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Abstract. This paper is concerned with the problem of computing the
semantic difference between different versions of large-scale ontologies
using a uniform interpolation (UI) approach. The semantic difference
between two versions of an ontology are the axioms entailed by one ver-
sion but not the other, reflecting the semantic evolutionary changes of
the ontology. We develop a novel, tailor-made UI method for the task
of computing semantic difference in large-scale ontologies, which often
specified in the description logic ELH. The method is terminating and
sound, and can always compute results of UI when such results exist. A
case study on different versions of the SNOMED CT terminology shows
that the new method has overcome major drawbacks and limitations of
existing methods, and has provided a feasible approach to the task of
computing semantic difference in large-scale ontologies.

1 Introduction

In Computer Science & Artificial Intelligence (AI), ontologies are a formal de-
scription of knowledge as a set of concepts within a domain and the relationships
that hold between the concepts.

Since ontologies are dynamic entities that are constantly evolving, computing
the semantic difference between two versions of ontologies can be a critical task:
to track what has changed in a new version of an ontology, to ensure that the
changes are safe in the sense of the new version being a conservative extension of
a preceding version [4,12], and to identify unexpected consequences in versions
of an ontology. This provides effective means for discovering issues in ontologies
and enhances quality control during the ontology evolution process. Being able
to compute the semantic difference between ontologies is also important when
merging and aligning ontologies from different sources [7,17].

A straightforward way to compute Diff(T1, T2) is to first compute all logical
entailments V2 of T2, and then collect from V2 the axioms not entailed by T1.
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However, V2 can be infinite and computing V2 is not always computationally
feasible [8]. Konev et al. [8] has proposed an approach to compute finite repre-
sentations of the semantic difference between two ontologies. The idea is that,
rather than computing all entailments of one ontology not entailed by the other
ontology, which would be computationally infeasible, only the strongest entail-
ments not entailed by the other ontology are computed. Then all logical entail-
ments can in principle be computed from the deductive closure of the strongest
entailments. This approach computes the strongest entailments of an ontology
using an abstraction technique called uniform interpolation (UI), which seeks to
create views of ontologies while preserves the logical models (the semantics) of
the views [19,11].

Existing UI methods are designed for DLs that are either more expressive or
less expressive than real-world large-scale ontologies, which are often expressed
in the DL ELH. This means that the computed views of the ontologies will
contain language constructs that are outside of the language of ELH or they
do not support language constructs of ELH. To be useful, views must be in the
language of the input ontology and also satisfy the modeling guidelines of the
development community.
Contributions. We introduce a novel, tailor-made UI method for the task of
computing semantic difference for ontologies expressed in the DL ELH and as
large as SNOMED CT [18]. Our UI method is terminating, sound, and can
always compute a uniform interpolant when such a uniform interpolant exists. An
empirical evaluation with a prototype implementation shows very good success
rates and performance results on a large corpus of real-world ontologies taken
from the Oxford ISG Library. A case study on different releases of SNOMED
CT shows that the new method has overcome major drawbacks and limitations
of existing methods.

The source code, the long version of this paper and all test data are dis-
tributed at github.com/anonymous-ai-researcher/DL2021. User-friendly web ac-
cess to try out these tools is possible at http://www.forgettingshow.info/.

2 Preliminaries

Let NC and NR be disjoint and countably infinite sets of concept names and
role names, respectively. ELH-concepts are inductively constructed based on
the following syntax rule:

C,D −→ > | A | C uD | ∃r.C,

where A ∈ NC, r ∈ NR, and C and D range over concepts. Let T be an ELH-
TBox and A,Bi ∈ NC (1 ≤ i ≤ n) be atomic concepts in T . We say that
A directly depends on B (A ≺ B) iff the clausal form of T includes a clause
in which A occurs positively and B negatively (or vice versa). We say that A
depends on Bn iff there is a chain of A, B1, . . . , Bn such that A ≺ B1 ≺ . . . ≺ Bn.
T is acyclic if there is no concept name in T that depends on itself; otherwise it
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is cyclic. In the remainder of this paper, the terms TBox and ontology are used
interchangeably.

