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and Michaël Thomazo2[0000−0002−1437−6389]

1 CNRS, University of Bordeaux, Bordeaux INP, LaBRI, Talence, France
2 Inria, DI ENS, ENS, CNRS, University PSL, Paris, France

Abstract. While ontology-mediated query answering most often adopts
(unions of) conjunctive queries as the query language, some recent works
have explored the use of counting queries coupled with DL-Lite ontolo-
gies. In the present paper, we initiate the study of counting queries for
Horn description logics outside the DL-Lite family. Via a non-trivial
adaptation of existing techniques, we devise a decision procedure for
answering counting conjunctive queries over ELHI⊥ ontologies, which
yields the same upper bounds as are known for DL-LiteR, namely, coNP
in data complexity and coN2EXP w.r.t. combined complexity. We fur-
ther show that the best known lower bounds for DL-LiteR (coNP-hard
for data, coNEXP-hard for combined) hold also for EL.
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1 Introduction

In the context of ontology-mediated query answering, the most commonly con-
sidered queries are conjunctive queries (CQs), but several works have explored
ways of equipping CQs with some form of counting [8,10,9]. A recent approach,
proposed in [3] as a generalization of [10], considers counting conjunctive queries
(CCQs) that are syntactically defined like standard CQs except that some vari-
ables may be designated as counting variables. In each model of the knowledge
base, we can count the number of possible assignments to the counting variables
that make the query hold. Certain answers are then defined as intervals that
provide upper and lower bounds on the count values across all models.

The problem of answering CCQs over DL-LiteR ontologies is intractable in
general [10], and recent works have shown that intractability arises even in quite
restricted settings [6,4]. However, some interesting tractable cases have also been
identified, notably, rooted CCQs [3,6,11] and cardinality queries (= Boolean
atomic CCQs) [4] coupled with DL-Litecore ontologies; query rewriting techniques
have also begun to be explored [7]. To the best of our knowledge, however, CCQ
answering has not yet been studied for ontologies outside the DL-Lite family.
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This motivates us to extend the study of CCQ answering to other well-known
Horn description logics, such as EL and the more expressive ELHI⊥. While
EL enjoys good computational properties for CQ answering [1], the techniques
developed for CCQs in the DL-Lite context do not easily transfer. Indeed, a key
property of DL-Lite is that merging elements in a model preserves modelhood
so long as disjointness axioms are not violated. This property does not hold in
EL, due to conjunctions of concepts on the left-hand side (LHS) of inclusions.

Through a non-trivial adaptation of the DL-Lite approach, we obtain sim-
ilar upper bounds for CCQ answering over ELHI⊥ ontologies as were known
for DL-LiteR, namely, coNP membership w.r.t. data complexity and coN2EXP
membership w.r.t. combined complexity. We further prove that even if we re-
strict to EL, we have the same lower bounds as in DL-LiteR: coNP-hardness
w.r.t. data complexity and coNEXP-hardness w.r.t. combined complexity.

2 Preliminaries

Knowledge Bases. We assume mutually disjoint sets NC, NR, and NI of concept,
role, and individual names. A knowledge base (KB) K = (T ,A) consists of an
ABox A and a TBox T . An ABox is a finite set of concept assertions A(b) (with
A ∈ NC, b ∈ NI) and role assertions P(a, b) (with P ∈ NR, a, b ∈ NI). Let Ind(A)
denote the set of individuals occurring in an ABox A.

A TBox is a finite set of axioms. In our considered DL ELHI⊥, TBoxes
consist of concept inclusions B1 v B2, positive role inclusions R1 v R2, and
negative role inclusions3 R1 u R2 v ⊥, where the Ri are roles drawn from N±R =
{P,P− | P ∈ NR} and the Bi are (complex) concepts constructed as follows:

B := ⊥ | > | A | B1 u B2 | ∃R.B where A ∈ NC,R ∈ N±R

Let sig(T ) denote the set of concept and role names appearing in TBox T .

Semantics of KBs. An interpretation takes the form I = (∆I , ·I), where ∆I is
a non-empty set (called the domain) and ·I is the interpretation function that
maps each A ∈ NC to AI ⊆ ∆I , each P ∈ NR to PI ⊆ ∆I ×∆I , and each a ∈ NI

to aI . In this paper, we will make the Standard Names Assumption by setting
aI = a. Note however that our results only rely upon the weaker Unique Names
Assumption (UNA), which stipulates that aI 6= bI whenever a 6= b.

