With (1) we aim at a modular
and industrial strength implementation of s(CASP). With (2) we recognise that an ASP system
can only function as a reasoning component in an application written in some other language
that takes care of assembling the ASP model, running queries and making use of the bindings,
model and justification. We argued that Prolog is an ideal language for this purpose in the
introduction.

We realised two changes in the design of s(CASP) to better facilitate embedding in Prolog.
First of all, we replaced the DCG (Prolog grammar rules) based parser by the Prolog parser.
This is possible by defining an adequate set of Prolog operators.3 The terms read are validated
to satisfy the restrictions imposed by s(CASP) and converted into the same format that was
emitted by the original parser. Second, where the original implementation generated the
justification directly from the resulting s(CASP) solver’s stack, the current implementation
creates a Prolog representation from the stack that naturally represents the justification while
hiding the internals of the solver.

2See https://personal.utdallas.edu/~gupta/csg/
3s(ASP) allows for predicate names that start with an underscore, as in _p(X). This can be handled in SWI-

Prolog, but not in standard ISO Prolog.

https://gitlab.software.imdea.org/ciao-lang/sCASP
https://personal.utdallas.edu/~gupta/csg/

?- p(X).
sCASP model: [p(X),not q(X)],
sCASP justification

query �

p(X) �

not q(X) �

chs(p(X)) ∧
o_nmr_check ;

X = 1,
sCASP model: [p(1)],
sCASP justification

query �

p(1) ∧
o_nmr_check ;

false.

Figure 1: Running an s(CASP) query as a normal Prolog query

3. Accessing s(CASP) from Prolog

Currently, s(CASP) programs can be embedded into Prolog using two directives that create
a block. The opening directive changes the Prolog operator tables and activates rules for
term_expansion/2 that validate the s(CASP) terms and does some simple transformations
that avoid conflicts with Prolog. The closing directive reverts the changes to the operator table,
compiles the loaded terms into the internal s(CASP) representation and creates wrappers that
make the exported s(CASP) predicates accessible as normal Prolog predicates from the enclosing
Prolog module.

:- begin_scasp(Unit, Exports).
<sCASP program>
:- end_scasp.

We give a minimal example below.

:- use_module(library(scasp/embed)).
:- begin_scasp(qp, [p/1]).
p(X) :- not q(X).
p(1).
q(X) :- not p(X).
:- end_scasp.

After loading this Prolog program, p/1 is made available as a normal Prolog predicate as
shown in figure 1. Calling this predicate makes the bindings available as normal Prolog bindings
while alternative solutions are made available through Prolog backtracking. The model and

justification are stored in backtrackable global variables as provided by b_setval/2 in SWI-
Prolog. By using backtrackable global variables we can provide access to these extensions to
the normal Prolog answer (only the bindings) while full sharing of variables and constraints are
retained.

The model is represented as a list of Prolog terms, where each term may be nested as
not(Term) (not provable), -(Term) (false) or not(-(Term)) (not provable that Term is
false). The justification is a tree represented as a term -(Term, ListOfChildren). Here
ListOfChildren is the empty list for facts and a list of -/2 terms otherwise. In addition to the
negation symbols, terms may be nested in one of the terms below.

• proved(Term) Term was already proved.
• chs(Term) Term is assumed because it appears in a loop with an even number of

negations
• assume(Term) Marks the loop detected by chs(Term)

The model is made available by scasp_model/1 and the justification tree using
scasp_justification/2, where the second argument is an option list that may be used to adjust
the level of detail in the tree.

The SWI-Prolog toplevel displays answers to a query as a valid Prolog body term. For
traditional Prolog this is a conjunction of unification (=/2) calls that establish the binding or
true if no variables are bound. If some of the variables are subject to constraints the constraints
are reified using copy_term/3 and added as goals to the answer, for example, using clp(fd) we
may get:

?- A #> 2, A #< 5.
A in 3..4.

To accommodate CHR, which has a notion of a global constraint store, SWI-Prolog provides
a hook that can be used to add additional goals to the answer. This hook is used to make the
model and justification visible in the toplevel. This is not entirely satisfactory because the
printed output is no longer valid Prolog input that has the same effect as the original query.

4. Some notes on portability

The current codebase is SWI-Prolog specific. While many Prolog implementations have some
way to embed code by temporarily changing the operator table and doing macro expansion,
there is no standard. The same applies for integrating the model and justification into the Prolog
REPL loop.

