
Upwardly Abstracted Definition-Based
Subontologies?

Ghadah Alghamdi1[0000−0003−3836−1824],
Renate A. Schmidt1[0000−0002−6673−3333], Warren Del-Pinto1, and

Yongsheng Gao2[0000−0002−3468−2930]

1 The University of Manchester, UK
2 IHTSDO (SNOMED International), UK

Abstract. In this paper, we present a method for extracting subontolo-
gies from ELH ontologies for a set of symbols. The approach is focused
on the generation of upwardly abstracted definitions, which is a tech-
nique for computing definitions expressed using closest primitive ances-
tors. The subontologies returned by the method are evaluated for quality
and compared to extracts computed with locality-based modularisation
and uniform interpolation methods. Our subontology generation method
produces promising results in terms of size and relevance to the needs of
domain experts.

1 Introduction

Ontologies are formalised representations of domain knowledge. SNOMED CT,
the Gene ontology (GO) and the NCIt ontology are just a few of the major
ontologies used in the biomedical domain [7, 9, 12, 28, 30, 35]. Due to the large
size and complexity of such ontologies, it is necessary to facilitate their use for a
variety of applications including analysis, curation, debugging, and integration.
To overcome the size issue, domain-specific subsets of concept names (reference
sets) such as the ERA reference set [32] are used in SNOMED CT. Reference
sets assist in limiting querying, searching, and data entry to a part of the ap-
plication domain, and are carefully created to represent specific definitions from
the source ontology indicating their intended function. Retrieving information
for such reference sets requires querying the ontology in its entirety. In order to
minimise the computational cost and overhead, rather than using a flat list of
concepts, it is advantageous to be able to use instead a subontology that encom-
passes all semantic relationships associated with the concepts in the reference
set.

There are various methods and approaches for extracting subontologies in the
literature, including graph-based ontology partitioning [8], locality-based modu-
larisation [10], and uniform interpolation [16]. Syntactic locality-based modular-
isation (SLBM) is a method that is widely used for the purpose of importability
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and reuse. The method computes a subset of the stated axioms of an ontology
that covers information related to the input signature. Modules can be large and
can contain information outside the meaning of the input signature [10].

Another method for producing compact representations is uniform interpo-
lation (UI), a logic-based method for computing restricted views of an ontology
which faithfully captures information about the set of specified concepts and role
names. This is accomplished by forgetting symbols that are not contained in the
input signature [16,22,24]. Because the axioms within the UIs are rewritten dur-
ing the forgetting process, the syntactic form of axioms may differ significantly
from those in the original ontology.

Locality-based modularisation and uniform interpolation are useful for a va-
riety of applications such as ontology summarisation, reuse, analysis, logical dif-
ference, and information hiding [6, 15, 18, 23, 34]. To be useful to the SNOMED
community, subontologies must be in the language of SNOMED CT and must
also satisfy SNOMED modelling guidelines. While modules satisfy these require-
ments because they contain only axioms from the original ontology, they tend
to contain an excessive number of symbols that are not part of the input signa-
ture [4, 17, 21, 33]. By contrast, UIs contain only those symbols specified in the
input signature but rewrite axioms and are harder to compute even when com-
bined with modularisation [4]. To be beneficial to SNOMED users, a different
notion of subontology is needed.

In this paper, we introduce a notion of subontology based on the idea of
abstracted definitions, because SNOMED CT users are already familiar with
a variety of normal forms [11, 27]. Our abstracted definitions follow the same
format as the commonly used proximal primitive normal form in SNOMED
CT. Proximal primitive normal forms explicitly state all possible constraints
and defining characteristics of particular concepts to facilitate implementation,
recording, storage, and retrieval within SNOMED CT. Additionally, such forms
enable more precise inferred parent identification of focus concepts after running
a classifier, they simplify parent relationship maintenance, and improve the ac-
curacy and breadth of super and subconcepts [31]. We found that the generation
of abstracted definitions aides the inclusion of information that is truly necessary
for the resulting subontologies. Our method is targeted at acyclic ontologies such
as SNOMED CT, the Gene ontology, and the Sequence ontology.

