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Abstract. We study first-order (FO) rewritability for query answering
in ontology mediated querying (OMQ) in which ontologies are formu-
lated in Horn fragments of description logics (DLs). In general, OMQ
approaches for such logics rely on non-FO rewriting of the query or on
analogous completion of the data (ABox). In this paper, we study the
problem of the existence of FO rewritings in terms of Beth definabil-
ity, and show how Craig interpolation can then be used to effectively
construct the rewritings, when they exist, from the Clark’s completion
of Datalog-like programs encoding a given DL TBox and optionally a
query. We show how our construction can also be seen as an alternative
to deriving perfect rewritings in the DL-Lite setting.

1 Introduction

We study first-order (FO) rewritability for query answering in the setting of
ontology mediated querying (OMQ) over a knowledge base (KB) formulated in
terms of underlying Horn description logics (DLs) in the ALC family.

Typical OMQ approaches generally rely on either reformulating the query
by incorporating the KB’s terminological knowledge [10,11] and then executing
the reformulated query over the explicit data in the KB as a relational query,
or, for more expressive logics, on a Datalog completion of the explicit data with
respect to the KB’s terminological knowledge over which the OMQ is answered
[24,25,27,28]. In the latter case, data completion is sometimes expressible in first-
order logic. This raises the FO rewritability problem: determining if a particular
OMQ instance can be equivalently expressed as an FO query over the explicit
data in the knowledge base.

Earlier work on OMQ for the FunDL family of DLs [31,32,34] has presented
what was called a combined combined approach to OMQ, and has shown that
it is essential to preserve tractability of OMQ in the presence of (limited) value
restrictions. In this paper, we focus on the FO rewritability of OMQ when the
underlying DL is Horn-SHIQ and its variants. We show that an adaptation of
the combined combined approach leads to efficient OMQ query answering and to
a solution to the FO rewritability problem for this family of DLs. In particular,
we show how the combined combined approach, with the help of Beth definability
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[4] applied on the Clark’s completion [13] of the Datalog program used for the
completion of the explicit data in the knowledge base, can be used to characterize
FO rewritability of OMQs. We also show how Craig interpolation [14] can then
be used to construct such an FO rewriting, when it exists. The existence of such
a rewriting enables an OMQ front-end to a relational data source that underlies
an ABox to operate entirely by a more refined query reformulation of a given
union of conjunctive queries (UCQ) that yields an SQL query over the relational
data source, with no requirement to update tables beforehand.

Our contributions are as follows.

1. We show how to decide uniform FO rewritability of OMQ in Horn-SHIQ
via Clark’s completion of Datalog programs and Beth definability;

2. We show how our framework extends to query specific OMQ by extending
existing results for Horn-DLFD; and

3. We show how a variant of the perfect rewriting approach to OMQ can be
synthesized by appeal again to Beth definability and Craig interpolation.

This paper builds on earlier work that was the first to consider FO rewritability
of OMQ, but for the above mentioned FunDL family of DLs, via Beth defin-
ability and Clark’s completion [36]. FO rewritability for Horn logics in the ALC
family has been studied by others, e.g., see [5,7]. This other work has also de-
veloped algorithms for generating such rewritings efficiently for logics in the
EL family [19]. Our approach seems to provide an alternative path to detecting
rewritability and to generating rewritings. A feature of our approach is its link to
interpolation-based query optimization [21,33]. The link to query optimization
reveals that minimal sized rewritings are often not optimal for query execution.
However, establishing limits on the size of rewriting [6] does provide a guide on
what rewritings are reasonable to consider during query optimization.

The use of database constraints, possibly combined with constraints implied
by data mapping rules, has been explored in several systems that implement
variants of perfect rewriting [11], such as Ontop and MASTRO [3,9] and others.
One of the contributions in [36], inherited by this work, also shows how Beth
definability and Clark’s completion seamlessly accommodate such constraints
into the rewriting via interpolation (for space reasons we do not present the
details here).

Beth definability and Craig Interpolation have been used for other purposes,
such as query reformulation under FO constraints [8,21,33,35]. That use, how-
ever, is orthogonal to the topic of this paper.

