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Abstract. In this paper, we propose a connection method à la Bibel
for an exception-tolerant extension of ALC. As for the language, we as-
sume ALC extended with a typicality operator on concepts, which is a
variant of defeasible DLs studied in the literature over the past decade
and in which most of these can be embedded. We revisit the definition of
matrix representation of a knowledge base and establish the conditions
for a given axiom to be provable from it. In particular, we show how
term substitution is dealt with and define a suitable condition of block-
ing in the presence of typicality operators. We show that the calculus
terminates and that it is sound and complete w.r.t. a DL version of the
preferential semantics widely adopted in non-monotonic reasoning.
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1 Introduction

The problem of modelling exceptions in ontologies and reasoning meaningfully in
their presence has received a great deal of attention over the past decade. Among
the emblematic approaches put forward in the literature feature Giordano et al.’s
description logics of typicality [24,25,28], Britz et al.’s defeasible subsumption
relations [9,10,8], Bonatti et al.’s light-weight DLs of normality [5,4,6], besides
Casini and Straccia’s seminal work on the computational counterpart of non-
monotonic entailment in DLs [18,19] and its implementation [17]. These inves-
tigations have given rise to a whole family of defeasible description logics of
varying expressive power and with the ability to handle exceptions at both the
modelling and reasoning levels in a number of ways [3,11,12,13,16,20,30].

One of the interesting features of some of the aforementioned approaches
is the fact that, depending on the underlying DL that is assumed and given
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certain conditions on how exceptionality (or typicality) is expressed, the kind
of non-monotonic reasoning that is performed can be reduced to (a polynomial
number of calls to) classical entailment check. Therefore, the study of automated
deduction for the various flavours of defeasible DLs, as well as its potential
reduction to classical reasoning, remains a relevant research topic in the area.

The development of proof methods for defeasible description logics has, in
a sense, followed on the footsteps of those for classical DLs. As a result, the
majority of existing decision procedures for reasoning with defeasible ontologies
are based on semantic tableaux [12,14,25,27,31]. Notwithstanding the commonly
extolled virtues of tableau systems, there are equally viable alternatives in the
literature on automated theorem proving (ATP). One prominent example is the
connection method (CM), defined by Bibel in the late ’70s [2], which earned
good reputation in the field of ATP in the ’80s and ’90s and has enjoyed a recent
revival in the context of (classical) modal and description logics [21,22].

The connection method consists in a direct proof procedure of which the
main internal structure is a matrix representation of the knowledge base and as-
sociated query. It was designed having as a guideline a more parsimonious usage
of memory during proof search. Indeed, contrary to tableaux and resolution, the
connection method does not create intermediate clauses or sentences along the
way, keeping its search space confined to the boundaries of the matrix it started
off with. The first connection calculus for description logics, ALC θ-CM, has been
proposed by Freitas and Otten [21]. It incorporates several features of most DL
proof systems such as blocking, absence of variables, unification and Skolem
functions. Moreover, a C++ implementation of the calculus, Raccoon [29], has
been developed.5 Worthy of mention is the fact that, in spite of not incorporating
any of the optimisations commonly done for DL tableaux systems, Raccoon
performed competitively when reasoning over ALC ontologies in comparison to
cutting-edge highly-optimised tableau-based reasoners which had ranked high in
past competitions of DL reasoners (see https://goo.gl/V9Ewkv for details).

The present paper aims to make the first steps in the design of connection
methods for reasoning over defeasible ontologies. In particular, we aim at pro-
viding a concrete calculus for a version of defeasible DL frequently considered in
the literature that can be used to endow Raccoon with basic non-monotonic
reasoning features. We hope our constructions will serve as a springboard for the
development of the connection method in defeasible DLs of varying expressive
power and further extensions of Raccoon.

In this paper, we shall assume the reader’s familiarity with the different DL
families, in particular with ALC. The remaining of the text is structured as
follows: in Section 2, we present the defeasible extension of ALC we build on
in this work; Section 3 is the heart of the paper and introduces our connection
method for reasoning with defeasible ontologies, of which the inner workings
are illustrated with a worked-out example in Section 4; Section 5 concludes the
paper with a discussion and possible directions for further investigation.

