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Abstract
Answer Set Prolog (ASP) and its extensions are considered powerful tools for encoding defaults. However, some defaults that
are usually originated from permitted modal expressions seem hard to deal with through ASP and its existing extensions.
In this paper, we develop two extensions of ASP, which are called ASPD and ESD, by introducing permitted operators. The
former uses an operator C preceding a literal to express the literal is permitted to be true in the current belief set. The latter
extends Epistemic Specification (ES) with an epistemic operator A preceding a literal to express the literal is permitted to
be true in some belief sets. The syntax and semantics of ASPD and ESD are introduced sequentially. Then, the relationship
between ESD and the ES is carefully discussed to show the difference between epistemic operators M and A. Besides, several
examples in the paper are used to illustrate the necessity of using permitted operators in ASP and its extensions.
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1. Introduction
Answer Set Prolog (ASP) [1] is a successful KR language
under stable semantics [2] with plenty of extensions.
Epistemic Specifications (ES) is one of these extensions
that allow for introspective reasoning with incomplete
knowledge through epistemic operators. Gelfond [3] and
Kahl [4] presented an extension of the answer set prolog
by introducing the epistemic operators K and M to sup-
port strong introspection. Shen and Eiter [5] proposed
a language for strong introspection through epistemic
negation operator NOT instead of K and M. Although
ASP and ES are considered as powerful tools for encoding
defaults, some defaults that are usually originated from
permitted expressions seem hard to deal with in ASP and
ES.

Example 1 (𝑝 by default). An interpretation of “𝑝 by
default” is “𝑝 is true if it is permitted.” Under this inter-
pretation, “𝑝 by default” naturally means a belief set {𝑝}.
Moreover, with additional information that “𝑝 is not per-
mitted”, the belief set is {}.

There are usually two ASP programs Π1 and Π2 that
are used to encode “𝑝 by default” respectively. Π1 ∶
{𝑝 ← ¬¬𝑝.}, where ¬ denotes negation as failure (NAF).
Π2 ∶ {𝑝 ← ¬ ∼ 𝑝.}, where ∼ denote strong negation.
However, neither Π1 nor Π2 follows our interpretation.
Π1 has two answer sets, {𝑝} and {}. Π2 seems fine, but
Π2 ∪ {← 𝑝.} is not satisfiable, which we expect to have an
answer set {}.
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Furthermore, let us see the introspection situation in
ES as shown in Example 2.

Example 2. “𝑝 if 𝑞 is possible” is often encoded as an ES
program Π3:

𝑝 ← M𝑞.

However, Π3 has an unique world view {∅}, which
is against our interpretation that “𝑝 is true because 𝑞 is
permitted”, and we expect a world view {{𝑝}}.
Here we have another example of introspection in

Example 3, which is a variant of an example in [6].

Example 3. A sentinel should raise the alarm if he found
some evidence that it is possible to be dangerous. Mean-
while, he should keep alert if the danger has not been elim-
inated.

There are two rules about the sentinel’s introspection
and decisions in this example. The first one is a rule with
introspection about the possibility and can be encoded
by a classical ES rule

𝑎𝑙𝑎𝑟𝑚 ← M𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠. (𝑟1)

However, we can not find an accurate ES rule to express
the second one, which can be interpreted as the sentinel
should keep alert if 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 is permitted by some be-
lief sets. For instance, we try to describe the sentinel’s
introspection with the following rules.

𝑎𝑙𝑒𝑟 𝑡 ← M𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠. (𝑟 ′2)
𝑎𝑙𝑒𝑟 𝑡 ← ¬K ∼𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠. (𝑟″2 )

Rule (𝑟 ′2) means 𝑎𝑙𝑒𝑟 𝑡 can be derived if there exists at least
one answer set in which 𝑑𝑎𝑔𝑒𝑟𝑜𝑢𝑠 is true, but a belief
set permitting 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 may not contain it. Rule (𝑟″2 )
contains a new literal ∼𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 in its body, which can
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not be derived if there is no rule with ∼𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 in its
head. Therefore, neither rule (𝑟 ′2) nor rule (𝑟″2 ) has the
semantics we want.
Hence, this paper aims to develop the extensions of

ASP and ES respectively to address the issues of handling
defaults originated from permitted expressions. Specifi-
cally, we develop two extensions of ASP, which are called
ASPD and ESD respectively, by introducing permitted op-
erators. The former uses an operatorC preceding a literal
to express the literal is permitted to be true in the current
belief set. The latter extends Epistemic Specification (ES)
with an epistemic operator A preceding a literal to ex-
press the literal is permitted to be true in some belief sets.
Intuitively, “𝑝 by default” can be encoded as 𝑝 ← C𝑝. in
ASPD, and “𝑝 if 𝑞 is possible” can be encoded as 𝑝 ← A𝑞.
in ESD. Furthermore, the second rule in Example 3 can
be written as

𝑎𝑙𝑒𝑟 𝑡 ← A𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠. (𝑟2)

According to rule (𝑟2), the sentinel should keep alert if
𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 is not proved to be inconsistent in at least one
of his belief sets.

Usually, a non-ground logic program, which is a logic
program with variables, is considered as a shorthand for
the corresponding ground program. Therefore, we only
consider ground logic programs in this paper unless in
some examples.
The rest of this paper is organized as follows. In Sec-

tion 2, we review Default Logic and Epistemic Specifica-
tions. In Section 3, we propose the syntax and semantics
of 𝐴𝑆𝑃D. In Section 4, we propose the syntax and se-
mantics of 𝐸𝑆D. In section 5, we discuss the relationship
between the new language and ESGK [4]. At last, we
conclude the paper with some future work.

2. Preliminaries

2.1. Default Logic
Defaults are very useful in logic programs because they
allow drawing conclusions based on commonsense or
typical knowledge with incomplete knowledge. Default
Logic (DL) [7] has been extensively researched since it
was proposed as a nonmonotonic paradigm to represent
default.
The defeasible rules in default logic are called default

rules of the form

𝛼 ∶ 𝛽1, … , 𝛽𝑛
𝜔

(1)

where 𝛼, 𝛽, 𝜔 are classical formulas. 𝛼 is the prerequisite
of the default, 𝛽𝑖s are justifications, 𝜔 is the consequent.
The default rule 1 intuitively means ”If 𝛼 is provable and
all 𝛽𝑖s are consistent with it, then assume 𝜔 as default.”

A default rule is normal if 𝛽 is equivalent to 𝜔; it is semi-
normal if 𝛽 implies 𝜔. A default theory is a pair (𝐷,𝑊 ),
where𝐷 is a set of default rules, and𝑊 is a set of formulas.

Definition 1 (Extension of Default Theories). Let (𝐷,𝑊 )
be a default theory, 𝐸 be a set of formulas. Define 𝐸0 = 𝑊
and for 𝑖 ≥ 0:

𝐺𝐷𝑖 ={
𝛼 ∶ 𝛽1, … , 𝛽𝑛

𝜔
∈ 𝐷|𝛼 ∈ 𝐸𝑖, ∀𝛽𝑖 ∶∼ 𝛽𝑖 ∉ 𝐸}

𝐸𝑖+1 =𝑇ℎ(𝐸𝑖) ∪ {𝐶𝑜𝑛𝑠𝑒𝑞(𝛿)|𝛿 ∈ 𝐺𝐷𝑖}.

where 𝑇ℎ(𝐸𝑖) is the set of all classical propositional conse-
quences of 𝐸𝑖, 𝐶𝑜𝑛𝑠𝑒𝑞(𝛿) is the consequent of the default
rule 𝛿. Then 𝐸 is an extension for (𝐷,𝑊 ) iff 𝐸 = ⋃∞

𝑖=0 𝐸𝑖.
Note that we use operator ¬ for negation as failure (NAF)
and ∼ for classical negation in this paper. An extension of
default theory (𝐷,𝑊 ) represents a possible set of beliefs of
this theory.