The remainder of the paper is organized as follows. Section 2 provides the
necessary background and definitions. Here, we review Horn-SHIQ and the com-
bined combined approach to OMQ. Our main results then follow in Section 3 in
which we show how the above-mentioned artifacts, Clark’s completion of Dat-
alog programs for example, can be employed to both decide FO rewritability
and to synthesize FO rewritings of ABox completion in the combined combined
approach to OMQ. In Section 4, we show how our framework is an alternative
approach to perfect rewriting of queries for knowledge bases formulated in DL-
Lite. In the conclusions we discuss several limitations and possible extensions of
our approach.



2 Background and Definitions

Horn-SHIQ and its variants. Our primary focus will be on KBs with underlying
DLs that are a variant of Horn-SHIQ. We begin by defining the relevant roles,
concepts and their semantics presumed by such DLs.

Definition 1 (Horn-SHIQ Concepts and Roles)
Let R, PC and IN be disjoint sets of primitive role names, primitive concept
names and individual names respectively. Horn-SHIQ roles R are of the form
P and P− for P ∈ R, and concepts C are of the form A for A ∈ PC, C1 u C2,
⊥, >, ∀R.C, ∃R.C, (≥ n R.C), or (≤ n R.C) for n ≥ 0. The semantics is with
respect to a structure I = (4I , ·I) in which 4I is a domain of objects and ·I an
interpretation function seeded by fixing the interpretations of primitive concept
names A to be subsets of 4I , primitive role names R to be subsets of 4I ×4I ,
and individual names a to be elements of 4I , and is extended to derived concepts
C and roles R in the standard way [2]. Subsumption between concepts and roles,
assertions, knowledge bases and their consistency, logical implication, and other
reasoning problems are also defined in the standard way.

The following definition of a Horn-SHIQKB appeals to a simplified normal form
for subsumption constraints presented in [16]. For more general but expressively
equivalent syntax, e.g., that allows other forms of qualified number restrictions,
see [22].

Definition 2 (Horn-SHIQ TBoxes and ABoxes [16])
A Horn-SHIQ knowledge base K consists of a TBox T and an ABox A. A TBox
T (in normal form) consists of role subsumptions of the form R1 v R2 that define
a role hierarchy, transitivity assertions trans(R), and concept subsumptions that
adhere to one of the following forms:1

A uB v C,
A v ∀R.B,
A v ∃R.B,
∃R.A v B, or
A v (≤ 1 R.B),

where A,B,C ∈ PC ∪ {>,⊥}. Roles R are called simple when neither they nor
any of their subroles are transitive. To avoid a well known source of undecid-
ability, we require that any number restriction occurring in T will mention only
simple roles.

An ABox A consists of concept assertions, role assertions, equality axioms
and inequality axioms with the respective forms A(a), R(a, b), a = b and a 6= b.

A Horn-ALCHQI KB is a Horn-SHIQ KB without any transitivity asser-
tions.

1 Note that subsumptions of the form “A1u· · ·uAn v B” are also allowed in [16]. Here,
we are appealing to an obvious conservative extension to replace such subsumptions
with strictly binary use of conjunction to further simplify our presentation.



Conjunctive queries and OMQ. Conjunctive queries are, as usual, formed from
atomic queries (or atoms) of the form “A(x)” and “R(x, y)”, where x and y
are variables, using conjunction and existential quantification (in prenex normal
form). As usual, we conflate conjunctive queries with the set of its constituent
atoms and a list of answer variables to simplify notation.

Definition 3 (Conjunctive Query) Let ψ now be a set of atoms A(xi) and
R(xi1 , xi2), where A is a primitive concept name or >, R a role name, and x̄ a
tuple of variables. We call the expression ϕ = {x̄ | ψ} a conjunctive query (CQ).

A CQ ϕ is also a notational variant of the formula “∃ȳ.
∧
φ∈ψ φ” in which ȳ

contains all variables appearing in ψ but not in x̄.2 We also omit set braces when
explicitly listing atoms in ψ to improve readability. With this understanding, the
usual definition of certain answers is assumed and given as follows:

Definition 4 (Certain Answer) Let K be a Horn-SHIQ knowledge base and
ϕ = {x̄ | ψ} a CQ. A certain answer to ϕ over K is a tuple of constant symbols
ā, such that K |= ϕ(ā) (where ϕ(ā) is short for ϕ[x̄ 7→ ā]).