The function ·I naturally extends to roles and complex concepts: (P−)I =
{(y, x) | (x, y) ∈ PI}, ⊥I = ∅, >I = ∆I , (B1 u B2)I = BI1 ∩ BI2 and (∃P.B)I =
{d | (d, e) ∈ RI , e ∈ BI}. An inclusion G v H is satisfied in I if GI ⊆ HI ; an
assertion A(b) (resp. P(a, b)) is satisfied in I if b ∈ AI (resp. (a, b) ∈ PI). An
interpretation is a model of a TBox T (resp. KB K) if it satisfies all axioms in
T (resp. axioms and assertions in K). A KB is satisfiable if it has at least one
model. An inclusion (resp. assertion) Φ is entailed from T (resp. K), written
T |= Φ (resp. K |= Φ), if Φ is satisfied in every model of T (resp. K).

3 We follow e.g. [2] by considering a version of ELHI⊥ with negative role inclusions.
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Example 1. Consider the ABox Ae = {A(a),B(b)} and the ELHI⊥ TBox Te:
A v ∃P.A′ B v ∃Q.B′ A′ u B′ v A0 A′ v D B′ v D

A0 v ∃R1.A1 A1 v ∃R2.A2 A2 v ∃R3.A3 A3 v ∃S.B0 B0 v ∃V.B′0
B0 v ∃U.C0 U v V C0 v ∃V1.C1 C1 v ∃V2.C2 C2 v ∃V3.D

Our example KB is Ke := (Te,Ae). Figures 1a, 1c, 1d and 1e depict models of
Ke; its canonical model CKe (formally defined later) is displayed in Figure 1a.

Counting Queries. We consider counting queries as defined in [3] (which general-
izes the queries considered in [10,6]). A counting conjunctive query (CCQ) takes
the form q(x) = ∃y∃z ψ(x,y, z), where x,y, z are tuples of answer, existential,
and counting variables, respectively, and ψ is a conjunction of concept and role
atoms with terms from NI ∪ x ∪ y ∪ z. A CCQ q is Boolean if x = ∅.

A match for a CCQ q in an interpretation I is a homomorphism from q
into I. If a match π maps x to a, then the restriction of π to z is called a
counting match (c-match) of q(a) in I. The set of answers to q in I, denoted qI ,
contains all pairs (a, [m,M ]), with m,M ∈ N ∪ {+∞}, such that the number of
distinct c-matches of q(a) in I belongs to the interval [m,M ]. A certain answer
to q w.r.t. K is an answer in every model of K, that is a pair from

⋂
I|=K q

I .

As usual, it is sufficient to consider the Boolean case: (a, [m,M ]) is a certain
answer to a CCQ q(x) iff (∅, [m,M ]) is a certain answer to the Boolean CCQ
q(a) obtained by replacing x with a. Thus, from now on, we focus on Boolean
CCQs, and work with candidate answers [m,M ] in place of (∅, [m,M ]).

We further observe that since ELHI⊥ cannot restrict the size of models, the
value M in a certain answer [m,M ] is: 0 if the underlying CQ is unsatisfiable
w.r.t. T , any number greater than 1 if q has a match in every model but z = ∅;
and +∞ otherwise. As the first two cases can be readily handled using existing
techniques, we focus on identifying certain answers of the form [m,+∞].

Example 2. Let qe := ∃zD(z) be a Boolean CCQ. Intervals [0,+∞] and [1,+∞]
are certain answers to qe over Ke. Interval [3,+∞] is not a certain answer as
the models depicted on Figures 1a, 1c, 1d and 1e contain only 2 matches for qe.

Complexity. Given a ELHI⊥ knowledge base K = (T ,A), a Boolean CCQ q,
and an integer m ≥ 0 (in binary), we are interested in the complexity of deciding
whether [m,+∞] is a certain answer to q w.r.t. K. We will consider the two usual
complexity measures: combined complexity which is in terms of the size of the
whole input, and data complexity which is only in terms of the size of A and m
(T and q are treated as fixed). If O is a TBox, ABox, KB, or CCQ, then the size
of O, denoted |O|, is the number of occurrences of concept and role names in O.

