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As ontologies grow in size and complexity, it becomes ever more important
to understand the underlying causes for a consequence followed from an on-
tology, specially if this consequence is unexpected or unwanted for the repre-
sentation domain. A usual approach in description logics (DL) is to compute
one or all justifications; that is, the minimal subontologies that still entail the
consequence under consideration. Several approaches have been developed for
computing these justifications. Black-box approaches—which repeatedly call an
unmodified reasoner—dominate the scene for more expressive DLs, while glass-
box approaches modifying the underlying behaviour of the reasoner have been
implemented mainly for lightweight DLs only [12].

Recent work has highlighted the importance of approximating the set of all
justifications through two sets: the intersection and union of all justifications.
The intersection (also known as the core) provides a lower approximation, with
axioms that are necessary for the entailment. In fact, removing any axiom from
the core automatically removes the consequence. The union, on the other hand,
yields an upper approximation containing all relevant axioms. That is, as long
as one is only interested in the consequence at hand, one can safely ignore all
the axioms that do not belong to this union. In other words, this union is the
smallest possible justification-preserving module.

There is, to date, a lack of approaches for computing these upper and lower
approximations, specially in the case of the union of justifications, which has
an underlying computationally-hard task. We fill this gap by presenting new
methods for computing the core and the union of justifications.

Core. The algorithm for computing the core follows a simple black-box ap-
proach based on the notion of necessity. In essence, an axiom α is necessary
(and hence belongs to the core) if and only if removing it from the ontology
means getting rid of the consequence. Our algorithm simply checks necessity of
α by calling a reasoner with the ontology minus {α}: if the consequence does not
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hold anymore, the α is added to the core. This approach requires one entailment
test for each axiom, and thus incurs in a linear overhead over standard reasoning.
To avoid unnecessary checks, we run the algorithm over a justification-preserving
module [3, 4, 9, 13].

Union of all Justifications. We introduce two algorithms for computing
the union of all justifications. The first one is a black-box approach inspired
by Reiter’s Hitting Set Tree algorithm [14], following the ideas similar to those
presented in [8, 16]. Due to its black-box nature, it can be applied to ontologies
with any expressivity, as long as a reasoner is available. The idea is to collect
the union of all justifications while computing all justifications and prune the
search space when all remaining justifications are fully contained in the union
computed. Additionally, we use the pre-computed intersection of all justifications
to reduce the search space. The algorithm runs in exponential time in size of the
given ontology in the worst case.

The second algorithm reduces the problem of computing the union of all jus-
tifications to a related problem over propositional formulas, through three main
steps. First, we compute a CNF formula φ using the consequence-based reasoner
condor [2]. Then, we check for each clause if it belongs to a Minimal Unsatisfiable
Subsets (MUS) of the formula or not using the SAT-tool cmMUS [7]. Finally, we
extract the union of all justifications from the original axioms corresponding to
clauses that are members of MUSes. Contrary to the black-box approach, this
method requires the ontology to be in a language which condor can handle. In
our current implementation, the condor can accept ALC-TBoxes.

Repair. A repair of an ontology is a maximal sub-ontology that does not pre-
serve the consequence. We propose a new repair notion called optimal repair.
Generally speaking, an optimal repair is a repair that removes the least amount
of axioms from the original ontology. We say S is the smallest minimal hitting
set if |S| is the smallest among all minimal hitting sets. The following proposi-
tion shows how we can compute the set of all optimal repairs through a hitting
set computation [1, 10,15].

Proposition 1. Let Just(O, α) be the set of all justifications for the GCI α
w.r.t. the ontology O. If S is the set of all smallest minimal hitting sets for
Just(O, α), then {O \ S | S ∈ S} is the set of all optimal repairs for O |= α.

Specially, if the core is not empty, a smallest minimal hitting set for all
justifications is a singleton set that contains only one axiom from the core.

Evaluation. We built a prototypical implementation to evaluate the perfor-
mance of our algorithms in real-world ontologies. The black-box algorithm uses
the OWL API [6] to access ontologies and HermiT [5] as a standard reasoner. The
MUS-membership algorithm (MUS-MEM) calls cmMUS [7] to detect whether a
clause is a member of MUSes. We computed a single justification (J ), the core
(C), and the union of justifications for all atomic subsumptions entailed by 95
ontologies from the 2014 ORE competition [11].



J C
min 0.001s 0.001s
max 226.608s 341.560s
mean 0.400s 0.456s
median 0.009s 0.002s

Table 1: Comp. time of J vs C Fig. 1: Comp. time of the union

Note that in terms of computational complexity computing the core and one
justification are equally hard problems. But the black-box method for the latter
should intuitively be faster than the former as it reduces the size of the ontology
throughout the execution. Indeed, the latter method removes all unnecessary
axioms, while the former always calls the reasoner with the original ontology
minus one axiom. Our experiments tend to confirm this view, as shown in Table 1.

To evaluate the computation of the union of justifications, we compared
against the canonical approach of finding all justifications and our approach on
computing the union. Figure 1 plots the logarithmic computation time of the
union (in the vertical axis) of each test instance (in the horizontal axis). Each
blue, green or red dot corresponds to the computation time of the union by
OWL API, the black-box algorithm or the MUS-MEM algorithm for a conclusion
respectively. In our experiments, our black-box approach clearly outperformed
the MUS-based translation and the enumeration of justifications.

In the end, we also analysed the proportional sizes of cores, justifications,
and unions of justifications. Interestingly, 85% of the test instances have only
one justification, and even among the others, 84% of cores are non-empty, which
means that we could be able to use core to compute the set of all optimal repairs
for most cases. In general, the size of the union tends not to be much larger than
that of the core.

Conclusion In this paper, we presented algorithms for computing the core and
the union of all justifications for a given DL consequence. As an application,
we study how to compute optimal repairs effectively, through the information
provided by the core and the union of all justifications.

In the future, we plan to further detailed analyse the experimental results
and provide better insights to explain the results that we have shown in the
evaluation. Currently, the MUS-based approach for computing the union of all
justifications only supports ALC ontologies. However, we would expect that this
approach could be further generalised to more expressive languages.
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