Our primary concern is then given by the following problem:

Definition 5 ((uniform) FO Query Rewritability)
Given a Horn-SHIQ TBox T , the problem of uniform query rewritability is to
determine if there is a query reformulation ϕT for every CQ ϕ such that, for
every ABox A and tuple of constant symbols ā, (T ,A) |= ϕ(ā) iff A |= ϕT (ā).

Later in the paper, we briefly consider a query-specific variant of this problem:
whether such a rewriting exists for a given CQ. The following observations will
also be useful in regard to this problem.

Observation 6 (Transitivity) Consider a Horn-SHIQ knowledge base with
a TBox {trans(R)}. Then the CQ {(x, y) | R(x, y)} cannot be FO rewritable
since this would one allow to answer the connectivity question with respect to
any ABox considered as a graph of R-edges.

Analogously to transitive roles, allowing equality between ABox objects, and
therefore not adopting the unique name assumption (UNA), leads immediate to
non-rewritability:

Observation 7 (Equality) Consider a Horn-SHIQ KB in which T = ∅ and
a CQ {(x, x) | >(x)}. Again, this query solves the (undirected) connectivity
problem in an ABox with explicit equalities between individuals and thus cannot
have an FO rewriting.

2 Note that it is not necessary to place any restrictions on the variables x̄. Indeed, one
can add additional atoms >(xi) to ensure variables in x̄ also appear in ψ, if desired,
without any impact on the remaining results.



Hence, hereon, we focus on the Horn-ALCHQI sub-dialect of Horn-SHIQ with-
out transitive roles, and also adopt UNA.

Observation 8 (Boolean Queries) Consider a Boolean CQ ϕ. Such a query,
when equivalent to a concept, can be entailed not only due to matches in an
ABox, but also due to matches in the anonymous part of the models of the
knowledge base. However, these matches only depend on the existence of certain
patterns (types) in the given ABox that can be enumerated and this way converted
to a UCQ [31,32,34].

Hence, hereon as well, we focus on CQs with (1) at least one answer variable, and
(2) that are connected. The combined combined approach that we now outline
can be extended to all CQs, although the details of doing so lie outside the scope
of this paper since they do not affect query rewritability. Finally, we assume
that the KBs under consideration are consistent. Hence, it will be unnecessary
to check for at most number restrictions (functionality) in our constructions.

The Combined Combined Approach. To study FO rewritability of conjunctive
queries over Horn-ALCHQI knowledge bases, we begin with the following man-
ifestation of a combined combined approach to OMQ originally developed for
the feature logic Horn-DLFD [31,32,34].3 Our objective is to modify the ap-
proach to suit Horn-ALCHQI, and to show how such can be used to decide
query rewritability with respect to knowledge bases expressed in terms of such
dialects.

Proposition 9 (Combined Combined Approach for Horn-ALCHQI)
Let K = (T ,A) be a consistent Horn-ALCHQI knowledge base and ϕ a con-
junctive query. Then there is a UCQ query ϕT and a Datalog program ΠT , both
of which can be effectively constructed from T , such that

K |= ϕ(ā) ⇐⇒ ΠT (A) |= ϕT (ā)

for any tuple of constant symbols ā, and where ΠT (A) is the minimal model of
ΠT when evaluated over A.

In the rest of this section, we give the definition of ΠT (A) and ϕT .

Datalog programs and clauses that follow use the standard syntax and se-
mantics, and, in particular, predicates used in such programs are classified as
either EDB (extensional predicates), those for which we have explicit data, and
IDB (intensional predicates), predicates whose interpretation is defined by the
minimal model semantics of Datalog [37,38,39].

3 Note that the original combined approach [24,29] used the TBox subsumptions to
complete the ABox but not to rewrite the CQ. The approach presented here combines
this combined approach with a variation on perfect rewriting [11]; hence we call it
the combined combined approach.



Definition 10 (Datalog Program ΠT ) The Datalog program ΠT used in
Proposition 9 consists of completion rules obtained by translating subsumptions
that are logical consequences of T . The form of these subsumptions and their
translation are given as follows:

(consequences of T ) (completion rule in ΠT )

A1 uA2 v B CB(x)← CA1
(x),CA2

(x)

A v ∀R.B CB(x)← CA(y),RR(y, x)

∃R.A v B CB(x)← CA(y),RR(x, y)

R v S RS(x, y)← RR(x, y)

For every primitive concept B and role R, we introduce an unary EDB pred-
icates PB(x) and PR(x, y) together with additional clauses CB(x) ← PB(x),
RR(x, y)← PR(x, y), and RR−(x, y)← PR(y, x) (accounting for explicit data of
the form A(a) and R(a, b) in an ABox ), and IDB predicates CB(x) and RR(x, y)
corresponding to the completion of the ABox w.r.t. T .