The main contributions of the paper are threefold:

– An investigation of computing upwardly abstracted definitions for ELH on-
tologies that satisfy common modelling guidelines used in SNOMED CT,
one of the most widely used biomedical ontologies.

– A method for extracting subontologies based on the principle of abstracted
definitions.

– An evaluation of the subontology extraction method and comparison with
two existing subontology extraction methods, namely the bottom variant of
SLBM, and the UI method, in order to comprehend benefits of subontologies
based on the abstracted definitions.

The paper is organised as follows. Section 2 gives preliminary definitions
and background information. Section 3 goes into detail about the upwardly ab-
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stracted definitions. The aim, requirements, algorithm and an example of the
subontology generation method are presented in Section 4. Section 5 discusses
related notions including SLBM and uniform interpolation. In Section 6, we eval-
uate the quality of the returned subontologies, and compare the results of our
subontology generation method with SLBM and uniform interpolation in terms
of precision and extract size. Finally, we conclude in Section 7.

2 Preliminaries and Background

Let NC and NR be disjoint sets of concept and role names respectively. The union
of such sets form the signature of an ontology O. The signature sig(ξ) is a set
of concept and role names that occur in ξ, where ξ is any syntactic object or
ontology. The set of EL-concepts C, and the sets of ELH-axioms α are built
according to the grammar rules: C ::= A | C u C | ∃r.C and α ::= C v C | C ≡
C | r v s where A ∈ NC and r, s ∈ NR.1 An ELH-TBox is a finite set of ELH-
axioms. The semantics, including the notions of model, satisfaction of concepts,
axioms and TBoxes as well as the logical consequence relation (entailment), are
defined in the usual manner; see, for example [2].

A terminology is a TBox that contains only axioms of the form A ≡ C or
A v C, with A appearing not more than once on the left-hand side of an axiom.
If A does not depend on itself, i.e., does not occur in the set of symbols required
to define itself for any A ∈ NC, the terminology is acyclic.

Classification is a standard reasoning task that computes a hierarchyH forO.
A hierarchyH is a finite set of subsumption axioms A v B such thatO |= A v B,
where A and B are concept names in sig(O).

Figure 1 shows an example of an ELH biomedical terminology, adapted
from [5]. The axioms α1 to α5 are concept definitions of the form A ≡ C or
A v C, where A is the described concept. Definitions, with both necessary and
sufficient conditions (A ≡ C), are critical in terminologies because they assist in
determining which concepts are classified under them in the concept hierarchy.
On the other hand, concepts with necessary conditions only (A v C) affect how
a concept is classified, but have no effect on which concepts can be classified
under them [25].

Our study on generating upwardly abstracted definitions is limited to axioms
of the form A ≡ C or A v C in an ELH ontology or terminology, as the majority
of biomedical ontologies lack GCIs of the form C v A, C v D, or C ≡ D, where
C and D denote complex concepts and A denotes a concept name.

α1 : InflammatoryDisorder ≡ Disease u ∃involves.Inflammation,
α2 : LiverDisease ≡ Disease u ∃location.Liver,
α3 : Hepatitis2 ≡ LiverDisease u ∃involves.Inflammation,
α4 : LargeLiver v LiverDisease u ∃location.EntireLiver,
α5 : EntireLiver v Liver

Fig. 1. Fragment of a biomedical terminology illustrating the ELH logical constructs

1 These grammar rules are sufficient for the ELH fragment we are considering.
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3 Upwardly Abstracted Definitions

We start by defining the key concepts used in this article.

Definition 1 (Defined (Primitive) Concept). Let O be an ontology, and C
an EL-concept other than A. A concept name A is a defined concept in O if
there is an axiom of the form A ≡ C in O. Otherwise, it is called a primitive
concept.

Regardless as to whether a named concept A is defined or primitive, its
abstracted definition is computed by inferring its closest primitive ancestor(s) in
the subsumption hierarchy. Closest primitive ancestors are defined as follows.