5 https://github.com/dmfilho/raccoon
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2 Preliminaries: The Defeasible Description Logic ALC•

The defeasible DL ALCH• [31] is an extension of ALCH with typicality op-
erators on both complex concepts and role names. Intuitively, a concept ex-
pression of the form •C denotes the most typical (alias normal) objects in the
class C, whereas a role expression of the form •r, with r an atomic role, de-
notes the most typical instances of the relationship represented by r. To give
a glimpse of ALCH•’s expressive power, the TBox axioms •Muggle v ¬Wizard,
HalfBloodWizard v ∃casts.Spellu¬•Wizard, and •Wizard v ∃•attachedWith.Wand
specify, respectively, that “typical muggles are not wizards”, “half-blood wizards
cast spells but are not typical wizards”, and “typical wizards have a typical at-
tachment with a wand”. The RBox axiom masterOf v •attachedWith states that
“to be a master of (a wand) means to be typically attached with (that wand)”.
Furthermore, the ABox assertion ¬•attachedWith(lordVoldemort, elderWand) for-
malises the intuition that lordVoldemort is not typically attached with elderWand.

In this paper, we shall nevertheless focus on the fragment ALC• of ALCH•
without role hierarchies and allowing for typicality of concepts, only. The reason
for this choice is three-fold: first, it simplifies many of the technical definitions
and results to be presented below; second, the fragment we here consider is
strongly related to the defeasible DL ALC + T of Giordano et al. [24,25,28] and
to the extension of ALC with defeasible subsumption by Britz et al. [8,9,10],
which have become, in a sense, the prototypical defeasible DLs in the recent
literature, and third, the definition of a proof method for this fragment not based
on semantic tableaux is a problem that is interesting in its own right. (Needless
to say, the work we report on here can naturally serve as a springboard for the
definition of connection methods for more expressive defeasible DLs.)

The (finite) sets of concept, role and individual names are denoted, respec-
tively, with C, R, and I. With A,B, . . . we denote atomic concepts, with r, s, . . .
role names, and with a, b, . . . individual names. Complex concepts of ALC• are
denoted with C,D, . . . and are built according to the following grammar:

C ::= C | > | ⊥ | ¬C | C u C | C t C | ∀R.C | ∃R.C | •C (1)

The definitions of axiom, GCI, assertion, TBox and ABox are as in the classi-
calALC case. If T andA are, respectively, a TBox and an ABox, withK = (T ,A)
we denote henceforth a knowledge base (alias ontology).

Example 1 (Wizarding World Scenario). Assume we are interested in modeling
facts about the wizarding world and its wonderful features. We have the atomic
concepts C = {Muggle,Wizard,Spell} representing, respectively, the class of mug-
gles, wizards, and spells. As for the set of atomic roles, we have the singleton
R = {casts}, representing a cast of a spell (done by a wizard). The set of in-
dividuals I is {hermione, oculusReparo}. Below we have an example of an ALC•
knowledge base K = (T ,A) for the wizarding world scenario.

T =

{
•Muggle v ¬Wizard,
∃casts.Spell vWizard

}
A =

 Muggle(hermione),
Spell(oculusReparo),

casts(hermione, oculusReparo)
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The semantics of ALC• extends that of classical ALC and is in terms of
partially-ordered structures called ordered interpretations. Before introducing
these, we recall a few notions.

A binary relation is a strict partial order if it is irreflexive and transitive. If <
is a strict partial order on a given set X, with min<X

def= {x ∈ X | there is no
y ∈ X s.t. y < x} we denote the minimal elements of X w.r.t. <. A strict partial
order on a set X is well-founded if for every ∅ 6= X ′ ⊆ X, we have min<X

′ 6= ∅.

Definition 1 (Ordered interpretation). An ALC• ordered interpretation
is a tuple O def= 〈∆O, ·O, <O〉 s.t. 〈∆O, ·O〉 is a classical ALC interpretation, <O⊆
∆O ×∆O is a well-founded strict partial order.