The semantics of ELH is defined in terms of an interpretation I = 〈∆I , ·I〉,
where ∆I is the domain of the interpretation (a non-empty set), and ·I denotes
the interpretation function, which assigns to every concept name A ∈ NC a set
AI ⊆ ∆I , and to every role name r ∈ NR a binary relation rI ⊆ ∆I ×∆I . The
interpretation function ·I is inductively extended to concepts as follows:

>I = ∆I (C uD)I = CI ∩DI

(∃r.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ rI ∧ y ∈ CI}

A signature sig ⊆ NC ∪NR is a finite set of concept and role names. By sigC(X)
and sigR(X) we denote the sets of respectively the concept names and role names
occurring in X, where X ranges over concepts, axioms and ontologies. We let
sig(X) = sigC(X)∪ sigR(X). An axiom α with S ∈ sig(α) is called an S-axiom.

Definition 1 (Semantic Difference). Let T1 and T2 be two ELH-ontologies.
Let Σ be a subset of the shared signature of T1 and T2. The semantic difference
between T1 and T2 for Σ is the set DiffΣ(T1, T2) of all ELH-axioms α such that
(i) sig(α) ⊆ Σ, (ii) T2 |= α, but (iii) T1 6|= α. An axiom α satisfying these
conditions is a witness of a difference in T2 w.r.t. T1.

We note that the witness set DiffΣ(T1, T2) computes the information gain
from T1 to T2 and the information loss from T2 to T1 for the signature Σ, where
Σ ⊆ sig(T1)∩sig(T2). To compute all witnesses in DiffΣ(T1, T2) it is necessary to
compute allΣ-entailments of T2 which are not entailed by T1. If DiffΣ(T1, T2) 6= ∅,
it is typically infinite and, therefore, cannot be presented to the user as such [10].
However, a finite representation of Diff(T1, T2) can be computed via a Uniform
Interpolation (UI) approach.

Definition 2 (Uniform Interpolation). Let T be an ELH-ontology. Let Σ ⊆
sig(T ) be a set of concept and role names. An ELH-ontology V is a Σ-uniform
interpolant of T iff the following conditions hold: (i) sig(V) ⊆ Σ and (ii) for
any ELH-axiom α with sig(α) ⊆ Σ, V |= α iff T |= α. In this case, the set Σ is
called the interpolation signature.

This means that uniform interpolants V have the same logical entailments
as the given ontologies T up to Σ, and thus are the strongest Σ-entailments of
T . The problem of semantic difference can be related to that of UI as follows:
DiffΣ(T1, T2) = ∅ iff T1 |= V2, where V2 is a Σ-uniform interpolant of T2, for Σ ⊆
sig(T1)∩sig(T2). On the other hand, if T1 6|= V2, this means that DiffΣ(T1, T2) 6=
∅, and every α ∈ V2 with T1 6|= α is a witness of DiffΣ(T1, T2).

Definition 3 (UI-based Semantic Difference). Let T1 and T2 be two ELH-
ontologies. Let Σ be a subset of the shared signature of T1 and T2. The UI
semantic difference between T1 and T2 is the set UI-DiffΣ(T1, T2) of all ELH-
axiom α such that (i) sig(α) ⊆ Σ, (ii) α ∈ V2 and (iii) T1 6|= α, where V2
is a Σ-uniform interpolant of T2. An axiom α satisfying these conditions is a
UI-witness of a difference in T2 w.r.t. T1.
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Since any α ∈ V2 is a logical entailment of T2, every UI-witness is a wit-
ness and UI-DiffΣ(T1, T2) ⊆ DiffΣ(T1, T2). Since all the witnesses can in princi-
ple be computed from the deductive closure of a Σ-uniform interpolant V2 of
T2, we can think of UI-Diff(T1, T2) as a representation of Diff(T1, T2). For ELH,
UI-Diff(T1, T2) is a finite representation of Diff(T1, T2). It follows from these con-
siderations that the set UI-Diff(T1, T2) of UI-witnesses can be computed using
the following algorithm:

Step (1): compute the Σ-uniform interpolant V2 of T2, for Σ ⊆ sig(T1) ∩
sig(T2), and then

Step (2): collect the axioms α ∈ V2 not entailed by T1.

The first step can be done using a UI method/tool, and the second step can
be done using an external DL reasoner.

3 Limitations of Existing Uniform Interpolation Methods

A few methods have been developed for various DLs. These methods include
NUI [9], LETHE [14], UI-FAME [21] and the method developed by [10]. They
are however designed for DLs that are either more expressive or less expres-
sive than ELH, the underlying language of typical large-scale ontologies, and
therefore are not ideal tools to perform Step (1) of the above algorithm.