Definition 2 (Closest Primitive Ancestor). Let O be an ontology, A,P ∈
sig(O) where A is a defined or a primitive concept name and P is a primitive
concept name. We say that P is a closest primitive ancestor to A in O if O |=
A v P and there does not exist a primitive concept name Z ∈ sig(O) (other
than P or A) such that O |= A v Z and O |= Z v P . The set of closest
primitive ancestors to A will be denoted by PA.

We define abstracted definitions as follows.

Definition 3 (Upwardly Abstracted Definition). Let O be an ontology,
and A a defined (primitive) concept name in O. The abstracted definition of
A is A ≡ PA u EA (A v PA u EA), where PA is a conjunction of the closest
primitive ancestors to A, while EA is a conjunction of existential restrictions
(of the form ∃r.C) required to complete the abstracted definition of A such that
O |= A ≡ PA u EA (or O |= A v PA u EA), and sig(PA u EA) ⊆ sig(O).

Example 1. Consider the ontology O = {A ≡ D u ∃r.C1, D ≡ P u ∃r.C2, P v
∃r.C3}. An upwardly abstracted definition of A is A ≡ P u∃r.C1u∃r.C2u∃r.C3.

Different equivalent logical forms of SNOMED CT concept definitions are dis-
cussed in [27]. Two distinct forms of proximal primitive modelling is mentioned
there: first, a short canonical form in which only the existential restrictions that
distinguish the concept from its closest primitive ancestors are listed. For in-
stance, in Example 1, the short canonical form of A is A ≡ P u ∃r.C1 u ∃r.C2.
The second is the long canonical form, which lists all possible existential restric-
tions, which can be viewed as the defining characteristics of the concept being
defined [27]. In Example 1, the long canonical form of A is A ≡ P u ∃r.C1 u
∃r.C2 u ∃r.C3. According to Definition 3, both short and long canonical forms
are abstracted definitions. This illustrates that abstracted definitions are not
unique.

The following example illustrates that abstracted definitions may also be
weaker than the original definitions when O is an ontology rather than a termi-
nology.
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Example 2. LetO = {α1, α2, α3}, where α1: A ≡ Du∃r.C, α2: D ≡ Pu∃r.C and
α3: A v P2. We notice that both ab1: A ≡ P u∃r.C and ab2: A ≡ P uP2 u∃r.C
are entailed by O and are in fact abstracted definitions of A. Let’s consider
the ontologies O1 = {ab1, α2, α3} and O2 = {ab2, α2, α3} in which the original
definition α1 of A is respectively replaced by ab1 and ab2. We observe that
O ≡ O1 but O 6≡ O2 because O2 6|= O as O2 6|= α1 since ab2 is weaker than α1.

The abstracted definition of A in O computed by our algorithm is the second
case (ab2) as part of its search for all of the closest primitive ancestors. As seen
in the example, this definition is weaker than the original definition. To define
the logical strength of abstracted definitions, we use the following definition:

Definition 4 (Logical Strength). An ontology O′ is weaker than another
ontology O if O |= O′ but O′ 6|= O. An axiom α′ is weaker than another axiom α
in O if O |= α′ but O\{α} ∪ {α′} 6|= α.

4 Computing Subontologies

Our aim is to compute for a given set of symbols a domain-specific subontology
from a source ontology that satisfies the following requirements:

1. The subontology must capture the meaning of the concepts in the focus set,
using whenever possible abstracted definitions in long canonical form.

2. The transitive closure of concept name subsumption of the subontology is
a restriction of the original ontology’s transitive closure of concept name
subsumption over the signature of the subontology.

These requirements were established with a leading terminologist at SNOMED
international.

Our method to compute subontologies is presented in Algorithm 1. The al-
gorithm takes as input an ontology O and a focus set ΣF of concept and role
names to generate a subontology S. The first step of the algorithm initialises
the output S, and the set of existential restrictions E , and Σ+ is set to ΣF .
The second step classifies O using the ELK reasoner [14] to obtain the concept
hierarchy H, which is then used throughout the algorithm to compute the ab-
stracted definitions for focus concepts correctly, i.e., to compute concepts that
can be related to a focus concept via inferred relations. As a result, the correct
subontology subsumption hierarchy is derived.