Given O = 〈∆O, ·O, <O〉, the intuition of ∆O and ·O is the same as in a
standard ALC interpretation. The intuition underlying the ordering <O is that
it plays the role of a preference relation (or normality ordering): the objects
that are lower down in the ordering <O are deemed more normal (or typical)
than those higher up in <O. Within the context of (the interpretation of) a
concept C, <O therefore allows us to single out the most normal representatives
falling under C, which is the intuition of the semantics of concepts of the form •C:

Definition 2 (Semantics). An ordered interpretation O = 〈∆O, ·O, <O〉 in-
terprets the classical constructors in the usual way. Typicality-based concepts are
interpreted as (•C)O def= min<O CO.

Hence, to be a typical element of a concept amounts to being one of the most
preferred elements in the interpretation of that concept.

The definition of satisfaction of a statement α by an ordered interpretationO,
denoted as O  α, carries over from the classical case. If X is a set of statements,
with O  X we denote the fact O satisfies each statement in X, in which case
we say O is a model of X. We say O is a model of a knowledge base K = (T ,A),
denoted O  K, if O is a model of both T and A.

Given a knowledge base K and a statement α, we say that K preferentially
entails α, denoted K |= α, if, for every O such that O  K, we have O  α.

3 The Connection Method for ALC•

The connection method (CM) [2] consists in a validity procedure (in opposition
to refutation procedures such as tableaux and resolution), i.e., it tries to prove
whether a formula (query) is valid directly. If X = {ϕ1, . . . , ϕn} is a (finite) set
of first-order formulae, then in order to check whether X |= ψ, for some first-
order formula ψ, the validity of the formula (ϕ1 ∧ . . . ∧ ϕn)→ ψ (X → ψ), i.e.,
of ¬X ∨ψ, must be proven. Hence, CM requires the conversion of formulae into
the disjunctive normal form (DNF). Of course, when moving to the DL case,
the crux of the matter is precisely how to express the negation of the knowledge
base, along with doing away with variables and Skolem functions.
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ALC θ-CM [21] was the first CM proposed for DLs. Among its main features
is the fact it requires neither variables in the initial representation of the axioms
nor Skolem functions. Moreover, it includes a blocking solution to ensure termi-
nation, as commonly done in the field, and the definition of θ-substitution as a
suitable replacement for variable unification.

In this section, we introduce a connection method for ALC•, which we hence-
forth call ALC• θ-CM. It inherits the ALC θ-CM blocking, and deals with typi-
cality by building an auxiliary structure which stands for the preference relation.

3.1 Matrix Representation

The connection method requires formulae to be represented as matrices, com-
posed of clauses, which are conjunctions of literals, possibly negated. To better
handle concepts built using the typicality operator •, we introduce below a typ-
icality normal form (TNF).

Definition 3 (Pure disjunction and pure conjunction). A pure disjunc-
tion (Ď) and a pure conjunction (Ê) are recursively defined as follows:

Ď ::= C | ¬C | Ď t Ď | ∀R.C Ê ::= C | ¬C | Ê u Ê | ∃R.C

Pure disjunctions/conjunctions save memory and simplify proofs, see [21].

Definition 4 (Typicality normal form). Let Ê be a pure conjunction, Ď be
a pure disjunction, r be a role name, A and B be atomic concepts, and a and b
be individual names. A TBox axiom is in typicality normal form (TNF) if it
is in one of the forms below:

1. Ê v Ď;
2. A v ∃r.B;

3. ∀r.A v B;
4. A v •B;

5. A v ¬•B;
6. ¬•A v B;

7. •A v B.

An ABox axiom is in TNF if it is in one of the forms: (i) A(a), (ii) ¬A(a),
(iii) r(a, b), or ¬r(a, b). A knowledge base (KB) is in TNF if all its axioms are
in TNF. A query is in TNF if the queried axiom and the KB are in TNF.

The TNF allows us to deal only with axioms in specific forms so that our
matrix representation is simple and straightforward. An example of this simplic-
ity is the restriction on concept assertions: only assertions with atomic concepts
are allowed. Whether typical concept assertions or other assertions with complex
concepts are present in the ABox, these assertions can be rewritten and these
concepts relocated to the TBox as a subsumption axiom.

Proposition 1. Let K be an ALC• knowledge base. There exists an ALC• knowl-
edge base K′ in TNF such that if O is a model of K′, then O  α for all α ∈ K.