Normal form. As is standard (see e.g. [2]), we work with ELHI⊥ TBoxes in a
convenient normal form, where every concept inclusion has one of the following
restricted shapes:

A v ⊥ > v A A1 uA2 v A A1 v ∃R.A2 ∃R.A1 v A2
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with A,A1,A2 ∈ NC,R ∈ N±R . Through the introduction of fresh concept names,
we can transform in polynomial time any TBox T into a normal-form TBox T ′
that is a model-conservative extension of T (hence, indistinguishable from T
from the point of view of queries). We therefore assume w.l.o.g. that all consid-
ered TBoxes are in normal form.

Canonical model. It is well known that every satisfiable ELHI⊥ KB admits
a canonical (or universal) model that embeds homomorphically into each of
its models. We recall how such a model CK can be constructed (see e.g. [5]).
The domain ∆CK consists of all sequences aR1.M1 . . .Rn.Mn (n ≥ 0) such that
a ∈ Ind(A), each Ri belongs to N±R , each Mi is a conjunction of concepts from
NC ∪ {>} (treated as a set when convenient), and the following conditions hold:

– If n ≥ 1, then T |= M0 v ∃R1.M1 where M0 = {A ∈ NC ∪ {>} | K |= A(a)}
and M1 is maximal, as a set of concept names, for this property.

– For every 1 ≤ i < n, T |= Mi v ∃Ri+1.Mi+1 and Mi+1 is maximal, as a set
of concept names, for this property.

Individual names are interpreted as themselves (aCK = a), and concept and role
names are interpreted as follows:

ACK = {a | K |= A(a)} ∪ {e · R.M | A ∈ M}
PCK = {(a, b) | K |= P(a, b)}

∪ {(e, e · P0.M) | T |= P0 v P} ∪ {(e · P0.M, e) | T |= P0 v P−}

3 Upper Bounds via Countermodels

This section presents our main contribution: a decision procedure (and associated
complexity upper bounds) for deciding whether a candidate interval [m,+∞] is
a certain answer to a Boolean CCQ q and ELHI⊥ KB K = (T ,A) in normal
form. It is more convenient in fact to focus on the complementary problem of
checking whether [m,+∞] is not a certain answer, as the latter holds iff there
exists a countermodel, i.e., a model of K with fewer than m c-matches.

We start by observing that if m is large enough, a countermodel always exists.

Lemma 1. There exists a countermodel for all m ≥ (|Ind(A)|+ 3 |T | 2|T |)|q|.

Proof (sketch). We exhibit a model of size at most |Ind(A)|+ 3 |T | 2|T |.

We may thus assume that the input m is such that m ≤ (|Ind(A)|+3 |T | 2|T |)|q|.
The main ingredient underlying our decision procedure and upper bounds is

the following result, which restricts the size of countermodels we need to consider.

Theorem 1. If there exists a countermodel for input [m,+∞], CCQ q and
KB K, then there exists a countermodel with a polynomial-size (resp. double-
exponential size) domain w.r.t. data complexity (resp. combined complexity).
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Theorem 1 generalizes analogous results for DL-Lite KBs in [10,3] and gives
rise to a decision procedure that guesses an interpretation of bounded size and
checks whether it is a countermodel, yielding the following upper bounds:

Theorem 2. Deciding if input [m,+∞] is a certain answer for q over K is in
coNP (resp. in coN2EXP) w.r.t. data complexity (resp. combined complexity).

The remainder of the section is devoted to proving Theorem 1. The high-
level idea is to start from an arbitrary countermodel I and merge its elements
so as to reduce its size, while at the same time not introducing any new query
matches. But how can we decide which elements of I can be safely merged?
Looking to existing DL-Lite approaches [10,3] for inspiration, we observe that
they proceed in two steps. First, they define an intermediate model I ′ (called
interleaving) that, informally, retains the useful parts of I (i.e., those involved
in query matches or needed to satisfy the ABox) and replaces the rest with tree-
shaped structures taken from the corresponding parts of the canonical model.
With this more structured countermodel I ′, it is easier to identify, via a well-
chosen equivalence relation, the elements that behave similarly and thus can be
safely merged. In a second step, elements of I ′ from the same equivalence class
are merged to obtain the desired bounded-size countermodel.

A naive adaptation of the DL-Lite approach to ELHI⊥ (or even EL) fails al-
ready at the first step. Indeed, as the next example illustrates, due to conjunction
in the LHS of concept inclusions, the interleaving need not be a model.