Computing an abstracted definition for a focus concept A ∈ ΣF calls the
method AbstractedDefinitionExtraction presented in Algorithm 2. The method
starts with computing the Ancestors of A using H. The Ancestors set consists
of all concept names in sig(O) that subsume A. In Line 2, the function Com-
putePrimitiveAncestors filters the set of ancestors by determining their status inO
as defined or primitive in order to obtain just the primitive concept ancestors.
We use O to obtain the existential restrictions EA that occur in the right-hand
side of A’s definition and all of A’s ancestors’ definitions, which is computed by
the function ComputeExistentialRestrictions in Line 3.
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Algorithm 1 SubontologyExtraction(O, ΣF )

Input: Ontology O, Focus set ΣF

Output: Subontology S
1: S := ∅, Σ+ := ΣF , E := ∅.
2: H := Classify(O)

3: for A ∈ ΣF do

4: if A is a defined concept name in O then

5: A ≡ P ′
A u E ′A := AbstractedDefinitionExtraction(A, O, H, TRUE)

6: else A v P ′
A u E ′A := AbstractedDefinitionExtraction(A, O, H, FALSE)

7: Σ+ := Σ+∪ sig(A ≡ (v) P ′
A u E ′A)

8: E := E ∪ GetExistentialRestrictions(A ≡ (v) P ′
A u E ′A)

9: S := S ∪A ≡ (v) P ′
A u E ′A

10: S := S ∪ ComputeAdditionalAxioms(Σ+,E , H, O)

Algorithm 2 AbstractedDefinitionExtraction(A, O, H, isDefinedConcept)

Input: The concept to define A, Ontology O, Concept hierarchy H, Defined concept

checker isDefinedConcept

Output: The abstracted definition of A

1: Ancestors := ComputeAncestorsOfA(A, H)

2: PA := ComputePrimitiveAncestors(Ancestors, O)

3: EA := ComputeExistentialRestrictions(A, Ancestors, O)

4: P ′
A u E ′A := RemoveRedundantConcepts(PA, EA, H, O)

5: if isDefinedConcept then

6: return A ≡ P ′
A u E ′A

7: else return A v P ′
A u E ′A

The method RemoveRedundantConcepts in Line 4 returns the set (P ′A u E ′A),
which is a conjunction of the closest primitive ancestors and the most specific
existential restrictions, after the removal of possible redundant concepts from
the set of primitive concepts PA and existential restrictions EA. A concept D is
regarded as redundant if it occurs in another concept C where D is equivalent to
or subsumes C. Redundant concepts in the sets PA and EA are removed according
to the general rule C u D ≡ C ⇔ C v D. The removal of redundant concepts
from the set PA results in the set of closest primitive ancestors. To remove
redundant existential restrictions from the set EA, we follow the rules in Figure
2. For example, if the set E has two existential restrictions, E := ∃t.(∃r1.A1 u
... u ∃rn.An) and G := ∃u.(∃s1.B1 u ... u ∃sm.Bm), we check whether E v G.
We do this by using the first rule to check if the outer role t in E is equivalent
to or subsumed by the outer role u in G. If this is the case, then we continue
with the first rule to check if an existential restriction ∃ri.Ai is subsumed by
or equivalent to an existential restriction ∃sj .Bj under the nested roles t and u,
respectively. Then, following rule 2, we determine if the subsumption checking
performed using rule 1 is sufficient for all ∃ri.Ai to be subsumed by all ∃sj .Bj .
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If this is the case, then it means that E v G, and G can be removed from the
set E .