Note that the subsumptions for existential restrictions do not contribute to the
definition of an ABox completion since they do not generate additional ABox
assertions for ABox individuals. Similarly, number restrictions (at most restric-
tions) do not play any role here as we assume that ABoxes we try to complete are
always consistent with the TBox T (as we already mentioned above). Also note
that, unlike in the classical combined approach [24,28], our combined combined
approach does not introduce any new constants in the ABox, similarly to [32].
The following definition is an adaptation of the approach to query reformulation
to Horn-ALCHQI:

Definition 11 (Query Reformulation) Let ϕ = {x̄ | ψ} be a CQ. We write
FoldT (ϕ) to denote the set of CQs obtained by applying the following when ini-
tialized with the singleton set

{{x̄ | ψ}}.

(computing ϕT ) Update FoldT (ϕ) for a CQ {ȳ | ψ} ∈ FoldT (ϕ) according to the
following rewrite rules (top-down) until no such rewrite is possible:

1. If {A(x),B(x)} ⊆ ψ and T |= AuB v ⊥ then

FoldT (ϕ) := FoldT (ϕ)− {{ȳ | ψ}}.

2. If {A(x),B(x)} ⊆ ψ and T |= A v B then

FoldT (ϕ) := FoldT (ϕ)− {{ȳ | ψ}} ∪ {{ȳ | ψ − {B(x)}}}.

3. If {R(x, y),R′(x, y)} ⊆ ψ and T |= R v R′ then

FoldT (ϕ) := FoldT (ϕ)− {{ȳ | ψ}} ∪ {{ȳ | ψ − {R′(x, y)}}}.

4. If x and y are variables in ψ then

FoldT (ϕ) := FoldT (ϕ) ∪ {{ȳ | ψ}[x/y]}.



5. If {R1(x, y), . . . , Rn(x, y), R′1(y, x), . . . , R′m(y, x),A1(y), . . . ,Ak(y)} ⊆ ψ and
y does not appear elsewhere in ψ nor in ȳ then

FoldT (ϕ) := FoldT (ϕ) ∪ {{ȳ | ψ′}}

for all ψ′ of the form

ψ − {R1(x, y), . . . , Rn(x, y), R′1(y, x), . . . , R′m(y, x),A1(y), . . . ,Ak(y)}
∪ {B1,i1(x), . . . ,Bk,ik(x)}

that are generated by sets {B1,i1(x), . . . ,Bk,ik(x)} such that (i) for some Bi,ij
and B ∈ PC ∪ {>} we have T |= Bi,ij v ∃Ri.B or T |= Bi,ij v ∃R′−i .B and
(ii) such that each of the Ai concepts for which T 6|= B v Ai there is a
concept Bi,ij for which T |= Bi,ij v ∀Ri.Ai or T |= Bi,ij v ∀R′−j .Ai, where

Bi,ij is maximal w.r.t. v.4

The reformulation of ϕ w.r.t. T , ϕT , is then given by the UCQ
∨
ψ∈Fold(ϕ) ψ.

Note that, for our purposes, the existence of ϕT is sufficient since we are con-
cerned with rewritability and not query answering. The existence of ϕT also
indicates that the non-rewritability of CQs is confined to the interaction of the
TBox with explicit data given by an ABox.

3 Classification of TBoxes

To test for FO definability of the completion (i.e., all predicates that stand for
the completed ABox instance), we use the following construction:

Definition 12 (Clark’s Completion ΣT ) The Clark’s Completion [13] ΣT
of ΠT is given by a set of formulas

CB(x)↔ PB(x) ∨ (∃y.α1) ∨ . . . ∨ (∃y.αn)
RR(x, y)↔ PR(x, y) ∨ β1 ∨ . . . ∨ βm

corresponding to all clauses CB(x) ← αi and RR(x, y) ← βj in ΠT (grouped by
their heads).