Example 3. A countermodel Ie of Ke for qe and candidate integer 3 is depicted
in Figure 1c. Indeed Ie yields only 2 possible values for z: α and β.

The naive adaptation of the DL-Lite approach builds the interpretation de-
picted in Figure 1b and induced from CKe . Observe that α violates the axiom
A′ u B′ v A0. Generally speaking, the issue is that the canonical model may not
contain elements witnessing conjunctions of concepts that occur in the initial
countermodel, so it is not enough to copy over parts of the canonical model.

We now show how to revamp the DL-Lite approach to make it work for
ELHI⊥. To aid comprehension, we give a graphical overview in Figure 2.

3.1 Interlacing

We propose a new intermediate countermodel, called interlacing, which retains
the desirable features of the interleaving but avoids the issues highlighted in
Example 3. Essentially, the idea is to replace the canonical model by an alter-
native tree-shaped domain (called existential extraction) that is built from the
countermodel I by keeping track of the RHS existential concepts satisfied in I.

The definition of existential extraction uses the alphabet Ω consisting of all
R.A such that ∃R.A is the RHS of an axiom in T . Furthermore, it assumes that,
for every R.A ∈ Ω, we have chosen a function succIR.A that maps every element
e ∈ (∃R.A)I to an element e′ ∈ ∆I such that (e, e′) ∈ RI and e′ ∈ AI .



6 M. Bienvenu et al.
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(e) Reduced ∆′-interlacing of Ie.

Fig. 1: Interpretations used along our examples.
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I
Initial countermodel

∆◦Existential extraction

I′

Interlacing

J
Reduced interlacing

NJ ,∆∗|q| (c)N I
′,∆∗

|q| (c)

f

f ′

σ p

ρc

Countermodels

Fig. 2: Models, domains, and mappings employed in our construction.

Definition 1. Over the set Ind(A) ·Ω∗, inductively build the following mapping:

f : Ind(A) ·Ω∗ → ∆I ∪ {↑}
a 7→ a

w · R.A 7→
{
↑ if f(w) = ↑ or f(w) /∈ (∃R.A)I

succIR.A(f(w)) otherwise

The existential extraction4 of I is ∆◦ := {w | w ∈ Ind(A) ·Ω∗, f(w) 6= ↑}.

Remark 1. ∆◦ can be seen as the domain of a form of unravelling of I starting
from Ind(A), in which we only follow the selected successors for the RHS exis-
tential concepts. The selective nature of the unravelling is visible in Figure 1d
which is based on the existential extraction of Ie: observe there is no edge that
corresponds to following the red edge from Ie (Figure 1c) since V.A2 /∈ Ω.

We proceed to define ∆-interlacings, parametrized by a set of interest ∆
with Ind(A) ⊆ ∆ ⊆ ∆◦. Intuitively, we preserve the portion of I corresponding
to f(∆) and complete it with (locally) tree-shaped structures issuing from ∆◦.

Definition 2. The ∆-interlacing mapping of I is:

f ′ : ∆◦ → f(∆) ] (∆◦ \∆) w 7→
{
f(w) if w ∈ ∆
w otherwise

The ∆-interlacing I ′ of I is the interpretation given by ∆I
′

:= f ′(∆◦) and:

AI
′

= {f ′(u) | u ∈ ∆◦, f(u) ∈ AI} (= f ′(f−1(AI)))

PI
′

= {(a, b) | a, b ∈ Ind(A) ∧ K |= P(a, b)} (Role′A)

∪ {(f ′(u), f ′(u · P0.B)) | u, u · P0.B ∈ ∆◦ ∧ T |= P0 v P} (Role′+)

∪ {(f ′(v · P0.B), f ′(v)) | v, v · P0.B ∈ ∆◦ ∧ T |= P−0 v P} (Role′−)

Like the interleaving, the ∆-interlacing is a model which embeds in I.

Lemma 2. I ′ is a model, and it embeds homomorphically in I via the mapping:

σ : ∆I
′
→ ∆I w 7→

{
w if w ∈ f(∆)
f(w) otherwise, that is w ∈ ∆◦ \∆

4 While the definitions of f , ∆◦, and later constructions depend on the choice of
successor functions, all choices lead to the desired result.
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Proof (sketch). Both statements rely upon the facts that (i) if f ′(u) ∈ AI
′
, then

f(u) ∈ AI , and (ii) if (f ′(u), f ′(v)) ∈ RI
′
, then (f(u), f(v)) ∈ RI .

