
Enumerating Answers to Ontology-Mediated
Queries: Partial Answers and Efficiency

(Extended Abstract)

Carsten Lutz and Marcin Przyby lko

Department of Computer Science, University of Bremen, Germany

Ontology-mediated query evaluation has mostly been studied in the form
of single-testing : given an ontology-mediated query (OMQ) Q(x̄) = (O,S, q),
a database D over schema S, and a candidate answer ā ∈ adom(D)|x̄|, decide
whether ā ∈ Q(D) [2, 4, 7, 8]. From a practical perspective, however, it is often
not realistic to assume that a candidate answer is available. This leads us to
study answer enumeration where only Q and D are given as an input, and the
task is to produce all answers without repetitions, in an unspecified order. More
precisely, an enumeration algorithm works in two phases. In the preprocessing
phase, the algorithm uses Q and D to construct a data structure to be used
later on, but no output. In the enumeration phase, it uses the precomputed
structure to output all tuples from Q(D). Related to enumeration is all-testing
which initially gets the same two inputs and has the same preprocessing phase,
followed by a testing phase where the algorithm repeatedly receives candidate
answers ā ∈ adom(D)|x̄| as additional inputs and returns ‘yes’ or ’no’ depending
on whether ā ∈ Q(D).

These modes of query evaluation have been extensively studied in database
theory, see for example [3, 6, 9–13, 15]. A case of particular importance is enu-
meration in CD◦Lin, where the preprocessing takes time linear in the size of the
database D and the delay between two answers is independent of D. Note that
there is no restriction on how the running time of the preprocessing or how the
delay depends on the OMQ Q. This corresponds to data complexity in single-
testing where Q is fixed and thus of constant size. An excellent recent survey of
the work on answer enumeration in database theory is [5].

We consider enumeration and all-testing for two kinds of answers: the tradi-
tional certain answers, where ā ∈ Q(D) if and only if ā is a tuple of constants
from D such that ā ∈ q(I) for every model I of D and O, and a novel notion of
partial answers that is able to take into account fresh constants introduced by
existential quantifiers in O (‘nulls’). We next define the latter.

Fix a wildcard symbol ‘∗’ that cannot occur as a constant in a database.
A wildcard tuple for a database D takes the form (c1, . . . , cn) ∈ (adom(D)∪{∗})n
where n ≥ 0 and adom(D) denotes the set of constants used in D. For wildcard
tuples c̄ = (c1, . . . , cn) and c̄′ = (c′1, . . . , c

′
n), we write c̄ � c̄′ if c′i ∈ {ci, ∗} for 1 ≤

i ≤ n. Moreover, c̄ ≺ c̄′ if c̄ � c̄′ and c̄ 6= c̄′. Intuitively, c̄ ≺ c̄′ expresses that tuple

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

2 C. Lutz and M. Przyby lko

c̄ carries more information than tuple c̄′. For example, (a, b) ≺ (a, ∗) ≺ (∗, ∗).
A partial answer to OMQ Q(x̄) = (O,S, q) on S-database D is a wildcard tuple
c̄ for D of length |x̄| such that for every model I of D and O, there is a c̄′ ∈ q(I)
such that c̄′ � c̄. Note that some positions in c̄′ may contain constants that
are not in adom(D), and that the corresponding positions in c̄ must have the
wildcard. We say that a partial answer c̄ to Q on S-database D is a least partial
answer if there is no partial answer c̄′ to Q on D with c̄′ ≺ c̄. We are then
interested in enumerating the set Q(D)∗ of all least partial answers to Q on D.

Example 1. Consider the ontology O that contains the TGDs

Researcher(x)→ ∃y HasOffice(x, y) HasOffice(x, y)→ Office(y)

Office(x)→ ∃y InBuilding(x, y)

the schema S that consists of all relation symbols in O, and the CQ

q(x1, x2, x3) = Researcher(x1) ∧ HasOffice(x1, x2) ∧ InBuilding(x2, x3)

giving rise to OMQ Q(x1, x2, x3) = (O,S, q). Further consider the database

D = { Researcher(mary), Researcher(mike), HasOffice(mary, room1) }

Then Q(D) = ∅, but Q(D)∗ = {(mary, room1, ∗), (mike, ∗, ∗)}.