1.r v s, C v D ⇒ ∃r.C v ∃s.D
2.∀i = 1..n ∃j = 1..m ∃ri.Ci v ∃sj .Dj ⇒ ∃t.(∃r1.C1 u .. u ∃rn.Cn) v ∃t.(∃s1.D1 u .. u ∃sm.Dm)

Fig. 2. Properties of subsumption used as rules to remove possible redundant existen-
tial restrictions where C and D are EL-concepts and r, s and t ∈ NR

Algorithm 2 concludes by returning the abstracted definition of A as either
A ≡ P ′A u E ′A or A v P ′A u E ′A depending on whether A is a defined or a
primitive concept in O. Lines 7 and 8 of Algorithm 1 add the signature, and
the existential restrictions of the generated abstracted definition to the sets Σ+

and E , respectively. Line 10 returns the subontology S after using the function
ComputeAdditionalAxioms to add extra axioms to complete the hierarchy of the
subontology. This is performed by looking for possible subsumption relations
between concept and role names in the set Σ+, as well as between concept
names in Σ+ and the existential restrictions in E . For example, the axiom α3 in
Figure 3 is an additional axiom that is required for the subontology hierarchy
to be complete.

Our method abstracts the definitions based on the closest primitive ancestors
in order to include only what is truly necessary in the resulting subontology. For
example, if a user is interested in computing a subontology using the ontology in
Figure 1 for the focus set concepts A1:Hepatitis2 and A2:LargeLiver, then ap-
plying Algorithm 1 for A1 and A2 results in the subontology shown in Figure 3. It
includes abstracted definitions of A1 and A2, where the concept A3:LiverDisease
occurring in the original definitions of A1 and A2 has been abstracted away. The
use of A3 would require the inclusion of its definition and increase the size of
the desired subontology without adding additional meaning. This is because A3

carries the same information that A1 and A2 inherit, and thus, the definition of
A3 is superfluous with respect to the focus set {A1, A2} of interest to the user.
We refer to the extra symbols occurring in the signature of the generated focus
set definitions as the supporting set, e.g., the concept EntireLiver occurring in
the definition of LargeLiver is a supporting concept.

α1 : Hepatitis2 ≡ Disease u ∃involves.Inflammation u ∃location.Liver
α2 : LargeLiver v Disease u ∃location.EntireLiver
α3 : EntireLiver v Liver

Fig. 3. The subontology for focus concepts A1, A2

We define a subontology for a given set of focus symbols ΣF as follows.

Definition 5 (Focus Set Subontology). Let O be an ELH ontology and ΣF a
focus set. S is a focus set subontology of O w.r.t. ΣF if the following conditions
are satisfied: (i) ΣF ⊆ sig(S); (ii) for every ELH-axiom α where sig(α) ⊆ sig(S)
we have: (a) S |= α =⇒ O |= α and (b) if α is of the form A v B, then
O |= α =⇒ S |= α, where A and B are concept names.
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Depending on the input ontology, our algorithm generates two types of sub-
ontologies: focus set subontologies, which may contain weaker abstracted defini-
tions (cf. ab2 in O2 in Example 2), and equivalent focus set subontologies, which
contain abstracted definitions that are equivalent to their original definitions
in O for all concepts in the focus set ΣF . We define a subontology that contain
equivalent focus set abstracted definitions for all focus concepts in ΣF as follows.

Definition 6 (Equivalent Focus Set Subontology). Let O be an ELH-
acyclic terminology, and S a focus set subontology of O w.r.t. ΣF . We say that S
is an equivalent focus set subontology when O |= α⇔ S |= α for all abstracted
definitions α of focus concepts in ΣF in S.

In order to obtain an equivalent focus set subontology, the input ontology to
our method has to be ELH-acyclic terminology.

5 Related Notions

5.1 Syntactic Locality Based Modularisation

SLBM is widely used in ontology engineering to facilitate ontology reuse and
import [26]. It is available as part of the OWL API tool [13]. The method takes
as input an ontology O and a seed signature Σ, and supports computing three
distinct module types: bottom (⊥), top (>), and nested (⊥>∗) modules. In
essence, SLBM internally extends Σ to cover the upward (downward) views
of Σ until it reaches the top (bottom) symbol in O, as specified by the ⊥ (>)
types. The ⊥>∗-type is an iteration of > and ⊥ types, returning a module with
symbols contained within Σ’s ⊥ (>) views. We use the ⊥ type in our evaluation
(Section 6) because it is the most relevant type for how our method works, which
is to generate an upwardly expanded extract for an input focus set.