NUI [9] handles ELH-ontologies restricted to terminologies. Hence, NUI is
not an ideal tool to perform the UI step, given that many ELH-ontologies are
general ELH-ontologies containing GCIs.4

LETHE, UI-FAME, as well as the method of [10] take the description logic
ALCH (or some extensions of ALCH) as the source and target languages. This
means that, given any ELH-ontology and an interpolation signature, the uniform
interpolant computed by these methods always uses ALCH-axioms (or the ex-
tensions), but not ELH-axioms. The target language is different from the source
language. This may lead to non-UI-witnesses being mistakenly collected into
the UI-witness set. Hence, LETHE, UI-FAME, and [10] are not ideal tools to
perform the UI step either.

The evaluations in [9] and [3] showed that NUI had excellent performance
when interpolating for very small signatures, but it became problematic when
applied to SNOMED CT, where often a large signature was considered. It was
also shown in [9] that failures appeared with more frequency as the signature
grew, and all failures were due to the memory overflow. In fact, performance
issues are a common problem among all existing UI methods [3].

4 A Novel UI Method for ELH
In this section we introduce a tailor-made method for computing uniform inter-
polants of ELH-ontologies for Step (1). In particular, we develop a new method
for forgetting concept and role names from ELH-ontologies.

4 SNOMED CT used to be an acyclic ELH-terminology, but began to include GCIs
from its International 2019 January release.
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Central to the forgetting method are two mutually independent calculi, namely
a calculus for concept name elimination and a calculus for role name elimination.
The process of computing uniform interpolants is to firstly deal with concept for-
getting, then role forgetting, then treat introduced definers as regular concept
names to carry out forgetting. In the remainder of this paper, we refer to the
concept or role name under current consideration for forgetting as the pivot. The
notation Σ and F is uniformly used to denote the interpolation signature and
the forgetting signature, respectively. Let T denote an ELH-ontology.

4.1 Calculus for Concept Name Elimination

Let A ∈ sigC(T ) be the pivot concept. The calculus for eliminating A from T
includes two steps that are executed in sequence. The first step is to transform
T into A-reduced form (normalization), which is a specialized normal form to
which some of the inference rules in the calculus (presented later) are applicable.
The second step is to apply these inference rules to T to eliminate A.

Definition 4 (A-Reduced Form). An ELH GCI is in A-reduced form if it
has one of the following forms, where (i) r, s ∈ NR, (ii) C, D, E and F are
concepts not containing A, (iii) G 6= A is an atomic concept or a concept of
the form ∃r.X for X a concept not containing A. An ELH-ontology T is in A-
reduced form if every A-axiom in T is a GCI in positive or negative A-reduced
form.

I: C v A II: C v ∃r.(A uD) III: A u F v G IV: ∃s.(A u E) u F v G

Given any ELH-ontology T , one can compute in polynomial time an equi-
satisfiable ELH-ontology in A-reduced form by applying exhaustively the follow-
ing rules to the A-axioms in T :

1. replace each C ≡ C1 with C v C1 and C1 v C;
2. replace each C v C1 u C2 with C v C1 and C v C2;
3. if ∃s.C occurs somewhere on the left-hand side of a GCI in T , where s ∈ NR

and C is a concept containing A, replace C with a fresh concept nameX ∈ NC
and add C v X to T ;

4. if ∃s.C occurs somewhere on the right-hand side of a GCI in T , where s ∈ NR
and C is a concept containing A, replace C with a fresh concept nameX ∈ NC
and add X v C to T ;

5. if A occurs in Z, where Z is a placeholder for the concept “C”, “E”, or “F”
in the above A-reduced form, replace Z with a fresh concept name X ∈ NC
and add Z v X to T ;

6. if A occurs in Z, where Z is a placeholder for the concept “D” or “G”in the
above A-reduced form, replace Z with a fresh concept name X ∈ NC and
add X v Z to T .

The fresh concept names X ∈ NC introduced in the above rules are called
definer names or simply definers [15]. Definers are auxiliary symbols externally
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introduced to facilitate the normalization of T . We notice that if an axiom
contains one ∃-restriction, at most one definer needs to be introduced, and if
an axiom contains n ∃-restriction, at most n definer needs to be introduced.
Therefore, the number of definers for the reduction is bounded by O(n), for n
the number of ∃-restriction in T . Indeed, our definer introduction amounts to
structural transformation[16,13].