Remark 2. It is easily verified that σ ◦ f ′ = f .

To obtain a countermodel, we identify the crucial elements of I, namely,
∆∗ := Ind(A) ∪ {e ∈ ∆I | ∃π ∈ m(q, I), ∃z ∈ z, π(z) = e}, where m(q, I) is
the set of matches of q in I. We then take ∆′ := f−1(∆∗) as our set of interest.

Lemma 3. If I is a countermodel, then so is its ∆′-interlacing I ′.

Proof (sketch). We show that σ injectively maps matches in I ′ to matches in I.

Example 4. Figure 1d depicts the ∆′-interlacing of Ie. Like the initial model
Ie, it is a countermodel for qe and integer 3. Notice I ′e has an infinite domain.

3.2 Reduced interlacing

It remains to merge elements of the ∆′-interlacing I ′ to obtain a countermodel of
the required size. To identify similar elements, we consider their neighbourhoods.

Definition 3. Consider an interpretation M and an element c ∈ ∆M. Its n-
neighbourhood NM,D

n (c) w.r.t. a subdomain D ⊆ ∆M is defined inductively as:{
NM,D

0 (c) := {c}
NM,D
n+1 (c) := NM,D

n (c) ∪
{
e
∣∣ ∃d ∈ NM,D

n (c) \ D, ∃R ∈ N±R , (d, e) ∈ RM
}

Observe that we stop adding successors when we reach an element from D.
In particular, for c ∈ D, we have NM,D

n (c) = {c} for every value of n. It follows
that the statement ‘c1 ∈ NM,D

n (c2) iff c2 ∈ NM,D
n (c1)’ does not hold in general.

Example 5. In Figure 1d, neighbourhoods N I
′
e,∆
∗

2 (γ) and N I
′
e,∆
∗

2 (δ) are de-

picted (in green, resp. blue). In particular, notice a /∈ N I
′
e,∆
∗

2 (δ) since α ∈ ∆∗.

Recall that the definition of ∆I
′

ensures that any c ∈ ∆I′ \ ∆∗ is actually
an element of ∆◦ and therefore we have c = aw for some individual name a
and word w ∈ Ω∗. The tree-shaped structure of ∆◦ ensures that for all n, there
exists a unique prefix rn,c of aw such that (i) f ′(rn,c) ∈ N I

′,∆∗

n (c) and (ii) for

any d ∈ N I′,∆∗n (c), there exists a unique word wdn,c such that d = f ′(rn,c ·wdn,c).
This leads us to characterize the n-neighbourhood of an element c via the

following function χn,c, whose domain Ωn is the set of words over Ω with length
≤ 2n. Notice that, departing from [10], we keep track of sets of satisfied concepts,
in order to handle conjunction of concepts on the LHS of axioms.

χn,c : Ωn → ∆∗ ∪ 2sig(T ) ∪ {∅}

w 7→

f ′(rn,cw) if rn,cw ∈ ∆CK ∧ f ′(rn,cw) ∈ ∆∗
{A | A ∈ sig(T ), f ′(rn,cw) ∈ AI} if rn,cw ∈ ∆CK ∧ f ′(rn,cw) /∈ ∆∗
∅ otherwise

We can now introduce the equivalence relation we use to merge elements:
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Definition 4. The equivalence relation ∼n on ∆I
′

is defined as follows: an
element from ∆∗ is ∼n-equivalent only to itself; two elements c1, c2 from ∆I

′\∆∗
are ∼n-equivalent iff wc1n,c1 = wc2n,c2 , χn,c1 = χn,c2 , and |c1| = |c2| mod 2|q|+ 3.

Remark 3. The set of concepts from sig(T ) satisfied by c ∈ ∆I
′

is exactly
χn,c(w

c
n,c). Therefore, if c ∼n c′, then c and c′ satisfy the same concept names.

Remark 4. If c ∼n c′, then c ∼m c′ for any m ≤ n.

We obtain a smaller countermodel for our CCQ q by merging elements with
respect to ∼|q|+1. We will use e for the equivalence class of e w.r.t. ∼|q|+1 and
let p : e 7→ e denote the canonical projection from I ′ to J . To improve the
readability of later material, we introduce notation ∆∗ for the set {σ | σ ∈ ∆∗}.