SLBM retains the original forms of axioms in the resulting modules. However,
for the purpose of extracting definitions of concepts inΣ, modules computed con-
tain a significant number of supporting symbols. For instance, as demonstrated
in [4], computing ⊥>∗-modules from SNOMED CT using NHS subsets results
in modules with a precision rate of 72%. Very low average precision rate (1.14%)
was obtained in a research examining module extraction using a medical corpus
annotated with SNOMED CT concepts, performed for usability purposes [21].

5.2 Uniform Interpolation

Uniform interpolation is a task that allows potentially undesirable symbols to
be eliminated from an ontology without affecting the meaning of the remaining
symbols in the ontology [16,19,22,24,36]. Theoretically, it has been proved that
the size of the given UIs can be exponentially three times larger than the size of
the input ontology [24]. However, an evaluation in [3] with real-world signatures
demonstrated that the size is less than the original ontology, with a precision rate
of 100% for all resulting UIs except for a few that contained definer names [4].
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Computing UIs for focus set concepts produces ontologies too small to include
definitions of the focus concepts. For example, computing a UI for A1: Hepatitis2
and A2:LargeLiver for the ontology in Figure 1, requires forgetting the rest of the
ontology’s symbols. This results in the UI {A1 v >, A2 v >}, because the RHSs
of the definitions of A1 and A2 are eliminated. More informative UIs can be
generated by first extending the focus set using a signature extension algorithm
as in [4]. However, the resulting UIs had rewritten axioms (not in their original
form), which were not satisfactory for SNOMED CT users.

6 Evaluation

The goal of the evaluation is to test empirically the following three hypotheses
about our method: (1) The abstracted definitions in the generated subontologies
are equivalent to their original definitions when the input ontology is a termi-
nology (Section 6.1). (2) Abstracted definitions aid in the reduction of axioms
deemed redundant in relation to the input focus set. The study of the signature
of the bottom modules demonstrates this (Section 6.2). (3) Subontologies are
smaller in size than bottom modules, and smaller or equal in size to the UIs (Sec-
tions 6.2 and 6.3). To do this, we developed a Java prototype implementing our
method using the OWL API. 2 We employed two distinct ontologies, SNOMED
CT (July 2017) and the Gene ontology (GO) (February 2021). GO does not meet
the requirements of a terminology, as it may contain more than one axiom for
a concept name A. Both SNOMED CT and GO lack GCI axioms of the forms
C v A and C v D where C and D are EL-concepts.

We compared the produced subontologies to the two extract types outlined in
Section 5: the ⊥-modules and the UIs. We computed UIs using a newly developed
UI tool for ELH ontologies [20]. The ⊥-modules were generated using the OWL
API’s built-in SLBM tool. The comparisons involve a size and precision rate
analysis of the generated extracts.

SNOMED CT had a total of 335 245 logical axioms, 335 225 concept names
and 97 role names. The Gene ontology had a total of 102 203 logical axioms,
44 085 concept names,3 and 8 role names. Both ontologies are in the scope of
ELH, with the exception of one role chain axiom (r ◦ s v r) in SNOMED CT
and one inverse role, 29 disjoint classes, four transitive roles, and two role chain
axioms in the Gene ontology. Non ELH-axioms were omitted.

As focus sets, we used five sets of human and animal medical conditions for
computing SNOMED CT extracts used in the experiments of [1]. The supple-
mentary information of these experiments includes a list of 20–40 concept names
for each of the medical conditions.4 Due to the small number of concept names
provided, we computed descendant concepts of these to increase the size of the
generated extracts, which can provide better insights into the types of extracts
we considered. As a result, the focus sets used consisted of 4401–14 828 concept

2 http://owlapi.sourceforge.net/
3 This number excludes 6 430 deprecated concepts that exist in the version 01-02-2021
4 https://tinyurl.com/medical-conditions-signature

https://tinyurl.com/medical-conditions-signature
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Table 1. Results of logical strength test of the abstracted definitions of medical con-
ditions and gene slim focus sets in Snomed CT (SCT) and Gene Ontology (GO),
respectively.