Lemma 1. For any ELH-ontology T , one can construct in polynomial time a
normalized ELH-ontology T ′ of polynomial size in |T | such that (i) sig(T ) ⊆
sig(T ′) and (ii) T ′ |= T , and for every model I of T there exists a model J of
T ′ such that ∆I = ∆J and XI = XJ for every X ∈ sig(T ). T ′ is acyclic if T
is acyclic.

Lemma 1 states that definer introduction preserves the underlying logical
models of the concepts and roles in the original axioms (Definition 2 holds).
Normalized ELH-ontologies in this sense are modifications of normalized termi-
nologies as defined by [2]. For space reasons, we have to omit the proof of this
standard operation. This lemma holds also for normalized ELH-ontologies in
role name elimination, described in the next subsection.

a. C v A,A u F v G =⇒ C u F v G

b. C v A, ∃s.(A u E) u F v G =⇒ ∃s.(C u E) u F v G

c. C v ∃r.(A uD),A u F1 v G1, . . . ,A u Fn v Gn

c. =⇒ C v ∃r.(G1 u . . . uGn uD)

c. provided that: Fi ≡ > for 1 ≤ i ≤ n

c. C v ∃r.(A uD),A u F v G1, . . . ,A u F v Gn

c. =⇒ C v ∃r.D,C v ∃r.(G1 u . . . uGn)

c. provided that: F 6≡ > and T |= D v F

c. C v ∃r.(A uD),A u F v G =⇒ C v ∃r.D
c. provided that: T 6|= D v F

d. C v ∃r.(A uD), ∃s.(A u E) u F v G

d. =⇒ C v ∃r.D,C u F v G

d. provided that: T |= D v E and T |= r v s

d. C v ∃r.(A uD), ∃s.(A u E) u F v G =⇒ C v ∃r.D
d. provided that: T 6|= D v E or T 6|= r v s

Fig. 1: Inference rules for concept name elimination

Once T is in A-reduced form, the second step is to eliminate A from T us-
ing the inference rules shown in Figure 1. The elimination of A is based on an
exhaustive application of the inference rules to all (reduced) A-axioms in T to
derive new logical entailments on A (and add them to T ) until T is saturated
w.r.t. A, and then remove all A-axioms from T . Inferences to reveal logical entail-
ments of a name is often based on combining positive and negative occurrences
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of the name, which is also reflected in the inference rules of this calculus. In
the context of forgetting, ontologies are assumed to be consistent, so no con-
tradiction would be derived. Also, termination is guaranteed because A do not
occur in newly-derived entailments, meaning that there would be no recursive
derivations and saturation can be reached in finite steps.

Specifically, Rule (a) and Rule (b) combines each GCI of Form I, which
contains a positive occurrence of A, with each GCI of Form III and Form IV,
respectively, which contain a negative occurrence of A; Rule (c) and Rule (d)
combines each GCI of Form II, which contains a positive occurrence of A, with
each GCI of Form III and Form IV, respectively.

Lemma 2. The calculus for concept name elimination is sound.

Proof (sketch). To prove that the calculus is sound is to prove that the output
OUT of the calculus has the same logical entailments as its input IN up to the
signature sig(IN )\{A}.

The calculus for concept name elimination includes the normalization step
and the inference step, so its soundness follows from the rules used in both steps.
The first two normalization rules are standard transformations preserving logical
equivalence. The latter four normalization rules are the structural transforma-
tion [15,20] which preserves all logical entailments in the signature sig(T ) of
the given ontology T . We can also regard the latter four rules as the reverse
operation of a monotonicity property called Ackermann’s Lemma [1], which pre-
serves equivalence up to the definers.The first two inference rules for concept
name elimination are basically the binary resolution inference, so automatically
we have that the conclusion of each rule has the same logical entailments as
its premises up to the signature of the premises excluding the pivot. We prove
soundness of the last two inference rules. To show Rule (c) is sound, we can
appeal to the technique of unfolding [2] used in Tableaux reasoning. We prove
the second case of Rule (c). C v ∃r.(A uD) is directly equivalent to C v ∃r.D
up to A. According to the side condition, we redefine D as F u X, where X
is a fresh concept name. Then we have the premises C v ∃r.(A u F u X) and
A u F v G. Taking A u F as a whole, we obtain (via resolution or Ackermann’s
Lemma) C v ∃r.(G uX), which is equivalent to C v ∃r.G up to X. The other
cases of Rule (c) and the two cases of Rule (d) can be proved similarly.