Definition 5. The reduced interlacing J is the interpretation with domain
∆I
′
/ ∼|q|+1 and interpretation function ·J := p ◦ ·I′ .

Example 6. The reduced interlacing Je, together with two 2-neighbourhoods

NJe,∆∗2 (γ) and NJe,∆∗2 (δ), are displayed in Figure 1e. Notice Je remains a coun-
termodel for qe and candidate integer 3.

It remains to show that the reduced interlacing J is a countermodel. As ele-
ments were merged using a local criteria, it is not possible in general to exhibit
a homomorphism from the whole J to I ′, injecting matches as in Lemma 3.
However, local solutions are possible: a match of q in J maps each connected

component C of q into a |q|-neighbourhood NJ ,∆∗|q| (c). By exhibiting a homo-

morphism ρc : NJ ,∆∗|q| (c) → N I
′,∆∗

|q| (c), we can find a match of C in I ′. Such

matches for q’s connected components together form a match of the full q in I ′.
We define such homomorphisms ρc inductively onNJ ,∆∗k (c) with k increasing

from 0 to |q|. Starting from the element c ∈ NJ ,∆∗0 (c), we can naturally carry

it back as ρc(c) = c ∈ N I
′,∆∗

0 (c). Assume now that we have defined ρc(d) for

some d ∈ NJ ,∆∗n (c) and that we are moving further to an element e ∈ NJ ,∆∗n+1 (c)

along an edge (d, e) in J . In the case of e /∈ ∆∗, the following lemma produces
a candidate ρc(e), namely e′, which is to ρc(d), namely d′, what e is to d.

Lemma 4. Given two elements d, e ∈ ∆J \∆∗, if there exists a role P from N±R
such that (d, e) ∈ PJ , then there exists a unique element R.B ∈ Ω such that one
of the two following conditions is satisfied:

edge+. |e| = |d|+ 1 mod 2|q|+ 3, we|q|+1,e = wd|q|+1−1,d · R.B and T |= R v P.

Furthermore, for all d′ ∼k d, the element e′ := d′ · R.B belongs to ∆I
′

and
satisfies e′ ∼k−1 e.

edge−. |d| = |e|+ 1 mod 2|q|+ 3, wd|q|+1,d = we|q|+1−1,e · R.B and T |= R− v P.

Furthermore, for all d′ ∼k d, we have e′ such that d′ = e′ ·R.B and the prefix
e′ satisfies e′ ∼k−1 e.
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Notice the “strength” of the equivalence relation ∼k between e and ρc(e)
decreases as we move further in the neighbourhood of c. For example in Figure 1e:
building ργ(γ2) from ργ(γ) := γ we obtain γ1, with γ1 ∼1 γ2 but γ1 �2 γ2.
However, since we start from ρc(c) := c ∼|q|+1 c and explore a |q|-neighbourhood,
the index remains at least 1. This is essential as ∼1 encodes relations to elements
of ∆∗ as the next lemma shows. It allows in particular to treat the case of e ∈ ∆∗.
Lemma 5. If (d, e) ∈ RJ for some e ∈ ∆∗, and if d′ ∼1 d, then (d′, e) ∈ RI

′
.

It remains to free ourselves from the particular choice of d, which is likely

not to be the only element of NJ ,∆∗n (c) connected to e. This cannot be observed
on our running example as |qe| = 1, but the possibility of cycles in the reduced
interlacing should still be clear from Figure 1e. Taking a closer look at Lemma 4,
we observe that ρc(e), that is e′, is obtained either by adding a letter to ρc(d),
that is d′, or by removing the last letter of ρc(d), and that these letters coincide
with those in the suffixes of elements d and e. Therefore, when moving from
c to e and ignoring self-cancelling steps, each added letter must appear in the
suffix of e and, similarly, each removed letter must appear in the suffix of c. The
challenge is therefore to quantify the number of additions and removals to build
ρc(e) directly from c and e. The next definition captures the relative difference
of letters between c and e, encoded in |c| and |e| mod 2|q|+ 3.

Definition 6. Let c ∈ ∆J and n ≤ |q|. The relative depth of e ∈ NJ ,∆∗n (c)
from c is the integer δc(e) ∈ [−n, n] such that |e| = |c|+ δc(e) mod 2|q|+ 3.