Quality criteria ΣF definitions’ logical strength

Focus set # Equivalent ΣF definitions # Weaker ΣF definitions Total ΣF

Anaemia (SCT) 4401 0 4401
Arthritis (SCT) 7805 0 7805
Diabetes (SCT) 74291 0 74291
Hypertension (SCT) 14828 0 14828
Obesity (SCT) 9885 0 9885

goslim mouse (GO) 42 2 44
goslim pir (GO) 452 1 453
goslim plant (GO) 96 0 96
goslim pombe (GO) 56 2 58
goslim yeast (GO) 160 3 163

Table 2. Number of logical axioms, concepts and roles in the different types of extracts
for five focus sets in Snomed CT and Gene Ontology.

Entity type Logical Axioms Concepts Roles Logical Axioms Concepts Roles Logical Axioms Concepts Roles

Snomed CT Subontologies Bottom modules UIs

Min. 6 712 6 398 19 17 706 17 699 38 N/A N/A N/A
Max. 86 819 86 608 46 102 628 102 617 55 N/A N/A N/A
Avg. 27 242.4 27 149 31.4 39 219 39 210 47 N/A N/A N/A
Med. 13 816 13 904 31 22 917 22 907 47 N/A N/A N/A

Gene Ontology Subontologies Bottom modules UIs

Min. 79 82 2 467 301 8 82 82 2
Max. 639 641 4 2 243 1 554 8 746 641 4
Avg. 259.4 262 3.2 12 37.8 809.2 8 302.8 262 3.2
Med. 155 158 3 1 021 626 8 172 158 3

names. For the Gene ontology, we used five focus sets of the GO slim sets pro-
vided in [29]. Each set represents a flat list of concept and role names that are
specific to certain species or organisms. All experimental data used in this study
is available at https://tinyurl.com/evaluation-data.

Given how the three methods work, we used the following input sets to
generate the different extracts: (1) The focus set was used as the input signature
for computing the bottom modules and subontologies, because both SLBM and
our subontology generation method extend the signature as needed. (2) As input
to the UI method, we used the signatures of the computed subontologies. As
mentioned, UIs for focus sets would not adequately capture their definitions.

6.1 Logical Strength of the Upwardly Abstracted Definitions

To determine the logical strength of the generated abstracted definitions, the
test of Definition 4 was used. We found that when using SNOMED CT to com-
pute subontologies, the abstracted definitions generated have the same logical
strength as the original definitions. This is because SNOMED CT is a terminol-
ogy that includes no more than one concept definition for a concept name A.
On the other hand, when the Gene ontology is used, the abstracted definitions
derived may be weaker than the original definitions. The count numbers of the
logical strength of the abstracted definitions in the subontologies of SNOMED
CT and the Gene ontology are shown in Table 1.

https://tinyurl.com/evaluation-data
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Table 3. The values of Precision, |Region|, |sig(S)| and |sig(M)| of different medical
conditions and gene slim focus sets in Snomed CT (SCT) and Gene Ontology (GO),
respectively.

Focus set Precision |Region| |sig(S)| |sig(M)|

Anaemia (SCT) 0.28 12%, 2006 6436 22960
Arthritis (SCT) 0.51 22%, 1887 9199 17737
Diabetes (SCT) 0.84 99.9%, 16030 86627 102664

Hypertension (SCT) 0.58 14%, 2025 19705 33758
Obesity (SCT) 0.74 22%, 1157 13935 19166

goslim mouse (GO) 0.26 1%, 3 84 309
goslim pir (GO) 0.41 2%, 20 645 1562

goslim plant (GO) 0.31 3%, 9 161 501
goslim pombe (GO) 0.22 1%, 3 145 634
goslim yeast (GO) 0.26 2%, 16 291 1080

6.2 Subontology Results Against Bottom SLBM

Table 2 shows that the number of symbols (concepts and roles) in the bottom
modules were significantly larger than those in the subontologies. The average
numbers of logical axioms, concepts, and roles in SNOMED CT’s subontologies
were 36.04%, 36.35%, and 39.79% less than the average numbers of those in the
bottom modules, respectively.