4.2 Calculus for Role Name Elimination

Let r ∈ sigR(T ) be the pivot role name. The calculus for role name elimination, as
with that for concept name elimination, includes two steps executed in sequence.
The first step is to transform T into another specialized normal form, namely r-
reduced form, which generalizes all elementary forms of a concept/role inclusion
where a role name r could occur.

Definition 5 (r-Reduced Form). An inclusion is in r-reduced form if it has
one of the following forms, where (i) s, r ∈ NR, (ii) C, E, F , D and G are
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concepts not containing r. An ELH ontology T is in r-reduced form if every
r-axiom in T is an inclusion in r-reduced form.

I: s v r II: C v ∃r.D III: r v t IV: F u ∃r.E v G

Observe that an r-role inclusion is naturally in r-reduced form. r-clauses not
in r-reduced form can be transformed into the form by a trivial adaptation of
the definer introduction for concept elimination, which inherits all its properties
including Lemma 1.

e. s v r, r v t =⇒ s v t

f. s v r, F u ∃r.E v G =⇒ F u ∃s.E v G

g. C v ∃r.D, r v t =⇒ C v ∃t.D
h. C v ∃r.D, F u ∃r.E v G =⇒ F u C v G

h: provided that: T |= D v E

Fig. 2: Inference rules for role name elimination

Once T is in r-reduced form, the second step is to apply exhaustively the
inference rules shown in Figure 2 to eliminate r from T . The idea is analogous
to that in concept name elimination, that is, to derive from the r-axioms all
logical entailments not involving r, add them to T , and then remove from T the
r-axioms.

Lemma 3. The calculus for role name elimination is sound.

Proof (sketch). The first three inferences rules are generalizations of Ackermann’s
Lemma which preserve equivalence up to the interpolation signature. The last
rule can be solved using unfolding [2]. From the side condition, we know that D
can be defined with EuX, where X is a fresh concept name. Then D is replaced
by E uX in the premises, and now it is obvious that ∃r.(E uX) and ∃r.E are
equivalent up to E. Because every instance of C is also an instance of ∃r.D and
∃r.E, we have the conclusion F uC v G, which is the strongest entailment of the
premises for the remaining signature, as models of the concepts in the remaining
signature are preserved.

Theorem 1. For any ELH-ontology T and an interpolation signature Σ ⊆
sig(T ), our UI method always terminates and returns an ELH ontology V. If V
does not contain any definers, then our method succeeds and V is a Σ-uniform
interpolant of T . For any acyclic ELH-ontology T and a signature Σ ⊆ sig(T ),
our method always terminates and returns a Σ-uniform interpolant V of T .
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Table 1: Statistics of Adapted Oxford-ISG

Oxford-ISG Min Max Medium Mean 90th Centile

I
|NC| 0 1582 86 191 545
|NR| 0 332 10 29 80
|Onto| 0 990 162 262 658

II
|NC| 200 5877 1665 1769 2801
|NR| 0 887 11 34 61
|Onto| 1008 4976 2282 2416 3937

III
|NC| 1162 9809 4042 5067 8758
|NR| 1 158 4 23 158
|Onto| 5112 9783 7277 7195 9179

5 Evaluation of the UI Method

To understand the practicality of our UI method, we implemented a prototype
in Java using the OWL API Version 3.5.7,5 and compared it with LETHE on a
corpus of real-world ontologies.

We selected 488 ontologies from the Oxford ISG6 snapshot with the size
|Onto| of TBox axioms not exceeding 10000. We further split the 488 ontologies
into three subparts: PART I with 10 ≤ |Onto| < 1000, containing 355 ontologies,
PART II with 1000 ≤ |Onto| < 5000, containing 108 ontologies, and PART III
with 5000 ≤ |Onto| ≤ 10000, containing 25 ontologies. This would provide clear
clues for better understanding of the performance of our UI method for realistic
ontologies of different size ranges. The selected ontologies were restricted to their
ELH-fragments by removing from them those axioms not expressible in ELH.
On average 8.9% of the axioms were thus dropped from the ontologies. Statistical
information about the adapted ontologies is shown in Table 1. We repeat the
tests three times for each ontology.