Gelfond et al. [8] proposed the Disjunctive Default
Logic (DDL) that extended classical DL with disjunction
to extend the representation ability of default logic. The
disjunctive defaults have the form of

𝛼 ∶ 𝛽1, … , 𝛽𝑚
𝜔1| … |𝜔𝑛

(2)

Definition 2. (Extension of Disjunctive Default Theories)
Let (𝐷,𝑊 ) be a disjunctive default theory, 𝐸 be a set of
formulas. 𝐸 is an extension for (𝐷,𝑊 ) if 𝐸 is one of the
minimal deductively closed set of formulas 𝐸′, where for
any default rule from 𝐷, if 𝛼 ∈ 𝐸′ and ∼ 𝛽1, … , ∼ 𝛽𝑚 ∉ 𝐸,
then ∃𝜔𝑖 ∶ 𝜔𝑖 ∈ 𝐸′.

Researchers have paid much attention to the relation-
ships betweenmodal logic and default logic to capture the
semantics of default logic. They have found many inher-
ent connections between these two kinds of knowledge.
Konolige [9] proved the existence a reversible translation
from default logic into strongly grounded autoepistemic
logic (AEL). Based on his work, Gottlob [10] constructed
a nonmodular translation from default logic to standard
AEL. Truszczynski [11] has shown that the nonmono-
tonic logic S4F captures the default logic. Cabalar et al.
[12] proposed intuitionistic default logic, a variation of
default logic inside S4F. Meanwhile, some researchers
focused on represent default by logic programming lan-
guages. Gelfond [13] has shown that the nonmonotonic
logic ASP without constraints or disjunctions captures
the default logic. He also presented a method to represent
defaults in ASP by adding literals and rules about abnor-
mal information [1]. Lifschitz [14] introduced an idea
to translate ASP programs into default theories, which
Chen et al. [15] used to develop a default logic solver
based on ASP solvers.



𝑠 𝑊 ⊧ 𝑠 𝑊 ⊭ 𝑠

K𝑒 replace 𝑠 by 𝑒 delete the rule
¬K𝑒 remove 𝑠 replace 𝑠 with ¬𝑒
M𝑒 remove 𝑠 replace 𝑠 with ¬¬𝑒
¬M𝑒 replace 𝑠 by ¬𝑒 delete the rule

Table 1
Modal reduct of ESGK

2.2. Epistemic Specifications and Justified
Semantics

Epistemic Specifications (ES) extends traditional answer
set programs with epistemic modal operators K andM.
An ES program is a finite set of rules of the form:

𝑒1 𝑜𝑟 … 𝑜𝑟 𝑒𝑘 ← 𝑒𝑘+1, … , 𝑒𝑚, 𝑠1, … , 𝑠𝑛. (3)

where 𝑙 is a literal, 𝑒𝑖s are objective literals of the form 𝑙 or
¬𝑙, 𝑠𝑖s are subjective literals with an epistemic operator
K, ¬K,M, or ¬M.
A belief set of an ES program Π is a consistent set of

literals in the language of Π. A view is a collection of
belief sets. If an extended literal is satisfied by a point
structure ⟨𝐴,𝑊 ⟩, where 𝐴 ∈ 𝑊, is defined as:

• ⟨𝐴,𝑊 ⟩ ⊧ 𝑙 iff 𝑙 ∈ 𝐴, where 𝑙 is a literal.
• ⟨𝐴,𝑊 ⟩ ⊧ ¬𝑙 iff 𝑙 ∉ 𝐴.
• ⟨𝐴,𝑊 ⟩ ⊧ K𝑒 iff ∀𝐴 ∈ 𝑊 ∶ 𝐴 ⊧ 𝑒.
• ⟨𝐴,𝑊 ⟩ ⊧ M𝑒 iff ∃𝐴 ∈ 𝑊 ∶ 𝐴 ⊧ 𝑒.
• ⟨𝐴,𝑊 ⟩ ⊧ ¬K𝑒 iff ∃𝐴 ∈ 𝑊 ∶ 𝐴 ⊭ 𝑒.
• ⟨𝐴,𝑊 ⟩ ⊧ ¬M𝑒 iff ∀𝐴 ∈ 𝑊 ∶ 𝐴 ⊭ 𝑒.

For an objective literal 𝑒, it can be denoted as 𝐴 ⊧ 𝑒. For a
subjective literal 𝑠, it can be denoted as 𝑊 ⊧ 𝑠.

Many versions of semantics have been proposed for the
language of Epistemic Specifications. Kahl [4] introduced
a typical one, which we call ESGK in this paper, by the
definition of modal reduct and world view.

Definition 3 (Modal Reduct of ESGK). Let Π be a finite
ES program, 𝑊 be a collection of belief sets. The modal
reduct of Π w.r.t 𝑊, denoted by Π𝑊, is obtained from Π by
eliminating subjective literals as Table 1.

Definition 4 (World Views of ESGK). 𝑊 is a world view
of Π if and only if 𝑊 is equal to a collection of all answer
sets of Π𝑊.

To have a clear view of circular modal justification,
Kahl also introduced the conception of the M-cycle, a
cycle in modal support graph of a program with an edge
of M.

Definition 5 (Modal Supported Graph). Given an epis-
temic logic program Π, a modal supported graph of Π, or
MS graph for short, is a directed graph where:

Extended Literal 𝑒 ¬𝑒 K𝑒 ¬K𝑒 M𝑒 ¬M𝑒

Label ¬ K ¬K M ¬M

Table 2
Labels of outcoming edges from literal nodes

q p

r1

r2

M

¬

M

¬

Figure 1: Modal support graph of Π4 with M-cycle

• for each rule 𝑟𝑖 in Π, there is a rule node labeled by
𝑟𝑖 denoting the rule;

• for each distinct objective literal 𝑒 in the language
of Π, there is a literal node labeled by 𝑒;

• for each objective literal 𝑒 in the head of rule 𝑟, there
is an unlabeled edge from the rule node 𝑟 to literal
node 𝑒;

• for each extended literal in the body of rule 𝑟, there
is an edge labeled according to Table 2 going from
literal node 𝑒 to rule node 𝑟.

Definition 6 (M-Cycle). A cycle in the MS graph of an
epistemic logic program is called an M-cycle if 𝑀 labels
an edge within the cycle.

Example 4 (M-cycle). Consider a program Π4:

𝑝 ←M𝑞, ¬𝑞. (𝑟1)
𝑞 ←M𝑝, ¬𝑝. (𝑟2)

Figure 1 shows the modal support graph of Π4, which con-
tains an M-cycle through 𝑞, rule (𝑟1), 𝑝 and rule (𝑟2).

In Example 4, program Π4 should has a unique world
view {{𝑝}, {𝑞}} under the semantics of ESGK. However,
many researchers claimed their disagreement against this
example, including Yi-Dong shen [5] and Yuanling Zhang
[16].
The aim of justified semantics of ES, which we called

ESZZ in this paper, is to develop an intuitive understand-
ing of the M operator and get rid of circular justification
in a stronger sense. It refines the semantics of Epistemic
Specifications by constructing a justified reduct and dis-
junction reduct. By the new semantics, since all literals
in a world view need to be justified, the M-cycle does not
cause a self-support problem.
ESZZ provides a classical method to define the views

with a maximal guess of epistemic negations.