The bodies αi (βi) are introduced in Definition 10. Note also that the Clark’s
Completion is no longer a Datalog program. This completion, however, closes
the original Datalog program in the following sense:

Proposition 13 ([13], simplified for this paper)

– ΠT ∪ Adb |= CB(a) implies ΣT ∪ Adb |= CB(a), and
– ΠT ∪ Adb 6|= CB(a) implies ΣT ∪ Adb |= ¬CB(a).

4 This rule allows one to remove atoms over quantified variables (y in our case) in a
query by adding atoms over the remaining variables (x in our case) that imply the
existence of the original atoms with the help of the TBox.



(and similarly for RR(a, b) consequences) for every ABox A and constant a (and
b), where Adb is the closed world variant of A, a set of ground facts such that
all facts not in Adb are false.

Note that Clark’s result works in the much more general setting of logic pro-
grams with function symbols and possibly infinite resolution proofs and under
the Negation As Failure semantics. Since Clark’s completion makes all IDB pred-
icates closed, we can now use standard tools for testing for explicit definability.

Also note that, had we used ΠT instead, none of the definability results could
possibly hold, and that, in the absence of role/feature subsumptions (such as role
hierarchies), there is no need to apply the completion to the RR atoms.

Proposition 14 (Projective Beth Definability [4]) Let Σ be an FO theory
over symbols in L and L′ ⊆ L. Then the following are equivalent:

1. For M1 and M2 models of Σ such that M1|L′ = M2|L′ , it holds that M1 |=
ϕ[a] iff M2 |= ϕ[a] for all M1, M2, and a tuples of constants, and

2. ϕ is equivalent under Σ to a formula ψ in L′ (we say ϕ is Beth definable
over Σ and L′).

This gives us a complete characterization of FO rewritability of the ABox closure
of individual primitive concept names with respect to Horn-ALCHQI TBoxes
as follows:

Theorem 15 Let T be a Horn-ALCHQI TBox over the primitive concept names
{A1, . . . , Ak} and role names {R1, . . . , Rn}. Then the completion of the primitive
concept Ai (role Ri) w.r.t. T is FO definable if and only if CAi(x) (RRi(x, y))
is Beth definable over ΣT and L′ = {PA1 , . . . ,PAk

,PR1 , . . . ,PRn}.

Proof (sketch): Follows immediately from the properties of Beth definability

(Proposition 14) and the definition and properties of the Clark’s completion
(Proposition 13).

Observe that one can restrict the alphabet of the ABox (L′) to target only
ABoxes over restricted signature(s).

Given ΣT , one can now reformulate (1) in Proposition 14 as a logical impli-
cation problem by making a copy of all formulas of ΣT in which all non-logical
symbols not in {PA1

, . . . ,PAk
,PR1

, . . . ,PRn
} are starred. Hence, the definabil-

ity question for CA(x) and RR(x, y) can be expressed as a logical implication
question of the form:

ΣT ∪Σ∗T |= ∀x.CA(x)→ C∗A(x)
ΣT ∪Σ∗T |= ∀x, y.RR(x, y)→ R∗R(x, y)

(1)

Note that, without role constructors, there is no need to check for the definability
of RR(x, y) atoms since they are always definable (we elaborate on the role of
role constructors in Section 5). Note also that, on closer inspection, all formulas
in ΣT can be written as ALCI subsumptions. Hence:



Theorem 16 Let T be a Horn-ALCHQI TBox. Then the existence of

1. the FO rewritability of the A completion with respect to T , and
2. the uniform query rewritability over T

are decidable and in EXPTIME.

Proof (sketch): The first claim follows immediately from Theorem 15 applied
to all atoms of the form CB and the decidability and complexity of reasoning
in ALCI. The second claim follows by observing that (i) definability of atomic
queries implies definability of arbitrary UCQs using the combined combined
approach, and that (ii) non-definability of a single atomic query exhibits the
need for a non FO ABox completion for queries containing/consisting of this
atom.

In the second case, one can restrict the definability conditions to atoms that can
appear in the query ϕT . A matching lower bound can be obtained for expres-
sive fragments of Horn-ALC (for which the reasoning complexity is EXPTIME-
complete).5 However, since the size (and the construction) of rewritings will
dominate this cost (even for the simplest ontology languages [23]), exact com-
plexity bounds are mostly of academic interest.