Since the method is designed to check for the validity of a knowledge base
(or query), we represent it as a ‘disjunction set’. This set contains the original
axioms negated, although DLs do not allow for the negation of axioms to be
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expressed. One way to solve this problem is to represent the knowledge base as
a single set, instantiating the TBox axioms, so that the TBox can be dropped.
This process is similar to the unfolding technique done by Baader et al. [1]; here
we chose to keep variables in order to avoid unnecessarily long matrices.

Definition 5 (Negation of a knowledge base). If K = (T ,A) is a knowledge
base, its negation is the set

¬Kdef={∃x(Du¬E)(x) | D v E ∈ T and x is a new variable}∪{¬γ | γ ∈ A} (2)

Definition 6 (Literal and clause). A literal has one of the forms A(x),
r(x, y), or their negations, where A is an atomic concept, r is an atomic role,
and x, y are variables or individuals. A clause is a set of literals. A <-clause
is a pair C< def= 〈C,<〉, where C is a clause and < is an auxiliary relation on
variables or individuals.

The <-clauses are obtained from axioms containing a typicality operator, as
per the rules in Table 1. A clause C which is not related to a relation < can be
seen as the <-clause 〈C, ∅〉.

Definition 7 (Matrix representation and graphical matrix). Let K be a
knowledge base and ¬K its negation. A <-matrix M< is the set of <-clauses
mapped from the axioms in ¬K as shown in Table 1. The graphical matrix of
M< displays clauses as columns; the relation < (the union of the relations of all
<-clauses in M<) associated to the matrix is shown as a lattice next to it.

Definition 8 (Path, connection, θ-substitution and θ-complementary
connection). A path through a <-matrix M< is a set composed by one literal
of each clause in M<. A connection is a pair of literals {E,¬E} with the
same concept or role name, but complementary to each other. A θ-substitution
assigns each variable with an individual or another variable. The application of
a θ-substitution to a literal is an application to its variables, i.e., θ(E(x)) =
E(θ(x)) and θ(r(x, y)) = r(θ(x), θ(y)). A θ-complementary connection is a
pair {E(x),¬E(y)} or {r(x, v),¬r(y, u)}, where θ(x) = θ(y) and θ(v) = θ(u).
The complement L of a literal L is ¬E, if L = E, and E, if L = ¬E.

Definition 9 (Set of concepts). If x is a variable or an individual, τ(x)def={E ∈
C | E(x) ∈ Path} is the set of concepts of x containing all concepts related
to x in a path.

Definition 10 (Admissible θ-substitution, preference condition). Let θ
be a term substitution. We say θ is admissible if the preference condition holds.
The condition is defined as follows: let x and y be variables or individuals in
M<, and < be the union of the relations of all <-clauses in M<. Then, the
preference condition holds after a θ-substitution if {(x, y),(y, x)} ∩ <+ = ∅,
with <+ the transitive closure of <.
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Table 1. Normal forms and their matrix representation. Let Ĉ be a pure conjunction,
Ď be a pure disjunction, A and B be atomic concepts, r be a role name, x, x′, y be
variables, a be an individual name, and let e be a new individual name.

α <-clausal form of ¬α Matrix Representation

Ĉ v Ď
〈{C1(x), · · · , Cn(x),
¬D1(x), · · · ,¬Dm(x)}, ∅〉



C1(x)
...

Cn(x)
¬D1(x)

...
¬Dm(x)



A v ∃r.B
〈{A(x),¬r(x, a)}, ∅〉,
〈{A(x′),¬B(a)}, ∅〉

[
A(x) A(x′)
¬r(x, a) ¬B(a)

]

∀r.A v B
〈{¬r(x, a),¬B(x)}, ∅〉,
〈{A(a),¬B(x′)}, ∅〉

[
¬r(x, a) A(a)
¬B(x) ¬B(x′)

]

A v •B
〈{A(x),¬B(x)}, {(y, x)}〉,
〈{A(x′), B(y)}, {(y, x), (y, x′)}〉

[
A(x) A(x′)
¬B(x) B(y)

]
x x′

y

¬•A v B
〈{¬A(x),¬B(x)}, {(y, x)}〉,
〈{A(y),¬B(x′)}, {(y, x), (y, x′)}〉

[
¬A(x) A(y)
¬B(x) ¬B(x′)