𝑠 𝑊 ⊧ 𝑠 𝑊 ⊭ 𝑠
K𝑒 replace 𝑠 by 𝑒 delete the rule
¬K𝑒 remove 𝑠 delete the rule
M𝑒 remove 𝑠 delete the rule
¬M𝑒 replace 𝑠 by ¬𝑒 delete the rule

Table 3
General Modal Reduct of Maximal View

Definition 7 (Maximal Views). Let Π be an ES program
and 𝑊 = {𝐴1, … , 𝐴𝑛}, where 𝐴𝑖s are belief sets. A dis-
junctive program Π𝑊 is called the general modal reduct
𝑊 = {𝐴1, … , 𝐴𝑛} if it is obtained by eliminating every sub-
jective literals in Π with the transformation in Table 3. We
call 𝑊 a maximal view if 𝑊 is the collection of all answer
sets of Π𝑊.

In addition to the maximal view, the justified view
requires all belief sets in a world view to be justified,
which means all subjective literals satisfied by a belief
set are not only supported by themselves.

Definition 8 (Disjunction Reduct). Let Π be a positive
disjunctive program and 𝐴 be a consistent set of literals in
the language of Π. The disjunction reduct of Π w.r.t. 𝐴,
denoted by Π𝐴,∨, is a program obtained from Π removing
all literals not in 𝐴 from the head of all the rules in Π.

The intuitive meaning of disjunction reduct is that if a
literal 𝑙 in the head of rule 𝑟 is not contained in a belief
set 𝐴, then 𝑙 does not affect other literals in ℎ𝑒𝑎𝑑(𝑟).

Definition 9 (Modal Operator Interpretation). Let Π be
a program with epistemic defaults, 𝑊 = {𝐴1, … , 𝐴𝑛} be
a collection of belief sets. The mapping 𝜌 from subjective
literal 𝑠 and belief set𝐴𝑖 is defined as 𝜌(𝑠, 𝐴𝑖) for all𝐴𝑖, 𝐴𝑗 ∈
𝑊:

• if 𝑊 ⊧ K𝑒, 𝜌(K𝑒, 𝐴𝑖) = {𝑒𝑖};
• if 𝑊 ⊧ ¬K𝑒, 𝜌(¬K𝑒, 𝐴𝑖) = {¬𝑒𝑗|𝐴𝑗 ̸⊧𝑒} ;
• if 𝑊 ⊧ M𝑒, 𝜌(M𝑒, 𝐴𝑖) = {𝑒𝑗|𝐴𝑗 ⊧ 𝑒};
• if 𝑊 ⊧ ¬M𝑒, 𝜌(¬M𝑒, 𝐴𝑖) = {¬𝑒𝑖}.

Example 5. Let Π5 = {𝑝 ← M𝑞.}, 𝑊 = {𝐴1 = {𝑞}, 𝐴2 =
{𝑝, 𝑞}}. The modal operator interpretation of 𝑞 w.r.t 𝐴1 is
𝜌(M𝑞, 𝐴1) = {𝑞1, 𝑞2}.

Definition 10 (Modal Reduct for ESZZ). Consider an ES
program Π, a collection 𝑊 of belief sets {𝐴1, … , 𝐴𝑛}. The
modal reduct of Π w.r.t. 𝑊, 𝐴𝑖, and 𝜌, denoted as Π𝑊,𝐴𝑖,𝜌,
is derived by following steps.

1. Renaming each objective literal 𝑒 not occurring in
any subjective literal in Π by 𝑒𝑖;

2. removing rules whose body contains a subjective
literal 𝑠 that 𝑊 ̸⊧𝑠;

3. replacing every occurrence of subjective literal 𝑠 in
rule 𝑟 or its copies by a literal in 𝜌(𝑠, 𝐴𝑖).

Example 6 (Continuing Example 5). The modal reduct
of Π5 w.r.t. 𝑊, 𝐴1, 𝜌 is

𝑝1 ← 𝑞1.
𝑝1 ← 𝑞2.

Definition 11 (Justified Views). ConsiderΠ be a program
with epistemic defaults, 𝑊 = {𝐴1, … , 𝐴𝑛} a collection of
belief sets. Let 𝐵 = {𝑙𝑖|𝐴𝑖 ⊧ 𝑙, 1 ≤ 𝑖 ≤ 𝑛}, the full reduct
of Π w.r.t. ⟨𝐴𝑖, 𝑊 ⟩, denoted by Π⟨𝐴𝑖,𝑊 ⟩

full , is obtained from
Π by applying justified reduct w.r.t. 𝑊, Gelfond-Lifschitz

reduct and disjunction reduct w.r.t. 𝐵, i.e ((Π𝑊,𝐴𝑖,𝜌)
𝐵
)
𝐵,∨

.
𝑊 is a justified view of Π iff 𝐵 is the unique stable model
of ⋃𝑛

𝑖=1 Π
⟨𝐴𝑖,𝑊 ⟩
full .

Definition 12 (World Views of ESZZ). Let Π be an ES
program and 𝑊 a collection of belief sets. 𝑊 is a world
view of Π iff 𝑊 is a justified view and maximal view of Π.

3. Answer Set Programming with
Defaults

This section introduce the syntax and semantics of ASPD,
which extends ASP with operator C.

An ASPD program Π is a finite collection of rules of
the form

𝑒1 𝑜𝑟 ⋯ 𝑜𝑟 𝑒𝑘 ← 𝑒𝑘+1, ⋯ , 𝑒𝑚, 𝑑1, ⋯ , 𝑑𝑛. (4)

where 𝑒𝑖 are extended literals of the form 𝑙 or ¬𝑙, 𝑙s are
literals in classical logic, 𝑑𝑖 are default literals of the form
C𝑒 or ¬C𝑒. Intuitively, C𝑒 means it is permitted (or not
forbidden) to assume 𝑒 is true, and ¬C𝑒means 𝑒 is proved
to be not permitted. A rule containing operator C is a
default rule.

Example 7. Consider the following default logic programs
Π6

𝑏𝑖𝑟𝑑(𝑡𝑤𝑒𝑒𝑡𝑦). (𝑟1)
𝑓 𝑙𝑖𝑒𝑠(𝑋) ← 𝑏𝑖𝑟𝑑(𝑋),C𝑓 𝑙𝑖𝑒𝑠(𝑋). (𝑟2)

and Π′
6

𝑝𝑒𝑛𝑔𝑢𝑖𝑛(𝑡𝑤𝑒𝑒𝑡𝑦). (𝑟3)
← 𝑝𝑒𝑛𝑔𝑢𝑖𝑛(𝑋), 𝑓 𝑙𝑖𝑒𝑠(𝑋). (𝑟4)

Since 𝑓 𝑙𝑖𝑒𝑠(𝑡𝑤𝑒𝑒𝑡𝑦) does not conflict with rule (𝑟1) or rule
(𝑟2), Π6 concludes 𝑓 𝑙𝑖𝑒𝑠(𝑡𝑤𝑒𝑒𝑡𝑦). However, with the addi-
tional fact rule (𝑟3) and constraint rule (𝑟4) in Π′

6, it is
inconsistent to assume that 𝑓 𝑙𝑖𝑒𝑠(𝑡𝑤𝑒𝑒𝑡𝑦) is true. Thus
𝑓 𝑙𝑖𝑒𝑠(𝑡𝑤𝑒𝑒𝑡𝑦) is not in the consequent of Π6 ∪ Π′

6.

Example 7 illustrated the semantics of ASPD we have
defined intuitively. Now we will give a formal definition.