This abstract reports about the forthcoming article [14] where we consider
guarded TGDs G and the description logic ELI as the ontology language and
conjunctive queries (CQs) as the query language. Recall that, up to syntactic
normalization, ELI is a fragment of G. Our main result is as follows where
complete answers mean the traditional certain answers.

Theorem 1. Let Q = (O,S, q) be an OMQ from the OMQ language (G,CQ).
If Q is acyclic and free-connex, then the following problems are in CD◦Lin:

1. enumeration of complete answers and of least partial answers to Q;
2. all-testing of complete answers to Q.

Let us clarify the notions used in Theorem 1. A CQ q(x̄) is acyclic if it has a
join tree. An acyclic CQ q(x̄) is free-connex if it remains acyclic after adding an
atom R(x̄) with R a fresh relation symbol of arity |x̄|.

The results for complete answers in Theorem 1 are obtained by reduction to
the case without ontologies whereas the result for least partial answers requires
the design of a novel enumeration algorithm.

Theorem 1 is accompanied by lower bounds that identify significant chal-
lenges in extending enumeration in CD◦Lin beyond OMQs that satisfy the struc-
tural properties mentioned in the theorem. As in the case without ontologies,
these lower bounds (i) are conditional on certain assumptions whose failure would
imply a remarkable advance in algorithm theory and (ii) do not result in fully
fledged dichotomies as they rely on additional assumptions regarding the query.

Enumerating Answers to OMQs 3

The triangle conjecture states that it is not possible, given an undirected
graph G with m edges as an adjacency list, to decide in time O(m) whether G
contains a triangle [1]. Sparse Boolean matrix multiplication means to compute,
given two Boolean matrices A and B as a list of their non-zero entries, the non-
zero entries of the matrix product AB over the Boolean semiring, see e.g. [16].
There is no known algorithm that solves sparse Boolean matrix multiplication
in time O(m), m the sum of the numbers of non-zero entries of A, B, and AB. If
such an algorithm exists, then finding it requires dramatic advances in algorithm
theory. See e.g. [5] for more information.

Theorem 2. Let Q = (O,S, q) be an OMQ from the OMQ language (ELI,CQ)
that is non-empty and self-join free.

1. If q is not acyclic, then enumeration of Q is not in CD◦Lin unless the triangle
conjecture fails, both for complete answers and for least partial answers.

2. If q is connected and acyclic, but not free-connex, then enumeration of Q
is not in CD◦Lin unless sparse Boolean matrix multiplication is possible in
time O(m), both for complete answers and for least partial answers.

We also show that least partial answers cannot be added to Point 2 of Theorem 1
as there is an OMQ Q ∈ (ELI,CQ) that is free-connex acyclic such that all-
testing least partial answers to Q is not in CD◦Lin unless the triangle conjecture
fails.

Finally, enumeration and all-testing in CD◦Lin is closely related to single-
testing in linear time (in data complexity), and we also clarify the limits of
that.

Theorem 3.

1. Single-testing is in linear time for weakly acyclic OMQs from (G,CQ).
2. Let Q be an OMQ from (ELI,CQ) that is non-empty and self-join free. If

Q is not weakly acyclic, single-testing for Q is not in linear time unless the
triangle conjecture fails.

Here, a CQ q(x̄) is weakly acyclic if it becomes acyclic after consistently replacing
all answer variables with fresh constants (and thus the connectedness condition
of join trees only applies to quantified variables).

Acknowledgements. This research was funded by DFG project QTEC. We
thank the anonymous reviewers for useful comments.