]
x x′

y

A v ¬•B
〈{A(x), B(x),¬B(e)}, {(e, x), (y, e)}〉,
〈{A(x′), B(x′), B(y)}, {(e, x), (e, x′), (y, e)}〉

 A(x) A(x′)
B(x) B(x′)
¬B(e) B(y)

 x x′

e

y

•A v B
〈{A(x),¬A(e),¬B(x)}, {(e, x), (y, e)}〉,
〈{A(x′), A(y),¬B(x′)}, {(e, x), (e, x′), (y, e)}〉

 A(x) A(x′)
¬A(e) A(y)
¬B(x) ¬B(x′)

 x x′

e

y

A(a) 〈{¬A(a)}, ∅〉
[
¬A(a)

]
¬A(a) 〈{A(a)}, ∅〉

[
A(a)

]
r(a, b) 〈{¬r(a, b)}, ∅〉

[
¬r(a, b)

]
¬r(a, b) 〈{r(a, b)}, ∅〉

[
r(a, b)

]
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3.2 The Calculus

We now formally define theALC• connection calculus (ALC• θ-CM). The novelty
here with regard to the previous classical DL-oriented calculus ALC θ-CM is
twofold: (i) the introduction of a new structure, the purpose of which is to denote
a preference relation, and (ii) the preference condition, which checks whether, in
a candidate connection, the variables involved (if any) are incomparable w.r.t.
the auxiliary ordering; in this case, the connection is allowed. By doing so, the
calculus conforms to the preferential semantics defined in Section 2.

Definition 11 (Multiplicity). Let M< be a <-matrix and C< be a <-clause
in M<. The multiplicity is a function µ : M< −→ N that assigns to each <-
clause in M< a natural number denoting the number of copies of that clause in
the matrix. Let iC< be the i-th copy of the clause C<, 1 ≤ i ≤ µ(C<). We say

that C<µ
def= {1C<, · · · ,µ(C

<) C<} is the set of copies of C< and

M<
µ

def=M< ∪
⋃

C<∈M<

C<µ

is the <-matrix M< combined with the clause copies.

Definition 12 (Blocking condition). Let θ(xµ) be a new individual, i.e.,
θ(xµ) 6∈ I. If τ(θ(xµ)) ⊆ τ(θ(xµ−1)), then θ(xµ) is blocked.

Definition 13 (ALC• θ-CM calculus). Let M< be a <-matrix and let α ∈M
be a <-clause (or the query <-clause). The rules of the ALC• connection calculus
(ALC• θ-CM) are as in Figure 1.

The rules in Figure 1 are applied in an analytical, bottom-up way and the
basic structure is the tuple 〈C,M<,Path〉, where clause C is the open sub-
goal, M< is the <-matrix, and Path is the active path. When the Copy rule is
applied, it has to be followed by the Extension or the Reduction rule. (Freitas
and Varzinczak [22] give examples of copying and blocking and we shall not do
so here.)

Definition 14 (Matrix validity). Let K be a knowledge base and M< the
<-matrix of the negation of K. We say that M< is valid if K |= ⊥.

Theorem 1 (Matrix characterization). A <-matrix M< is valid iff there
exists a multiplicity µ, an admissible θ-substitution and a set of connections
S such that every path through M<

µ contains a θ-complementary connection
{θ(L1), θ(L2)} ∈ S.

The tuple 〈µ, θ, S〉, where µ, θ, and S are as referred to in Theorem 1, is
called an ordered matrix proof.

Definition 15 (Preferential connection proof). Let 〈C,M<,Path〉 be a
connection calculus tuple. A preferential connection proof for this tuple
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Axiom (Ax) {},M<,Path

Start Rule (St)
C1,M

<, {}
ε,M<, ε

, with C1 ∈ {C | 〈C,<′〉 ∈ α}

Reduction Rule (Red)
C,M<,Path ∪ {L2}

C ∪ {L1},M<,Path ∪ {L2}
, with θ(L1) = θ(L2)

Extension Rule (Ext)
C1 \ {L2},M<,Path ∪ {L1} C,M<,Path

C ∪ {L1},M<,Path
,

with θ(L1) = θ(L2)

Copy Rule (Cop)
C′ ∪ {L1},M< ∪ {C<′′

2 },Path
C ∪ {L1},M<,Path

,

where C<′′
2 is a copy of C<′

1 , L2 ∈ C<′′
2 , θ(L1) = θ(L2), and the blocking condition holds

Fig. 1. The ALC• θ-CM calculus.