𝑑 ⟨𝑋 , 𝑌 ⟩ ⊧ 𝑑 ⟨𝑋 , 𝑌 ⟩ ⊭ 𝑑

C𝑙 remove 𝑑 replace 𝑑 with 𝑙
C¬𝑙 remove 𝑑 replace 𝑑 with ¬𝑙
¬C𝑙 replace 𝑑 with ¬𝑙 delete the rule
¬C¬𝑙 replace 𝑑 with 𝑙 delete the rule

Table 4
Obtain Π⟨𝑋 ,𝑌 ⟩ by eliminating defaults, where 𝑙 is a positive
literal without C or ¬.

Definition 13 (Satisfiability). A default interpretation of
program Π is a pair of consistent literal sets ⟨𝑋 , 𝑌 ⟩, where
𝑋 ⊆ 𝑌 ⊆ 𝐿𝑖𝑡𝑒𝑟𝑎𝑙(Π) and 𝐿𝑖𝑡𝑒𝑟𝑎𝑙(Π) is the set of all literals
in the Herbrand universe of Π. Let ⟨𝑋 , 𝑌 ⟩ be a default
interpretation of Π,

• ⟨𝑋 , 𝑌 ⟩ ⊧ 𝑙 iff 𝑙 ∈ 𝑋 where 𝑙 is a literal;
• ⟨𝑋 , 𝑌 ⟩ ⊧ ¬𝑒 iff 𝑋 ̸⊧ 𝑒 where 𝑒 is an extended literal;
• ⟨𝑋 , 𝑌 ⟩ ⊧ C𝑙 iff 𝑙 ∈ 𝑌;
• ⟨𝑋 , 𝑌 ⟩ ⊧ C¬𝑒 iff 𝑌 ̸⊧ 𝑒;
• ⟨𝑋 , 𝑌 ⟩ ⊧ ¬C𝑒 iff ⟨𝑋 , 𝑌 ⟩ ̸⊧ C𝑒;
• ⟨𝑋 , 𝑌 ⟩ ⊧ 𝑟 iff ∃𝑒 ∈ ℎ𝑒𝑎𝑑(𝑟) ∶ ⟨𝑋 , 𝑌 ⟩ ⊧ 𝑒 or ∃𝜙 ∈
𝑏𝑜𝑑𝑦(𝑟) ∶ ⟨𝑋 , 𝑌 ⟩ ⊭ 𝜙, where 𝑟 is a rule in Π, 𝑒 is an
extended literal in the head of 𝑟, 𝜙 is an extended
literal or default literal;

• ⟨𝑋 , 𝑌 ⟩ ⊧ Π iff ∀𝑟 ∈ Π ∶ ⟨𝑋 , 𝑌 ⟩ ⊧ 𝑟, and this default
interpretation is called a default model of Π.

In a default interpretation ⟨𝑋 , 𝑌 ⟩ which satisifies an
𝐴𝑆𝑃D program Π, if 𝑙 ∈ 𝑌, then C𝑙 is allowed by ⟨𝑋 , 𝑌 ⟩. In
that case, 𝑋 should be an answer set of the default reduct
Π⟨𝑋 ,𝑌 ⟩, which is obtained by removing default literals
from Π.

Definition 14 (Default Reduct). Let Π be an ASPD pro-
gram, ⟨𝑋 , 𝑌 ⟩ be a default model of Π. The default reduct
of Π w.r.t. ⟨𝑋 , 𝑌 ⟩, denoted by Π⟨𝑋 ,𝑌 ⟩, is obtained by elim-
inating the occurrence of C𝑒 or ¬C𝑒 in rule 𝑟 as Table 4.

Now we use default reduct to define the default stable
models of a program with default rules.

Definition 15 (Default Stable Models). For an ASPD

programΠ, a default model ⟨𝑋 , 𝑌 ⟩ is a default stable model
of Π iff

1. 𝑋 is an answer set of Π⟨𝑋 ,𝑌 ⟩,
2. 𝑌 ⊧ Π⟨𝑋 ,𝑌 ⟩,
3. let Φ(𝑌 , Π) be a set of default literals of the form C𝑒

in Π that satisfied by ⟨𝑋 , 𝑌 ⟩, there does not exist a
consistent set of literals 𝑌 ′ that 𝑋 ⊆ 𝑌 ′, Φ(𝑌 , Π) ⊂
Φ(𝑌 ′, Π) and 𝑌 ′ ⊧ Π⟨𝑋 ,𝑌 ′⟩.

The set of all default stablemodels of a programΠ is denoted
by 𝐷𝑆𝑀(Π).

Definition 16 (Stable Models of ASPD programs). Let Π
be an ASPD program. A literal set 𝐴, where𝐴 ⊆ 𝐿𝑖𝑡𝑒𝑟𝑎𝑙(Π),
is called a stable model of Π if ∃𝑌 ∶ ⟨𝐴, 𝑌 ⟩ ∈ 𝐷𝑆𝑀(Π).
The set of all stable models of the program Π is denoted by
𝑆𝑀(Π).

Let us take a close look at Definition 13 and 15. It
shows that by the second condition of Definition 15, 𝐻 is
stable, i.e., 𝑋 is minimal, while the third condition makes
sure 𝑌 is maximal, thus the default stable model ⟨𝑋 , 𝑌 ⟩
can satisfy as many extended literals in Π as possible.

Example 8 (Default Stable Models). Consider the ASPD

program Π7

𝑎 ← C𝑎.
𝑏 ← C𝑏.
← 𝑎, 𝑏.

𝑐 ← 𝑎.

Consider default interpretations 𝑀1 = ⟨{𝑎, 𝑐}, {𝑎, 𝑐}⟩, and
𝑀2 = ⟨{𝑏}, {𝑏}⟩, 𝑀3 = ⟨{}, {}⟩. {𝑎, 𝑐} is an answer set of Π𝑀1

7
and {𝑏} is an answer set of Π𝑀2

7 . By Definition 16, 𝑀1 and
𝑀2 are default stable models ofΠ7. For𝑀3, the 𝑌-part of𝑀3
is 𝑌3 = {} ∈ 𝐴𝑆(Π𝑀3

7 ). However, there exists 𝑌 ′ = {𝑎, 𝑐} that
𝑌 ′ ⊧ Π⟨{},{𝑎,𝑐}⟩, and Φ(𝑌3, Π) ⊂ Φ(𝑌 ′, Π7). Therefore, 𝑀3 is
not a default stable model of Π7, and 𝑆𝑀(Π7) = {{𝑎, 𝑐}, {𝑏}}.

Example 8 is a typical instance of ASPD that shows
the feature of the operator C. Neither ¬¬𝑒 nor ¬ ∼ 𝑒 can
capture the semantics ofC𝑒. For example, programΠ7 has
two stable models {𝑎, 𝑐} and {𝑏}. Considering following
ASP programs Π′

7:

𝑎 ← ¬¬𝑎.
𝑏 ← ¬¬𝑏.
← 𝑎, 𝑏.

𝑐 ← 𝑎.

and Π″
7 :

𝑎 ← ¬ ∼ 𝑎.
𝑏 ← ¬ ∼ 𝑏.
← 𝑎, 𝑏.

𝑐 ← 𝑎.

On the one hand, Π′
7 has three answer sets, {𝑎, 𝑐}, {𝑏}, and

{}. Apparently {} is not a stable model of Π7 that we want,
thus ¬¬𝑒 can not represent defaults. On the other hand,
Π″
7 is unsatisfiable, which means ¬ ∼ 𝑒 can not represent

defaults neither.
ASPD also provides a method to represent negative

defaults, which is not provided by classical default logic.