Construction of rewritings. To obtain an algorithm that constructs rewritings
from our characterization of FO rewritability, we utilize Craig Interpolation:

Proposition 17 (Craig Interpolation [14]) Let ϕ and φ be FO formulas such
that |= ϕ → φ. Then there is an FO formula ψ, called Craig interpolant, con-
taining only symbols common to ϕ and φ such that |= ϕ→ ψ and |= ψ → φ.

Moreover, the interpolant can be extracted, typically in linear time, from a proof
of |= ϕ→ φ, as long as a reasonably structural proof system, such as resolution,
(cut-free) sequent calculus, and/or analytic tableau is used. Combining the above
construction with the rewriting ϕT we get:

Theorem 18 Let K = (T ,A) be a consistent Horn-ALCHQI knowledge base.
Then the data complexity of uniform conjunctive query answering is in AC0

whenever the A completion with respect to T is FO definable with respect to ΣT .

Proof (sketch): Let ψA(x) be an FO definition of CA w.r.t. ΣT . Then K |= ϕ(a)

iffAdb |= ϕT [ψA[y/x]/A(y) | A ∈ PC](a). The claim follows since ϕT [ψA[y/x]/A(y) |
A ∈ PC] is an FO formula, in particular a UCQ.

Our approach also provides decidability for the non-uniform (query-specific)
problems. Also, while one can explicitly construct ϕT , to decide FO rewritability
of a CQ, one only needs to determine the atomic formulas for which interpolants
are needed in the reformulation. This yields our desired result:

5 It was noted in [36] that the exact complexity is open for PTIME fragments of
Horn-DLFD, such as CFDnc and CFDI∀−

kc
.



Theorem 19 Let T be a Horn-ALCHQI TBox and ϕ a CQ. Then the following
are equivalent:

1. ϕ is FO rewritable with respect to T and
2. ΣT ∪Σ∗T |= ∀x.CA(x)→ C∗A(x) for all CA appearing in ϕT and ΣT ∪Σ∗T |=
∀x, y.RR(x, y)→ R∗R(x, y) for all RR appearing in ϕT .

The exact complexity again depends on the complexity of (2) above. In the
general case, an EXPTIME bound follows from [20], but again, a more refined
analysis is in order for fragments of Horn-ALCHQI.

4 A One-step Construction of Rewritings

We have been considering the test for existence of rewritings and the construc-
tion of such rewritings as a two part process: (i) the construction of an ABox
completion, and (ii) subsequent query reformulation. We have already noted that
non-rewritability can always be traced to part (i) of this process. An interesting
question that emerges, however, is whether such a two-part process is needed.
In this section we outline a one-step approach to the problem that continues to
be based on Clark’s completion and on Beth definability, optionally followed by
Craig interpolation. Now, however, we apply both techniques to the full TBox,
i.e., including existential restrictions that may generate anonymous objects, and
to the user query, (to save space, in Horn-ALC only).

Definition 20 (Logic Program for Horn-ALC TBox)

(entailed by T ) (completion rule in ΠT )

A v ⊥ C⊥(x)← CA(x)

A1 uA2 v B CB(x)← CA1(x),CA2(x)

A v ∀R.B CB(x)← CA(y),RR(y, x)

∃R.A v B CB(x)← CA(y),RR(x, y)

A v ∃R.B RR(x, fR(x))← CA(x), and

CB(fR(x))← CA(x)

Note that the construction of a Datalog program in Section 3 omitted the last
rule (for A v ∃R.B) since the effect of that subsumption has been accommodated
by query reformulation. The clauses stemming from the existential restrictions
contain Skolem functions fR and hence the resulting set of clauses is no longer
a Datalog program. To define the Clark’s completion, observe that the clauses
for A v ∃R.B can be equivalently written as

RR(x, y)← y = fR(x),CA(x)

CB(x)←x = fR(y),CA(y)

as shown in [13]. Now, since the heads of the clauses in ΠT have a uniform for-
mat, we can create the completion ΣT as in Definition 12. (This requires adding



the standard equality axioms or assuming equality is an interpreted predicate.)
For a given CQ ϕ of the form {x̄ | ψ}, extend the completion with

ΣT ,ϕ = ΣT ∪ {Q(x̄)↔ ψ}

(with Q a new symbol). Then one can apply the definability test as in the
previous case to obtain the rewritability test:

Theorem 21 Let T be a Horn-ALC TBox and ϕ a CQ. Then the following are
equivalent:

1. ΣT ,ϕ ∪Σ∗T ,ϕ |= ∀x̄.Q(x̄)→ Q∗(x̄), and
2. ϕ is FO rewritable with respect to T .