References

1. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for
dynamic problems. In: Proceedings of FOCS 2014. pp. 434–443. IEEE Computer
Society (2014). https://doi.org/10.1109/FOCS.2014.53

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995), http://webdam.inria.fr/Alice/

4 C. Lutz and M. Przyby lko

3. Bagan, G., Durand, A., Grandjean, E.: On acyclic conjunctive queries and constant
delay enumeration. In: Duparc, J., Henzinger, T.A. (eds.) Proceedings of CSL
2007. Lecture Notes in Computer Science, vol. 4646, pp. 208–222. Springer (2007).
https://doi.org/10.1007/978-3-540-74915-8 18

4. Barceló, P., Dalmau, V., Feier, C., Lutz, C., Pieris, A.: The limits of efficiency
for open- and closed-world query evaluation under guarded TGDs. In: Suciu, D.,
Tao, Y., Wei, Z. (eds.) Proceedings of PODS 2020. pp. 259–270. ACM (2020).
https://doi.org/10.1145/3375395.3387653

5. Berkholz, C., Gerhardt, F., Schweikardt, N.: Constant delay enumeration
for conjunctive queries: a tutorial. ACM SIGLOG News 7(1), 4–33 (2020).
https://doi.org/10.1145/3385634.3385636

6. Berkholz, C., Schweikardt, N.: Constant delay enumeration with fpt-preprocessing
for conjunctive queries of bounded submodular width. In: Rossmanith, P., Heg-
gernes, P., Katoen, J. (eds.) Proceedings of MFCS 2019. LIPIcs, vol. 138,
pp. 58:1–58:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019).
https://doi.org/10.4230/LIPIcs.MFCS.2019.58

7. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: A
study through disjunctive datalog, CSP, and MMSNP. ACM Trans. Database Syst.
39(4), 33:1–33:44 (2014). https://doi.org/10.1145/2661643

8. Bienvenu, M., Ortiz, M.: Ontology-mediated query answering with data-tractable
description logics. In: Faber, W., Paschke, A. (eds.) Proceedings of Reasoning
Web. Lecture Notes in Computer Science, vol. 9203, pp. 218–307. Springer (2015).
https://doi.org/10.1007/978-3-319-21768-0 9

9. Carmeli, N., Kröll, M.: Enumeration complexity of conjunctive queries
with functional dependencies. Theory Comput. Syst. 64(5), 828–860 (2020).
https://doi.org/10.1007/s00224-019-09937-9

10. Carmeli, N., Kröll, M.: On the enumeration complexity of unions of
conjunctive queries. ACM Trans. Database Syst. 46(2), 5:1–5:41 (2021).
https://doi.org/10.1145/3450263

11. Carmeli, N., Zeevi, S., Berkholz, C., Kimelfeld, B., Schweikardt, N.: Answering
(unions of) conjunctive queries using random access and random-order enumera-
tion. In: Suciu, D., Tao, Y., Wei, Z. (eds.) Proceedings of PODS 2020. pp. 393–409.
ACM (2020). https://doi.org/10.1145/3375395.3387662

12. Deep, S., Hu, X., Koutris, P.: Enumeration algorithms for conjunctive queries
with projection. In: Yi, K., Wei, Z. (eds.) Proceedings of ICDT 2021. LIPIcs,
vol. 186, pp. 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.ICDT.2021.14

13. Deep, S., Koutris, P.: Ranked enumeration of conjunctive query results.
In: Yi, K., Wei, Z. (eds.) Proceedings of ICDT 2021. LIPIcs, vol. 186,
pp. 5:1–5:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.ICDT.2021.5

14. Lutz, C., Przyby lko, M.: Enumerating answers to ontology-meditated queries. To
appear on arXiv

15. Segoufin, L.: Constant delay enumeration for conjunctive queries. SIGMOD Rec.
44(1), 10–17 (2015). https://doi.org/10.1145/2783888.2783894

16. Yuster, R., Zwick, U.: Fast sparse matrix multiplication. ACM Trans. Algorithms
1(1), 2–13 (2005). https://doi.org/10.1145/1077464.1077466