Example 9 (Programs with Defaults and Negation). Con-
sider the ASPD program Π8

𝑎 ← ¬C𝑏.

and the ASPD program Π9

𝑎 ← C¬𝑏.

and default interpretations 𝑀1 = ⟨{𝑎}, {𝑎}⟩, and 𝑀2 =
⟨∅, {𝑏}⟩.
For program Π8 and 𝑀1, we have Π𝑀1

8 = {𝑎 ← ¬𝑏.}
and {{𝑎}} = 𝐴𝑆(Π𝑀1

8 ). However, there is another default
interpretation 𝑀′

1 = ⟨{𝑎}, {𝑎, 𝑏}⟩ that Π𝑀 ′
1

8 = {} and {𝑎, 𝑏} ⊧
Π𝑀 ′

1
8 , and Φ({𝑎, 𝑏}, Π8) = {C𝑏} while Φ({𝑎}, Π8) = ∅. By

the third condition in Definition 15, 𝑀1 is not a default
stable model of Π8. Because {𝑎} is not an answer set of Π

𝑀 ′
1

8 ,
by the first condition of Definition 16, 𝑀′

1 is not a default
stable model of Π8. On the other hand, 𝑀2 ∈ 𝐷𝑆𝑀(Π8),
and ∅ is a stable model of Π8.

For program Π9 and default interpretation 𝑀2, we have
∅ = 𝐴𝑆(Π𝑀2

9 ). However, there exists a default interpreta-
tion 𝑀′

2 = ⟨∅, {𝑎}⟩, and Φ({𝑎}, Π9) = {C¬𝑏}. Meanwhile,
Φ({𝑏}, Π9) = ∅, Π𝑀 ′

2
9 = {𝑎.}, thus {𝑎} ⊧ Π𝑀 ′

2
9 . Therefore, 𝑀2

is not a default stable model of Π9. It is easy to check that
𝑀1 is a default stable model of Π9.

Example 9 shows how does ASPD deal with the nega-
tion of defaults and how does the function Φ works.

Now, let us revisited Example 1. “𝑝 by default” can be
described by an ASPD program containing only one rule:

𝑝 ← C𝑝.

It is easy to check that {𝑝} is the unique stable model of
the program as we expect.

4. Epistemic Specifications with
Defaults

This section introduces the syntax and semantics of ESD,
an extension of ESZZ.

A rule of ESD is of the form

𝑒1 𝑜𝑟 ⋯ 𝑜𝑟 𝑒𝑘 ← 𝑒𝑘+1, ⋯ , 𝑒𝑚, 𝑠1, ⋯ , 𝑠𝑛. (5)

where 𝑙𝑖 are literals, 𝑒𝑖 are objective literals (or extended
literals in ASPD) of the form 𝑙 or ¬𝑙, 𝑠𝑖s are subjective liter-
als of the form K𝑒, ¬K𝑒, M𝑒, ¬M𝑒, A𝑒 or ¬A𝑒. Intuitively,
A𝑒 means that 𝑒 may be permitted.

Definition 17 (Satisfaction of A𝑒). For a collection of
default interpretations 𝑊, 𝑊 ⊧ A𝑒 iff ∃𝑤 ∈ 𝑊 ∶ 𝑤 ⊧ C𝑒.

𝑠 𝑊 ⊧ 𝑠 𝑊 ⊭ 𝑠

K𝑒 replace 𝑠 by 𝑒 delete the rule
¬K𝑒 remove 𝑠 delete the rule
M𝑒 remove 𝑠 delete the rule
¬M𝑒 replace 𝑠 by ¬𝑒 delete the rule
A𝑒 remove 𝑠 C𝑒
¬A𝑒 replace 𝑠 by ¬C𝑒 delete the rule

Table 5
Modal Reduct of ES with Epistemic Defaults.

Definition 18 (Modal Reduct). Let Π be a program with
epistemic defaults and𝑊 be a non-empty collection of belief
sets, where a belief set is a default interpretation ⟨𝑋 , 𝑌 ⟩.
The modal reduct of Π w.r.t𝑊, denoted by Π𝑊, is an ASPD

program obtained from Π as Table 5 by eliminating every
subjective literal 𝑠.

Definition 18 is a modification of the modal reduct of
traditional Epistemic Specifications. The last two rows
define the reduct of the new subjective operator A. How-
ever, we still need a method to reduce the circular justifi-
cations: subjective interpretation and justified reduct.

Definition 19 (Subjective Interpretation). Let Π be a
program with epistemic defaults, 𝑊 = {𝐴1, … , 𝐴𝑛} be a
collection of belief sets. The mapping 𝜌 from subjective
literal 𝑠 and belief set𝐴𝑖 is defined as 𝜌(𝑠, 𝐴𝑖) for all𝐴𝑖, 𝐴𝑗 ∈
𝑊:

• if 𝑊 ⊧ K𝑒, 𝜌(K𝑒, 𝐴𝑖) = {𝑒𝑖};
• if 𝑊 ⊧ ¬K𝑒, 𝜌(¬K𝑒, 𝐴𝑖) = {¬𝑒𝑗|𝐴𝑗 ⊭ 𝑒};
• if 𝑊 ⊧ M𝑒, 𝜌(M𝑒, 𝐴𝑖) = {𝑒𝑗|𝐴𝑗 ⊧ 𝑒};
• if 𝑊 ⊧ ¬M𝑒, 𝜌(¬M𝑒, 𝐴𝑖) = {¬𝑒𝑖};
• if 𝑊 ⊧ A𝑒, 𝜌(A𝑒, 𝐴𝑖) = {C𝑒𝑗|𝐴𝑗 ⊧ C𝑒};
• if 𝑊 ⊭ A𝑒, 𝜌(A𝑒, 𝐴𝑖) = {C𝑒𝑖};
• if 𝑊 ⊧ ¬A𝑒, 𝜌(¬A𝑒, 𝐴𝑖) = {¬C𝑒𝑖};
• if 𝑊 ⊭ ¬A𝑒, 𝜌(¬A𝑒, 𝐴𝑖) = {¬C𝑒𝑗|𝐴𝑗 ⊭ ¬C𝑒}.

In Definition 19, 𝜌 is a mapping from a subjective literal
to the belief sets that justifies it. 𝜌 provides a method to
find the self-support cycles in a program. For a subjective
literal 𝑠 with classical epistemic operators, the justified
reduct of 𝑠 is ignored if𝑊 ̸⊧𝑠, because circular justification
is not permitted in this situation. However, for 𝑠 with
operator A or ¬A, 𝑠 need to be justified whenever 𝑊 ⊧ 𝑠
or not.

Example 10 (Subjective Interpretation). Considering pro-
gram Π10 with a self-supported of A.

𝑝 ← A𝑞, ¬𝑞.
𝑞 ← A𝑝, ¬𝑝.

Let 𝐴1 = ⟨{𝑝}, {𝑝}⟩, 𝐴2 = ⟨{𝑞}, {𝑞}⟩, W = {𝐴1, 𝐴2}. The
subjective interpretations w.r.t. 𝑊 is 𝜌(A𝑝, 𝐴𝑖) = C𝑝1 and
𝜌(A𝑞, 𝐴𝑖) = C𝑞2 for 𝑖 ∈ {1, 2}.



Definition 20 (Justified Reduct). Consider an ESD pro-
gram Π, a collection 𝑊 of belief sets {𝐴1, … , 𝐴𝑛}. The jus-
tified reduct of Π w.r.t. ⟨𝐴𝑖, 𝑊 ⟩, denoted by Π⟨𝐴𝑖,𝑊 ⟩, is
obtained by the following steps:

1. removing rule 𝑟 if there exists a subjective literal
𝑠 ∈ 𝑏𝑜𝑑𝑦(𝑟)with operatorK, ¬K,M or ¬M if𝑊 ⊧ 𝑠;

2. replacing subjective literals 𝑠 in rule 𝑟 or its copies
with literals in 𝜌(𝑠, 𝐴𝑖) if 𝑊 ⊧ 𝑠;

3. replacing objective literals 𝑙 with 𝑙𝑖.