(also said the preferential connection proof for the <-matrix M<) is the appli-
cation of the rules of the calculus to the initial tuple 〈ε,M<, ε〉 (i.e., with C
and Path initially empty), using an admissible θ-substitution s.t. all leaves are
axioms (Ax).

Theorem 2 (Termination). Let M< be a <-matrix. Every sequence of rule
applications starting with the tuple 〈ε,M<, ε〉 terminates.

Theorem 3 (Soundness). If there exists a preferential connection proof for
〈ε,M<, ε〉 with an admissible θ-substitution, then there is a multiplicity µ s.t.
every path through M<

µ contains a θ-complementary connection.

Theorem 4 (Completeness). If every path through M<
µ contains a θ-comple-

mentary connection, then there is a preferential connection proof for 〈ε,M<, ε〉.

4 Example of Proof

In Example 1, assume we want to know whether Hermione is a Muggle, but not
a typical one. We can express this query as (Muggle u ¬•Muggle)(hermione).

Let us transform the query into TNF. As it is a concept assertion, it is
replaced by N1(hermione), adding Muggle u ¬•Muggle v N1 in the knowledge
base. Next, we rewrite this new axiom, based on the fact that AuN v C,B v N
is a satisfiability-preserving rewriting of AuB v C. We end up with the following
knowledge base:

T =


•Muggle v ¬Wizard,
∃casts.Spell vWizard,
Muggle u N2 v N1,
¬•Muggle v N2

 A =

 Muggle(hermione),
Spell(oculusReparo),

casts(hermione, oculusReparo)
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The query N1(hermione) is a logical consequence of K if the matrix M(¬K)∪
{{N1(hermione)}} is valid. The resulting matrix and its partial order are below:

M(x0) M(x1) c(x2, y1) M(x3) ¬M(x4) M(y3)

¬M(e) M(y0) S(y1) ¬M(h) ¬S(r) ¬c(h, r) N2(x3) ¬N2(x4) ¬N2(x5) N1(h)

W(x0) W(x1) ¬W(x2) ¬N1(x3)




x0 x1

e

y0

x4 x5

y3

Fig. 2. Matrix representation and its strict partial order. The graphical matrix displays
clauses as columns in the same order as shown in K. Gaps may happen in the matrix
since the clauses can have different lengths.

With the relation at hand, we are able to restrict the θ-substitutions. For
instance, in the example in Figure 2, we cannot do a θ-substitution for e and x0
because (e, x0) ∈ <, and it would violate the preference condition. However, we
can do a θ-substitution for e and x4. When we carry out this last substitution,
the lattice of the preference relation is modified during the construction of the
path to accommodate the θ-substitution, as shown in Figure 3.

x0 x1

{e, x4}

y0

x5

y3

Fig. 3. Strict partial order after the substitution θ(e) = θ(x4).

A proof in this method can be built in two equivalent ways: a simpler matrix
with connections and a proof in the calculus. In Figure 4, we show the proof
using the former: the matrix, the θ-substitution, and the final partial order. In
the figure, connections have been numbered to represent the order in which they
were built.

The same proof using the calculus is shown in Figure 5.
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¬M(e) M(x1) S(y1) ¬M(h) ¬S(r) ¬c(h, r) M(x3) ¬M(x4) M(y3) N1(h)

M(x0) M(y0) c(x2, y1) N2(x3) ¬N2(x4) ¬N2(x5)

W(x0) W(x1) ¬W(x2) ¬N1(x3)




1{x3=h}

2

{x4=h}3

4{x0=h}

5{x2=h}

6{y1=r}

7{y1=r}

8{y3=e}

9{x5=h}

θ = {x0, x2, x3, x4, x5\h; y1\r; y3\e}

{h, x3, x4, x0, x2, x5} x1

{e, y3}

y0

Fig. 4. Connection proof in matrix style, with θ-substitutions and preference relation.
Some literals have been rearranged for a better visualization of the connections.