Ideally the data representations such as the program representation going into the s(CASP)
compilation phase, the s(CASP) intermediate program representation, the model and justification
are synchronised between (Prolog) s(CASP) implementations. That allows for sharing the
program transformation and solver code as well as code using the output of the embedded
s(CASP) system.

https://www.swi-prolog.org/pldoc/doc_for?object=b_setval/2
https://www.swi-prolog.org/pldoc/man?section=chr

5. Discussion and future work

When porting s(CASP) to SWI-Prolog we set ourselves the following goals: (1) cleanup of the
code base to improve maintainability and modularity and (2) allow using s(CASP) as embedded
language and library from Prolog. This is work in progress. The current implementation
can handle one or more s(CASP) programs embedded in one or more Prolog modules. The
implementation is thread-safe.

The current implementation has no interface for composing s(CASP) programs dynamically.
This is a vital feature for Inductive Logic Programming (ILP) as well as for assembling a suitable
program based on currently known case data.

Another approach to execute a goal using s(CASP) semantics would be to automatically
re-interpret a Prolog program under s(CASP) semantics. One way to do that would be to
declare predicates as s(CASP) predicates using e.g., :- scasp p/1, q/2.. Alternatively we
could define a predicate scasp(Goal). Both approaches would need to establish the reachable
program, verify it satisfies the limitations imposed by s(CASP), compile the program to the
s(CASP) intermediate representation and run the s(CASP) solver. This approach provides a
trivial API for manipulating the s(CASP) program using assert/1 and retract/1. It is not clear
how s(CASP) global constraints fit into this picture.

We also plan to support embedding s(CASP) into SWISH, providing an online environment
for teaching and exchanging ideas.

References

[1] V. W. Marek, M. Truszczynski, Stable models and an alternative logic programming
paradigm, in: K. R. Apt, V. W. Marek, M. Truszczynski, D. S. Warren (Eds.), The
Logic Programming Paradigm - A 25-Year Perspective, Artificial Intelligence, Springer,
1999, pp. 375–398. URL: https://doi.org/10.1007/978-3-642-60085-2_17. doi:10.1007/
978-3-642-60085-2_17.

[2] J. Arias, M. Carro, Z. Chen, G. Gupta, Justifications for goal-directed constraint answer set
programming, in: F. Ricca, A. Russo, S. Greco, N. Leone, A. Artikis, G. Friedrich, P. Fodor,
A. Kimmig, F. A. Lisi, M. Maratea, A. Mileo, F. Riguzzi (Eds.), Proceedings 36th International
Conference on Logic Programming (Technical Communications), ICLP Technical Commu-
nications 2020, (Technical Communications) UNICAL, Rende (CS), Italy, 18-24th September
2020, volume 325 of EPTCS, 2020, pp. 59–72. URL: https://doi.org/10.4204/EPTCS.325.12.
doi:10.4204/EPTCS.325.12.

[3] J. Arias, M. Carro, E. Salazar, K. Marple, G. Gupta, Constraint answer set programming
without grounding, Theory Pract. Log. Program. 18 (2018) 337–354. URL: https://doi.org/10.
1017/S1471068418000285. doi:10.1017/S1471068418000285.

[4] G. Gupta, E. Salazar, K. Marple, Z. Chen, F. Shakerin, A case for query-driven predicate
answer set programming, in: G. Reger, D. Traytel (Eds.), ARCADE 2017, 1st International
Workshop on Automated Reasoning: Challenges, Applications, Directions, Exemplary
Achievements, Gothenburg, Sweden, 6th August 2017, volume 51 of EPiC Series in Comput-
ing, EasyChair, 2017, pp. 64–68. URL: https://doi.org/10.29007/ngm2. doi:10.29007/ngm2.

https://swish.swi-prolog.org
https://doi.org/10.1007/978-3-642-60085-2_17
http://dx.doi.org/10.1007/978-3-642-60085-2_17
http://dx.doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.4204/EPTCS.325.12
http://dx.doi.org/10.4204/EPTCS.325.12
https://doi.org/10.1017/S1471068418000285
https://doi.org/10.1017/S1471068418000285
http://dx.doi.org/10.1017/S1471068418000285
https://doi.org/10.29007/ngm2
http://dx.doi.org/10.29007/ngm2

	1 Introduction
	2 Porting s(CASP) to SWI-Prolog
	3 Accessing s(CASP) from Prolog
	4 Some notes on portability
	5 Discussion and future work