The justified reduct of a program Π w.r.t. 𝑊 shows
the justification of all literals in Π. However, a justified
reduct is a default logic programwith disjunctions, which
is possible to have stable models not contained by 𝑊.

Definition 21 (Justified View). Consider Π be a program
with epistemic defaults, 𝑊 = {𝐴1, … , 𝐴𝑛} a collection of
default interpretations. Let 𝐵 = {𝑙𝑖|𝐴𝑖 ⊧ 𝑙, 1 ≤ 𝑖 ≤ 𝑛}, 𝐶 =
{𝑙𝑖|𝐴𝑖 ⊧ C𝑙 , 1 ≤ 𝑖 ≤ 𝑛}, the full reduct of Π w.r.t. ⟨𝐴𝑖, 𝑊 ⟩,
denoted byΠ⟨𝐴𝑖,𝑊 ⟩

full , is obtained fromΠ by applying justified
reduct w.r.t. 𝑊, Gelfond-Lifschitz reduct and disjunction
reduct w.r.t. 𝐵. 𝑊 is a justified view of Π iff ⟨𝐵, 𝐵 ∪ 𝐶⟩ is
the only default stable model of ⋃𝑛

𝑖=1 Π
⟨𝐴𝑖,𝑊 ⟩
full .

Example 11 (Justified Views of Π10). Consider program
Π10 in Example 10. The justified reducts Π10

⟨𝐴1,𝑊 ⟩ =
{𝑝1 ← C𝑞2, ¬𝑞1.𝑞1 ← C𝑝1, ¬𝑝1.}, Π10

⟨𝐴2,𝑊 ⟩ = {𝑝2 ←
C𝑞2, ¬𝑞2.𝑞2 ← C𝑝1, ¬𝑝2.}. By Definition 21, 𝐵 = 𝐶 =
{𝑝1, 𝑞2}, which is the answer set of Π10

⟨𝐴1,𝑊 ⟩
full ∪ Π10

⟨𝐴2,𝑊 ⟩
full .

Thus 𝑊 is a justified view of Π10.

Definition 22 (World View). Let Π be a program with
epistemic defaults, 𝑊 be a collection of default interpreta-
tions. 𝑊 is a world view of Π iff

1. 𝑊 is equal to the collection of all default stable
models of the modal reduct Π𝑊 and

2. 𝑊 is a justified view of Π.

Example 12 (World View of Π10). Consider Program Π10
and𝑊1 = {𝐴1, 𝐴2} in Example 10. Since𝑊 ⊧ A𝑝 ∧A𝑞, the
modal reduct Π𝑊1

10 is {𝑝 ← ¬𝑞.𝑞 ← ¬𝑝.}. 𝐴1 and𝐴2 are the
only default stable models of Π𝑊1

10 . Example 11 has shown
that 𝑊1 is a justified view of Π10. Thus 𝑊1 is a world view
of Π10.

Consider 𝑊2 = {⟨∅, ∅⟩}. The modal reduct Π𝑊2
10 = {𝑝 ←

C𝑞, ¬𝑞.𝑞 ← C𝑝, ¬𝑝.}, and 𝐷𝑆𝑀(Π𝑊2
10 ) = 𝑊2. The justified

reduct of Π10 w.r.t. 𝑊2 is {𝑝1 ← C𝑞1, ¬𝑞1.𝑞1 ← C𝑝1, ¬𝑝1.}.
Thus 𝑊2 is also a world view of Π10.

5. Relation with ESGK

This section will compare the semantics of ESD to the
one of ESGK, which we have introduced in Section 2.

Kl

¬Kl

l ¬l
Ml

¬Ml

lowest conviction
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Figure 2: Preference Relation of Subjective Literals

Example 13 (Compare M-cycle). Consider an ES pro-
gram Π11

𝑝 ← M𝑝.

Let 𝑊1 = {𝑝}, 𝑊2 = {∅}.
Under the semantics of ESGK, the modal reducts of Π11

are Π𝑊1
11 = {𝑝.} and Π𝑊2

11 = {𝑝 ← ¬¬𝑝.}. Because 𝑊1 =
𝐴𝑆(Π𝑊1

11 ), 𝑊2 ≠ 𝐴𝑆(Π𝑊2
11 ), 𝑊1 is a world view of Π while

𝑊2 is not.

Kahl [4] assumes that a rational agent should prefer
to believe the subjective literals M𝑙 than 𝑙 than K𝑙. The
epistemic negation defined by Shen [5] shows the same
preference relation. This preference relation makes a
rule with directly M-cycle works like a justification part
in a normal default rule. More generally, a program with
M-cycles works like a default theory.

Because the definition of the justified reduct andmodal
reduct of operator K and M is equal to Yan Zhang and
Yuanlin Zhang [16], the circular justification of M and
K will be omitted if the literals in this loop do not have
any external support. As a result, a subjective literal of
the formM𝑙 can be interpreted as ”it is safe to believe 𝑙 is
possible.”, and other rules or belief sets should justify the
possibility of 𝑙 .
A further observation of the unjustified world views

caused by operator M reminds us that the semantics
of modal operator M may be ambiguous. In classical
ES programs, the M-cycle of one rule is often used to
express default information. For example, the traditional
description “a bird can fly by default” is usually expressed
in ES programs by the following rule:

𝑓 𝑙𝑦(𝑋) ← 𝑏𝑖𝑟𝑑(𝑋),M𝑓 𝑙𝑦(𝑋).

However, for a bird 𝑡𝑤𝑒𝑒𝑡𝑦, the only justification of sub-
jective literal M𝑓 𝑙𝑦(𝑡𝑤𝑒𝑒𝑡𝑦) is exactly this rule and the
unique belief set that contains 𝑓 𝑙𝑦(𝑡𝑤𝑒𝑒𝑡𝑦). It means
M𝑓 𝑙𝑦(𝑡𝑤𝑒𝑒𝑡𝑦) is not justified by this belief set.

Example 14 (Continuing Example 3). Consider the fol-
lowing extension Π12 of the program in Example 3.

𝑎𝑙𝑎𝑟𝑚 ← M𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠. (𝑟1)
𝑎𝑙𝑒𝑟 𝑡 ← A𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠. (𝑟2)



𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 ← 𝑎𝑙𝑎𝑟𝑚. (𝑟3)

Rule (𝑟3)means the sentinel will belief it is dangerous if the
alarm has been raised. This looks reasonable because the
alarm can be raised by other sentinels. Rule (𝑟1) and rule
(𝑟3) constitute an M-cycle, and by the natural language
description, 𝑎𝑙𝑎𝑟𝑚 should not exist in any belief sets of the
world views of Π12.

Example 3 shows the difference between the represen-
tation of the introspection about permitted and possibil-
ities. With the idea in this example, “a bird can fly by
default” should be represented in ESD by the following
rule:

𝑓 𝑙𝑦(𝑋) ← 𝑏𝑖𝑟𝑑(𝑋),A𝑓 𝑙𝑦(𝑋).

This rule forms an A-cycle, which can be defined as the
M-cycle in Section 2.