To fit with real-world applications, the experiments were conducted for two
settings: forgetting respectively 10% and 30% of the concept and role names in
the signature of each ontology. The forgetting signature was randomly chosen.
The experiments were conducted on a laptop with an Intel Core i7-9750H pro-
cessor, 6 cores running at up to 2.70 GHz, and 12 GB of DDR4-1600 MHz RAM.
The timeout was limited to 300 seconds and heap space to 9GB.

The success for forgetting was defined as: (i) eliminating all the names in F ,
(ii) not leaving any definers in the solutions, (iii) finished in the time and space
limit. The results, shown in Table 2, are quite revealing in several ways. The most
encouraging result is that our UI prototype succeeded in almost all test cases,
and in most of these successful cases the forgetting was finished in an instant. In
particular, compared to LETHE, our prototype fared considerably better w.r.t.
success rates. Failures of our prototype were due to cyclic dependencies (over
the names in F) being present in the original ontologies and the timeout. Most

5 http://owlcs.github.io/owlapi/
6 http://krr-nas.cs.ox.ac.uk/ontologies/lib/
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Table 2: Experimental results (Time (seconds): Time Consumption, Mem (MB):
Memory Consumption, S-R: Success Rate, TO-R: Timeout Rate, MO-R: Mem-
ory Overflow Rate, Cyclic: Cyclic Dependency over F)

Time Mem S-R TO-R MO-R Cyclic

LETHE

0.1

I 3.07 230.68 92.68 6.85 0.00 0.38
II 7.12 957.65 68.21 31.17 0.00 0.31
III 24.86 911.55 74.67 18.67 0.00 2.67

Avg. 5.08 426.44 86.34 12.83 0.00 0.48

0.3

I 1.50 230.14 84.60 13.62 0.00 1.78
II 14.50 867.70 56.50 42.28 0.00 0.30
III 57.30 1039.06 66.67 21.33 0.00 12

Avg. 7.23 412.68 77.46 20.35 0.00 1.97

Our Prototype

0.1

I 0.08 75.56 99.53 0.00 0.00 0.47
II 1.11 279.73 93.83 5.25 0.00 0.93
III 1.02 275.77 92.01 1.33 0.00 2.67

Avg. 0.35 131.00 97.88 1.23 0.00 0.68

0.3

I 0.36 132.10 97.00 1.03 0.00 1.97
II 2.75 466.60 91.36 7.72 0.00 0.00
III 9.48 714.75 81.30 4.00 0.00 14.6

Avg. 1.36 235.97 94.95 2.66 0.00 2.18

failures of LETHE were due to timeout. Our prototype outperformed LETHE
in speed performance, and was at least five to ten times faster than LETHE.
We conjecture (also evidenced by the results of memory consumption) this is
most likely because LETHE uses an expensive definer introduction algorithm to
flatten complex clauses, where the number of introduced definers is bounded by
O(2n), for n the number of input clauses [15], whereas our UI method introduces
definers when really necessary and introduces only linearly many definers.

The best way to verify our conjecture was to track the working process of
LETHE but this was infeasible due to the unavailability of the source of LETHE.
We then designed an alternative experiment; see Figure 3. In the Cartesian coor-
dinate system, the x-axis denotes the number of GCIs in a test ontology fragment
(e.g., the number of A-clauses when forgetting A), which reflects the size of the
fragment, and the y-axis denotes the number of definers our UI prototype intro-
duced in a test case, which reflects the flatness of the test ontology. Less definers
normally came with flatter ontologies. The blue points mark the cases where our
UI tool succeeded but LETHE failed. The orange points mark those where both
succeeded. Now it is clear that the size of ontologies was not a problem for
LETHE, but a complex internal structure with a large number of definers in
demand for normalization would increase the probability of failure for LETHE.

6 Case Studies

SNOMED CT is presently the most comprehensive, multilingual clinical health-
care ontology in the world, and has been integrated into the knowledge base of
many e-health vendors. SNOMED International7 owns and maintains SNOMED

7 https://www.snomed.org/
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Fig. 3: Distributions of successful and failure cases

Fig. 4: Information gain and loss between different releases of SNOMED CT

CT on an ongoing basis, issuing releases of its International Edition at the end
of January and July each year. In this section we studied how our UI method
performs in practice for the task of tracking the semantic evolutionary changes
in different versions of SNOMED CT. We computed the semantic difference
between 15 consecutive international releases of SNOMED CT, as well as 5 non-
consecutive international releases using a UI-Diff tool that employed our UI tool
to perform Step (1) and the DL reasoner HermiT [5] to perform Step (2) of
the UI-Diff algorithm.