The theorem provides a direct, sound and complete test for FO rewritability of
CQs with respect to Horn-ALC TBoxes. However, unlike in the case of Datalog,
we need to ensure that the test is still decidable and has a reasonable computa-
tional complexity. Note that the actual complexity in this case is tied to the proof
system used to prove (1) in Theorem 21: as in DL reasoners, not every proof
system achieves the optimal complexity bound. For Horn-ALC, a reduction to
the Ackermann prefix with equality [1] seems feasible, with the aim of obtaining
the complexity bound using Fürer’s result [18]. However, if one is interested in
generating the rewriting in the form of an interpolant, a suitable proof system
that supports interpolant generation, such as Analytic Tableau [17], (cut-free)
Sequent Calculus, or Resolution, is needed. Alternative blocking-style techniques
used in DL tableau reasoners are very likely to apply here as well. An intriguing
possibility is to also just limit the depth of terms in a general high-performance
theorem prover along the lines described by Chomicki for DatalognS [12]. Both
of these options are subjects of future research.

An interesting application of Theorem 21 emerges when the given TBox is
formulated in DL-Lite variants, for which interpolants will then correspond to
the result obtained by perfect query reformulation developed in [10,11]. It is
relatively easy to observe that the one-step interpolation-based approach always
succeeds and produces essentially the perfect rewritings of conjunctive queries.

5 Summary and Extensions

In this section, we briefly discuss several common extensions of Horn-ALC that
we have omitted so far in our development to keep the presentation of the main
ideas cleaner. In the light of Theorem 21, it is relatively immediate that any
extension that leads to Horn ΠT can be accommodated. Note that, to extend
the two-step combined combined approach, we would need to modify, often in
non-trivial manner, the query reformulation algorithm. (For an example that
accommodates inverse features and a variety of equality generating dependencies
called path-functional dependencies, see [31].)

Additional concept and role constructors, and the induced subsumptions, can
be classified in three groups:



1. Constructors that lead to full Horn rules, i.e., without existential quantifiers
in their heads, that preserve the tree model property. Rules corresponding
to these constructors can simply be added in Definition 10 and Definition 20
without any major impact on the query reformulation in Definition 11;

2. Constructors that lead to embedded Horn rules with existential quantifiers
in their heads that continue to preserve the tree model property. Here, both
Definition 10 and 11 need to be extended to account for the possibility of
additional anonymous individuals. Alternatively, one can capture all of the
effects by naturally extending Definition 20 and proceeding with a one-step
definability test; and

3. Constructors that break the tree-model property. Examples relate to tran-
sitivity assertions and nominals; here, it is not always clear how to modify
Definition 11 to make Proposition 9 hold. However, extending Definition 20
and subsequently using Theorem 21 will still work.

However, using Theorem 21, while sound and complete for determining rewritabil-
ity, does not come for free. With each extension, one needs to revisit the decid-
ability and complexity of the definability test which, ultimately, becomes unde-
cidable. This happens even in cases when only unary function symbols are needed
but where unrestricted use of binary predicates, such as roles, are allowed.

Extensions that are unlikely to be possible. There are limits to the definability-
based approach:

(beyond Horn logics) The approach for Horn logics relies crucially on the ex-
istence of a unique minimal model (called the universal model in DL circles)
that can be characterized using the Clark’s completion. This insight then makes
Beth definability and Craig interpolation work. It remains unclear how this idea
could generalize to logics without the minimal model property (i.e., non-Horn).
For these reasons PTIME-coNP boundaries [30] are unlikely to be resolved using
these techniques.

(beyond FO logics) The synthesis of the rewritings is tied to Craig Interpolation.
Hence synthesizing, e.g., linear Datalog or dealing with dichotomies on the NL-
PTIME [26] boundary seems also to be beyond the capabilities of the techniques
used in this paper. Applying results on interpolation in non-first order logics,
such as the µ-calculus [15], will be the focus of future research. However, the
combined combined approach already gives one a Datalog rewriting, so the space
to be explored seems to be rather limited.
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