Definition 23 (A-cycle). For a subjective literal 𝑠 of the
form A𝑒 or ¬A𝑒 in a rule 𝑟, label the edge from 𝑒 to the
objective literals 𝑒′ ∈ ℎ𝑒𝑎𝑑(𝑟) in MS graphs by the leading
modal operators A or ¬A. A cycle in the MS graph of an
epistemic logic program is called an A-cycle if A labels an
edge within the cycle.

Example 15 (A-cycle). Consider program Π13:

𝑝 ← A𝑝.

Let 𝑊 = {𝐴1 = ⟨{𝑝}, {𝑝}⟩}. The modal reduct of Π13 w.r.t
𝑊 is {𝑝.}, which means 𝑊 = 𝐷𝑆𝑀(Π𝑊

13). The justified
reduct of Π13 w.r.t. ⟨𝐴1, 𝑊 ⟩ is Π⟨𝐴1,𝑊 ⟩

13 = {𝑝1 ← C𝑝1.},
and ⟨{𝑝1}, {𝑝1}⟩ is the unique default stable model of it,
which means 𝑊 is a justified view of Π. As a result, 𝑊 is a
world view of Π13.

With close observation of Example 13 and Example
15, we can find that althoughM-cycles’s semantics are
defined differently, operator A provides a method to rep-
resent defaults information, which M-cycles represent
under the semantics of ESGK.

Definition 24 (Default View Image). For a view 𝑊 of
an ESGK program Π, the default view image 𝑊̂ of 𝑊 is a
collection of default interpretations that

𝑊̂ = {⟨𝐴, 𝐴⟩|𝐴 ∈ 𝑊 } (6)

Proposition 1 (Relationship between directM-cycle and
A-cycle). Let Π be an ES program that every modal opera-
tor M in Π occurs in a rule of the form

𝑝 ← M𝑝, 𝐵. (7)

where 𝐵 is a collection of objective literals or extended sub-
jective literals, Π′ be a program obtained from Π by replac-
ing M with A. A collection of belief sets 𝑊 is a world view
of Π under ESGK semantics if and only if its default view
image 𝑊̂ is a world view of Π′ under the semantics of 𝐸𝑆D.

Proof. Let rule 𝑟 be a rule in Π of the form (7), 𝑟 ′ is ob-
tained from 𝑟 by replacingM𝑝 with A𝑝. If 𝑊 ⊭ 𝐵, both
𝑟 and 𝑟 ′ are satisfied, thus we only need to consider the
situations that 𝑊 ⊧ 𝐵.

To prove the soundness of Proposition 1, consider the
following situations:

• For ¬K𝑙 ∈ 𝐵, if 𝑊 ⊭ ¬K𝑙, the modal reduct of
ESGK replaces ¬K𝑙 with ¬𝑙. By the definition of
satisfiability, ∀𝐴𝑖 ∈ 𝑊 ∶ 𝑙 ∈ 𝐴𝑖, which means
𝑟 is deleted in the Gelfond-Lifschitz reduct. By

Definition 18, 𝑟 is deleted in Π′𝑊̂. If𝑊 ⊧ ¬K𝑙, then
¬K𝑙 is removed in both reducts.

• For M𝑙 ∈ 𝐵 or M𝑙 ∈ Π/𝑟, if 𝑊 ⊧ M𝑙, then M𝑙 is
removed in both reducts. If𝑊 ⊭ M𝑙, it is replaced
by ¬¬𝑙 in Π′𝑊, while the rule is removed in Π′𝑊̂.
BecauseM𝑙 does not occur in anyM-cycles, ¬¬𝑙
does not support 𝑙. According to the definition
of satisfiability in ESGK, 𝑙 is not satisfied by any
belief set in𝑊, thus the ruleM𝑙 occurs in is deleted
in the Gelfond-Lifschitz reduct.

• For other subjective literals 𝑠 ∈ 𝐵 without oper-
ator M, the modal reduct of 𝑠 by Definition 3 is
equal to the one by Definition 18.

• If 𝑊 ⊧ M𝑝 and 𝑊 ⊧ 𝐵, the modal reduct of 𝑟 w.r.t
𝑊 is 𝑝 ← 𝐵., which means ∀𝐴𝑖 ∈ 𝑊 ∶ 𝑝 ∈ 𝐴𝑖
and 𝑊̂ ⊧ A𝑝. By the definition of justified reduct,
𝑟 is translated into ∀𝐴𝑖 ∈ 𝑊̂ ∶ 𝑝𝑖 ← C𝑝𝑖., 𝑝𝑖 is
justified. By the definition of modal reduct, 𝑟 is
translated into 𝑝 ← 𝐵.. For the other rules in
Π, the modal reducts under both semantics are
equal, thus (Π/𝑟)𝑊 = (Π′/𝑟 ′)𝑊̂. It shows that
𝑊 is a world view of Π′ under the semantics in
Definition 22.

• If 𝑊 ⊭ M𝑝 and 𝑊 ⊧ 𝐵, the modal reduct of 𝑟
w.r.t 𝑊 is {𝑝 ← ¬¬𝑝, 𝐵.}, which is equivalent to
{𝑝 𝑜𝑟 ¬𝑝 ← 𝐵.}. Because ∀𝐴𝑖 ∈ 𝑊 ∶ 𝐴𝑖 ⊭ 𝑝, 𝑝
must not be consistent with the other rules in
Π/𝑟, thus ∀𝐴𝑖 ∈ 𝑊̂ ∶ 𝐴𝑖 ⊭ C𝑝 and 𝑊 ⊭ A𝑝, rule
𝑟 ′ is deleted from Π′ in the modal reduct of 𝑟 ′.
As a result, 𝑊̂ is a justified view of Π′ and equals

to the collection of default stable models of Π′𝑊̂.
It shows that 𝑊 is a world view of Π′ under the
semantics in Definition 22.

To prove the completeness of Proposition 1, consider
the following situations:

• As shown in the proof of soundness, subjective
literals in 𝐵 and Π/𝑟 are equivalent under the two
semantics.

• If 𝑊̂ ⊧ A𝑝, the modal reduct of 𝑟 ′ w.r.t 𝑊̂ is 𝑝.,
thus ∀𝐴𝑖 ∈ 𝑊̂ ∶ 𝐴𝑖 ⊧ 𝑝., 𝑊 ⊧ M𝑝. The modal
reducts of rest rules in Π and Π′ are equal, thus𝑊



is the collection of all answer sets of Π𝑊, which
means 𝑊 is a world view of Π.

• If 𝑊̂ ⊭ A𝑝, A𝑝 is replaced by C𝑝 in the modal

reduct Π′𝑊̂. By the definition of satisfiability,
∀𝐴𝑖 ∈ 𝑊 ∶ 𝐴𝑖 ⊭Π′𝑊̂ C𝑝, thus ∀𝐴𝑖 ∈ 𝑊 ∶ 𝐴𝑖 ⊭ 𝑝,
𝑊 ⊭ M𝑝. The modal reduct of 𝑟 is 𝑝 ← ¬¬𝑝, 𝐵.,
thus themodal reduct ofΠ𝑊 = Π′𝑊̂/{𝑝 ← C𝑝, 𝐵.}∪
{𝑝 ← ¬¬𝑝, 𝐵.}, and Π′𝑊̂ is not consistent with 𝑝.
It means 𝐴𝑆(Π𝑊) = 𝐴𝑆(Π′𝑊) = 𝑊, 𝑊 is a world
view of Π.

According to the proof of soundness and completeness
above, Proposition 1 holds.

More trivially, we can expand Proposition 1 to all kinds
of M-cycle.