Figure 4, where the x axis denotes different SNOMED CT versions combi-
nations of which we want to compute semantic difference (1601 denotes 2016
January release, others are in a same way), and the y axis denotes the number
of axioms, reflects the semantic changes over the evolution of the International
SNOMED CT edition, i.e., the information gain UI-DiffΣ(T , T ′) and the infor-
mation loss UI-DiffΣ(T ′, T ), where Σ = sig(T ) ∩ sig(T ′). With the UI-witness
set being successfully generated in all of the 20 comparison cases, our UI tool
demonstrated superb performance for forgetting. Table 3 summarizes the met-
rics of the forgetting task corresponding to each comparison case, where |FC|
and |FR| denote respectively the number of concept and role names to be for-
gotten, | v | the number of axioms in the given normalized ontology, and T(s)
the time duration for forgetting. To the best of our knowledge, our UI prototype
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Table 3: Metrics of the forgetting tasks on SNOMED CT

Tasks |FC| |FR| | v | T(s) Tasks |FC| |FR| | v | T(s)

(1601,1607) 2599 1 614K 29 (1701,1601) 1921 1 610K 330

(1601,1701) 7695 3 620K 1894 (1701,1607) 1795 1 616K 306

(1601,1801) 23.4K 33 643K 2919 (1707,1701) 614 0 629K 89

(1607,1701) 5115 2 623K 2151 (1801,1701) 1378 1 628K 173

(1701,1707) 12.3K 18 637K 438 (1801,1707) 779 3 648K 100

(1701,1801) 17.2K 30 651K 1161 (1807,1801) 6955 0 655K 351

(1707,1801) 4980 14 664K 534 (1901,1801) 9389 1 652K 1784

(1901,1907) 4423 1 755K 879 (1901,1807) 3034 1 693K 861

(2001,2003) 0 0 770K 0 (1907,1901) 3142 0 731K 740

(1607,1601) 145 0 612K 190 (2007,2003) 2074 0 768K 637

is so far the only tool capable of forgetting 10K+ number of concepts and roles
from ontologies as large as containing 600K+ logical statements. All forgetting
tasks were finished within a reasonable period of time. This provides ontology
engineers with a powerful tooling support to create views of industrial-scale on-
tologies.

7 Conclusion and Future Work

We developed a novel, tailor-made UI method. On a large corpus of adapted
Oxford ISG ontologies, our UI method has shown superb performance and supe-
riority over LETHE (the state-of-the-art UI tool) by a large margin. Case studies
on different versions of SNOMED CT have verified the viability of our semantic
difference algorithm as back-end technology in e-health vendors’ knowledge base
interface for their main concerns of content analysis and quality assurance.

An immediate future step is to find justifications [6] for the UI-witnesses
so as to pinpoint an (ideally minimum) set of axioms that accounts for each
witness. [3] have shown that incorporating the technique of modularization in
the forgetting procedure could improve the performance of UI. We then mark
an attempt of this incorporation as future work for improvement.
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17. Alessandro Solimando, Ernesto Jiménez-Ruiz, and Giovanna Guerrini. Minimiz-
ing conservativity violations in ontology alignments: algorithms and evaluation.
Knowl. Inf. Syst., 51(3):775–819, 2017.

18. Kent A. Spackman. SNOMED RT and SNOMED CT. promise of an international
clinical ontology. M.D. Computing 17, 2000.

19. Albert Visser. Bisimulations, Model Descriptions and Propositional Quantifiers.
Logic Group Preprint Series. Utrecht University, 1996.

20. Yizheng Zhao. Automated Semantic Forgetting for Expressive Description Logics.
PhD thesis, The University of Manchester, UK, 2018.

21. Yizheng Zhao, Ghadah Alghamdi, Schmidt Renate A., Hao Feng, Giorgos Stoilos,
Damir Juric, and Mohammad Khodadadi. Tracking Logical Difference in Large-
Scale Ontologies: A Forgetting-Based Approach. In Proc. AAAI’19, pages 3116–
3124. AAAI Press, 2019.


	Tracking Semantic Evolutionary Changes in Large-Scale Ontological Knowledge Bases