Ax{},M, {N1(h),N2(h),¬M(h),W(h), c(h, r)}

Ax{},M, {N1(h),N2(h),¬M(h),W(h),S(r)} Ax{},M, {N1(h),N2(h),¬M(h),W(h)}
Ext{S(y1)},M, {N1(h),N2(h),¬M(h),W(h)}

Ext{c(h, y1), S(y1)},M, {N1(h),N2(h),¬M(h),W(h)}

Ax{},M, {N1(h),N2(h),¬M(h)}

Ax{},M, {N1(h),N2(h),¬M(h),¬M(e)}
Red{¬N2(h)},M, {N1(h),N2(h),¬M(h),¬M(e)}
Ext{¬M(e)},M, {N1(h),N2(h),¬M(h)}

Ax{},M, {N1(h),M(h)}

Ext(†)
{W(h),¬M(e)},M, {N1(h),N2(h),¬M(h)} Ax{},M, {N1(h),N2(h)}

{¬M(h)},M, {N1(h),N2(h)} Ax{},M, {N1(h)}
Ext{N2(h)},M, {N1(h)}

Ext{M(h),N2(h)},M, {N1(h)} Ax{},M, {}
Ext{N1(h)},M, {}

St
ε,M, ε

Fig. 5. Connection proof in calculus style. The arrows copy the two subproofs generated
after the extension rule Ext(†). It must also include the θ-substitution and partial order
of Figure 4 (not duplicated here for the sake of space).
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5 Concluding Remarks

In this work, we have defined a connection method for ALC•, a commonly con-
sidered fragment of the defeasible description logic ALCH• [31]. The calculus
extends the one by Freitas and Otten, ALC θ-CM [21], in a number of aspects:
(i) it complies with the preferential-DL semantics developed by Britz et al. and
by Giordano et al. and which is widely assumed in the literature on reasoning
with defeasible ontologies; (ii) it relies on a tailor-made normal form we in-
troduced to cater for typicality in concepts, and (iii) it includes a new internal
structure, namely a preference relation on objects, which is built during the proof
process and allows for an elegant handling of connections involving typicality.

As already alluded to in the introduction, the work here reported makes the
first steps in the study of connection methods as viable alternatives for reasoning
with defeasible ontologies. It is therefore part of a broader long-term agenda.
Immediate next steps stemming from the present work are: (i) extending the
method to the full language of ALCH•, in particular to handle typicality of role
names and in role hierarchies, and (ii) endowing Raccoon with the ability to
reason over defeasible extensions of ALC.

The reader conversant with preferential reasoning would have noticed that
in this work we assume preferential entailment, which is a Tarskian notion of
consequence and therefore monotonic. As pointed out in the literature on non-
monotonic reasoning, preferential entailment is not always enough for reasoning
defeasibly with exceptions. Stronger, more robust, forms of entailment are often
called for and one particular definition thereof, namely the rational closure of a
defeasible ontology has been thoroughly investigated in the context of defeasible
ALC [8,18,28]. Nevertheless, a case has been made for sticking to preferential
reasoning in some contexts [26] or for investigating weaker forms of rational-
ity [7,23], which suggests the debate around rational closure being the baseline
for defeasible reasoning remains, in a sense, open.

In any case, the aforementioned approaches to the computation of the ratio-
nal closure of a defeasible knowledge base rely on a number of calls to a classical
(monotonic) reasoner and therefore the availability of a method for preferential
reasoning in ALC• as the one we propose here is an important step in the inves-
tigation of stronger forms of entailment in the presence of typicality operators.

The limitations of adopting a single preference ordering in modelling object
typicality have already been pointed out by Britz and Varzinczak [15]. They
introduce a notion of context in a multi-preference semantics making it possi-
ble for some objects to be more typical than others w.r.t. a context, but less
typical w.r.t. a different one. Part of our research agenda is therefore to ex-
tend the method here proposed to deal with multiple preference relations. The
tableau system of Britz and Varzinczak can serve as a springboard with which
to investigate such an extension to contextual defeasible reasoning.
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