Theorem 1 (Relationship betweenM-cycle andA-cycle).
LetΠ be an arbitrary ESGK program,Π′ be an 𝐸𝑆D program
obtained by replacing every subjective literal of the formM𝑙
in rule 𝑟 with subjective literal A𝑙 if there is an edge labeled
with M from rule node 𝑟 to 𝑙 in an M-cycle. A view 𝑊 of Π
under the semantics of ESGK if and only if its default view
image 𝑊̂ is a world view of Π′.

Here is the sketch of the proof of Theorem 1. As shown
in the proof of Proposition 1, it needs to prove that the
modal reducts of rules inM-cycle and translated A-cycle
under two semantics respectively are equal. The proof
needs to consider the following situations:

1. multiple rules in the cycle;
2. rules with disjunctive heads in the cycle;
3. NAF operator ¬ in the cycle;
4. modal operators K and ¬K in the cycle;

Here we use multiple rules as an example.

Proposition 2. For an ESGK program containing follow-
ing rules

𝑞1 ← M𝑝, 𝐵1. (𝑟1)
𝑞2 ← 𝑞1, 𝐵2. (𝑟2)

⋯
𝑞𝑖 ← 𝑞𝑖−1, 𝐵𝑖. (𝑟𝑖)
𝑝 ← 𝑞𝑖, 𝐵𝑖+1. (𝑟𝑖+1)

, 𝑊 is a world view of Π if and only if the default view
image 𝑊̂ is a world view of the 𝐸𝑆D program containing

𝑞1 ← A𝑝, 𝐵1. (𝑟 ′1)
𝑞2 ← 𝑞1, 𝐵2. (𝑟 ′2)

⋯
𝑞𝑖 ← 𝑞𝑖−1, 𝐵𝑖. (𝑟 ′𝑖 )
𝑝 ← 𝑞𝑖, 𝐵𝑖+1. (𝑟 ′𝑖+1)

Proof. According to the proof of Proposition 1, rules (𝑟2)
, … , (𝑟𝑖+1) are equivalent to rules (𝑟 ′2) , … , (𝑟 ′𝑖+1). Thus
we only need to prove the equivalence of rule (𝑟1) and
(𝑟 ′1) when 𝑊 ⊧ 𝐵1. For the soundness part, considering
following situations:

• If 𝑊 ⊧ M𝑝, the modal reduct of 𝑟1 is 𝑞1 ← 𝐵1..
Meanwhile, for every 𝐴𝑗 ∈ 𝑊̂ the justified reduct
of 𝑟 ′1 is 𝑞1𝑗 ← C𝑝𝑖, 𝐵1𝑗.. If M𝑝 is concluded by
Π/{𝑟1, … , 𝑟𝑖+1}, then according to the definition of

justified view, 𝑝𝑖 is justified by (Π′/{𝑟 ′1 , … , 𝑟 ′𝑖+1})
⟨𝐴𝑗,𝑊̂ ⟩
𝑓 𝑢𝑙𝑙 .

Otherwise, M𝑝 is satisfied only when 𝐵1, … , 𝐵𝑖+1
are satisfied by 𝑊, which means 𝑝𝑗 is justified by
the justified reduct of 𝑟 ′1 , … , 𝑟 ′𝑖+1. As a result, 𝑝𝑗 is
justified for every 𝐴𝑗 ∈ 𝑊̂, 𝑊̂ is a world view of
Π′.

• If 𝑊 ⊭ M𝑝, the modal reduct of 𝑟1 is 𝑞1 ← ¬¬𝐵1..
Because ∀𝐴𝑖 ∈ 𝑊 ∶ 𝐴𝑖 ⊭ 𝑝, 𝑝 must not be con-
sistent with Π/𝑟, thus ∀𝐴𝑖 ∈ 𝑊̂ ∶ 𝐴𝑖 ⊭ C𝑝 and
𝑊 ⊭ A𝑝, 𝑟 ′ is deleted fromΠ′ in themodal reduct.
As a result, 𝑊̂ is a justified view of Π′ and equals
to the collection of default equilibrium models of

Π′𝑊̂, which means 𝑊̂ is a world view of Π′.

For the completeness part, consider following situa-
tions:

• if 𝑊̂ ⊧ A𝑝, thus the modal reduct of 𝑟 ′1 w.r.t. 𝑊̂ is
𝑞1 ← 𝐵. By the definition of default view image,
𝑊̂ also satisfies 𝑝, thus ∀𝐴𝑖 ∈ 𝑊 ∶ 𝐴𝑖 ⊧ 𝑝,𝑊 ⊧ M𝑝.
The modal reducts of Π and Π′ are equal, thus 𝑊
is a world view of Π.

• if 𝑊̂ ⊭ A𝑝, 𝑟 ′ is deleted in the modal reduct Π′𝑊̂

and ∀𝐴𝑖 ⊭Π′𝑊̂ C𝑝, thus ∀𝐴𝑖 ∈ 𝑊 ∶ 𝐴𝑖 ⊭ 𝑝, 𝑊 ⊭
M𝑝, the modal reduct of 𝑟1 is 𝑞1 ← ¬¬𝑝, 𝐵1., thus
the modal reduct Π𝑊 = Π′𝑊̂ ∪ {𝑞1¬¬𝑝, 𝐵1.} and
Π′𝑊̂ is not consistent with 𝑝. It means 𝐴𝑆(Π𝑊) =
𝐴𝑆(Π′𝑊) = 𝑊, 𝑊 is a world view of Π.

According to the proof of soundness and completeness,
Proposition 2 holds.

Example 16 (Program with NAF andM-cycle). Consider
a program Π14:

𝑝 ← ¬𝑞.
𝑝 𝑜𝑟 𝑞 ← M𝑞.

By the definition of world view of ESGK, the only world
view of Π14 is {{𝑝}, {𝑞}}.

The corresponding 𝐸𝑆D program is Π′
14

𝑝 ← ¬𝑞.
𝑝 𝑜𝑟 𝑞 ← A𝑞.



Assume 𝑊1 = {{𝑝}, {𝑞}}, 𝑊2 = {{𝑝}}, 𝑊3 = {{𝑞}}, 𝑊4 =
{{𝑝, 𝑞}}. It is obvious that 𝑊1 is a world view of Π′

14. For
𝑊2 consider following situations:

• assume 𝑊2 = {⟨{𝑝}, {𝑝, 𝑞}⟩}, 𝑊2 ⊧ A𝑞, then 𝑊2 ≠

𝐷𝑆𝑀(Π′𝑊2
14 );

• assume 𝑊2 = {⟨{𝑝}, {𝑝}⟩}, 𝑊2 ⊭ A𝑞, then 𝑊2 ≠

𝐷𝑆𝑀(Π′𝑊2
14 ),

thus 𝑊2 is not a world view of Π′
14. It can be showed 𝑊3,

𝑊4 are not world views of Π′
14, which means 𝑊1 is the

only world view of Π′
14.

6. Conclusion
In this paper, with some examples, we illustrate that the
defaults originated from permitted cannot be represented
convincingly via the existing ASP and ES languages, and
hence present logic programming languages to express
defaults originated from permitted. Especially, we also
compared the ability of expression and semantics of this
language with ESGK and proposed a translation from
programs of ESGK to programs of our language with
epistemic defaults. It shows that the new language can
also provide to separate the representation of permitted
and possibilities, which can eliminate the ambiguity of
M in ESGK and other similar languages for Epistemic
Specifications.

In the future, we are intend to find a simplified defini-
tion of justified views for a more intuitive semantics. We
are then planning to analyze the computational complex-
ity of solving and develop an algorithm with acceptable
efficiency for our further study on the application of our
language. After that, we will do some further research on
the semantics of𝐴𝑆𝑃D and 𝐸𝑆D, and see if their semantics
can be captured by classical ASP and ES.
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