Table 3 shows the computed values for Precision and Region for each bottom
module, as well as the number of signatures for subontologies denoted by |sig(S)|
and for bottom modules denoted by |sig(M)| for each SNOMED CT and Gene
ontology focus set. We use the formula given in [4] to define Precision(extract, S)
as (|(sig(S)∩ sig(extract))| ∪ {>}/|sig(extract)|). This gives the ratio of relevant
symbols that occur in the signature of a subontology over the number of symbols
in an extract. We regard an extract to be precise if it contains no symbols
that are not part of the subontology’s signature. This is because subontologies’
signatures correspond to the focus set definitions and supporting set inclusions,
which represent the necessary information about the input focus set that a user
is interested in. As can be seen from Table 3, precision ratings for the bottom
modules range between 28% and 84% for SNOMED CT focus sets and are almost
half that for the Gene ontology focus sets (22%–41%).

To quantify the benefits of abstracting focus concepts’ definitions in terms of
reducing the size of an extract, we examined the set of symbols in the bottom
modules that occur outside the set of their corresponding subontologies’ signa-
tures. Specifically, we calculated the number of concepts that exist in the region
between the concepts in the focus set ΣF and their closest primitive ancestors,
denoted by PΣF

using the formula:
Region(ΣF , PΣF

) := (Ancestors of ΣF ∩ Descendants of PΣF
).

The definitions of concepts found in the Region set can be viewed as redundant
information in relation to the input focus set definitions. This is because defini-
tions of concepts in the Region set should carry the same information that the
abstracted definitions of focus concepts inherit, which is especially true when the
input ontology is a terminology. Thus, incorporating definitions of focus concepts
following abstraction is sufficient for including information that is genuinely im-
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portant in the extract, as the abstraction process aids in the inclusion of all of
the focus concept’s defining characteristics. As can be observed from Table 3,
99.9% of concepts that exist outside the subontology’s signature in the Diabetes
bottom module occur in the Region set, demonstrating that the size of such an
extract can be greatly reduced by abstracting the definitions of focus concepts
to their closest primitive ancestors.

6.3 Subontology Results Against UI

The UI tool was unable to generate views for the SNOMED CT medical condi-
tions focus sets (Table 2). This is due to the fact that forgetting becomes more
difficult when the input signature is small in comparison to the source ontology’s
signature, particularly when forgetting from a very complex, large ontology such
as SNOMED CT [4].

As shown in Table 2, the number of concepts and roles for subontologies and
UIs for the Gene ontology focus sets coincide, as the UIs were computed for the
subontologies’ signatures, confirming the expected 100% precision of UI. On the
other hand, the results show that the number of logical axioms in UIs is greater
than that in subontologies. There are two main explanations for this observation.
The first is that the UI method has incorporated inferred axioms of the form
C v A, where A denotes a focus or a supporting concept name. For example,
forgetting B1 and B2 from B1 ≡ C, B1 v B2, B2 v A, where all symbols in C
are in the signature of the subontology, derives C v A. The second is that when
a focus concept A is described by multiple axioms, our method generated an
abstracted definition that condenses these multiple axioms into a single axiom.
For instance, the UI might contain two axioms for A, A ≡ C1 and A v C2, while
our method infers the axiom A ≡ C1 u C2, which results in fewer axioms in the
subontology, but can also result in a weaker definition for A.

7 Conclusion

We presented a method of extracting subontologies, which is based on abstracted
definitions for given sets of focus symbols. Such abstracted definitions are mo-
tivated by normal forms used in proximal primitive modelling in the SNOMED
CT community. We empirically demonstrated that when the input ontology is a
terminology, the method generates equivalent focus set subontologies; however,
when the input ontology is not a terminology, the method may yield subontolo-
gies with weaker definitions.

In comparison to bottom modules, our abstracted definition-based subon-
tologies contain significantly fewer supporting set symbols and contained fewer
axioms. The sizes of the Region set in the bottom modules give additional in-
sights into why the notion of abstracted definitions in subontologies produce
significantly smaller extracts than bottom modules while retaining all of the
defining characteristics of the focus set concepts.
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