Remark 5. By induction on n ≤ |q|, it is straightforward to see that δc(e) is
well defined. Unicity is ensured by δc(e) ≤ n ≤ |q|. A consequence of Lemma 4 is

that for the smallest n ≤ |q| such that e ∈ NJ ,∆∗n (c) we have δc(e) = n mod 2.

We can now identify how many additions and removals cancelled each other.
Indeed, if it takes n steps to reach e from c, with relative difference of δ := δc(e),

then n− |δ| is the length of the self-cancelling path, hence: n−|δ|2 cancelled addi-

tions and n−|δ|
2 cancelled removals. Therefore, the actual amount of additions is

n−|δ|
2 +δ if δ ≥ 0, or n−|δ|

2 if δ ≤ 0, that is in both cases n+δ
2 . Similarly we obtain

n−δ
2 for the actual amount of removals. The next theorem formalizes all these

intuitions: ρn,c(e) (in non-trivial cases) is obtained by removing the n−δ
2 last

letters of c and keeping the n+δ
2 last letters from the suffix of e. For example on

Figures 1d, element ργ(γ2) = γ1 is obtained by removing 1−(−1)
2 = 1 letter from

γ and keeping 1+(−1)
2 = 0 letter from the suffix of γ2. It is then a technicality to

verify these syntactical operations on words make sense in the domain of I ′.
Theorem 3. For all c ∈ ∆I′ and all n ≤ |q|, the following mapping:

ρn,c(e) : NJ ,∆∗n (c)→ N I
′,∆∗

n (c) e 7→


ρn−1,c(e) if e ∈ NJ ,∆∗n−1 (c)
e if e ∈ ∆∗
rn−δc(e)

2 ,c
· wen+δc(e)

2 ,e
otherwise

is a homomorphism satisfying ρn,c(e) ∼|q|+1−n e and ρ−1n,c(∆
∗) ⊆ ∆∗.
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Let us clarify how Theorem 3 concludes our proof with the following lemma.

Lemma 6. If I is a countermodel, then so is its reduced interlacing J .

Proof (sketch). It is mostly routine work of definition chaining to show that J is
a model, except for negative role inclusions, where Theorem 3 is needed to move
violations of R1 u R2 v ⊥ in J back into I ′. As sketched earlier, we can employ
the local homomorphisms between neighbourhoods to transform a match of q in
J into a match in I ′. Matches in I ′ being contained in ∆∗, our original match
in J must be contained in ∆∗. Thus, the mapping of matches in J to matches
in I ′ is essentially the identity (if we conflate ∆∗ and ∆∗), hence injective.

Finally, we obtain Theorem 1 by analyzing the size of J (i.e. counting the
equivalence classes in ∆J ), keeping in mind that due to Lemma 1 and our
assumption on m, we have |∆∗| ≤ |Ind(A)|+ |q| (|Ind(A)|+ 3 |T | 2|T |)|q|.

4 Lower bounds for EL

We now consider the simpler setting of EL, incomparable with DL-LiteR, and
show that the same lower bounds hold, both in data and combined complexity.

Theorem 4. CCQ answering in EL is coNP-complete w.r.t. data complexity.

Proof (sketch). We reduce the complement of the graph 3-colorability problem
to answering the EL OMQ (q, T ), with q = ∃z B(z) and T containing A v ∃R.B
and ∃R.Ck u ∃E.(∃R.Ck) v B for k ∈ {1, 2, 3}.

Theorem 5. CCQ answering in EL is coNEXP-hard w.r.t. combined complexity.

Proof (sketch). The proof adapts a reduction from the exponential grid tiling
problem (Lemma 18 from [10]), the key difference being the use of existential
restriction to replace role inclusions.

5 Outlook

We have initiated the study of CCQ answering for Horn DLs outside the DL-Lite
family, establishing the same complexity bounds for EL(HI⊥) as were known
for DL-LiteR. There remain many questions to explore. Let us mention two po-
tential research directions towards obtaining more practical algorithms. First,
we can look for additional restrictions on the query or the ontology that ensure
polynomial data complexity, as has been considered for DL-Lite [6,3,4]. Unfor-
tunately, it appears that restrictions that work for DL-Lite are not sufficient
to obtain tractability in EL, so novel restrictions need to be identified. Second,
it would be desirable, for EL but also for DL-LiteR, to develop a more refined
coNP procedure that is amenable to implementation, e.g. using SAT solvers.
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