
Using Prolog as the fundament for applications
on the semantic web

Jan Wielemaker1, Michiel Hildebrand2, and Jacco van Ossenbruggen2

1 Human Computer Studies,
University of Amsterdam,

The Netherlands,
wielemak@science.uva.nl

2 CWI, Amsterdam, The Netherlands
firstname.lastname@cwi.nl

Abstract. This article describes the experiences developing a Semantic
Web application entirely in Prolog. The application, a demonstrator that
provides access to multiple art collections and linking these using cultural
heritage vocabularies, has won the first price in the ISWC-06 contest on
Semantic Web end-user applications. In this document we concentrate on
the Prolog-based architecture, describing experiences and vital aspects
of the design.

1 Introduction

Prolog has some attractive properties for Web and Semantic Web applications.
Safety and automatic memory management as well as incremental compilation
are essential to web-programming, (natural) language processing, simple rea-
soning, constraint programming and a natural representation of the Semantic
Web triple model are features that contribute to the usability of Prolog for
web-programming. Disadvantages are lack of ready-to-use resources for dealing
with Web protocols and documents as well as the availability of skilled Prolog
programmers in this field.

Within the E-culture research program3 we were in the luxury position to
have access to a good Prolog based starting point [13] and contributing re-
searchers with Prolog affinity and experience. A small demonstrator was ex-
tended into a award-winning application [9] by a team of five programmers spread
over three institutes.

SWI-Prolog’s features for Web-programming are described in detail in [14].
This document describes practical experience using the framework in a larger
project. We concentrate on design aspects to facilitate re-usability and indepen-
dence between the various components of the software.

This document is organised as follows. First we introduce the E-culture
demonstrator, briefly describing its functionality and software architecture. Then
we describe the libraries enabling the design, concentrating on those that have
3 http://e-culture.multimedian.nl/

been added during the project to enhance modularity and reuse. In Sect. 7 we
give some practical tips for deployment of a large Prolog-based server on the
Web. We conclude with problems, lessons learned, related work and plans.

Fig. 1. Screendumps of the E-culture web-application. (a) simple text-based search
interface, (b) geographical map visualisation, (c) resource annotation interface, (d)
faceted navigation, (e) timeline visualisation.

2 Introducing the E-culture demonstrator

The aim of the E-culture demonstrator is to provide a common gateway to multi-
ple museum collections and cultural heritage documents. Museums use different
database models based on different vocabularies to represent their collection.
Merging this into a single datamodel is complicated, labour intensive and leads
to loss of information due to inadequacy of the common model as well as errors in
the transformation process. We converted [11] both vocabularies and meta-data
into RDF/OWL preserving the original structure. Only where literal strings were
based on a known vocabulary, we restored the mapping to the vocabulary. Af-
ter this lossless transformation process, the meta-data schema is mapped to the
standard VRA schema4 using RDFS subPropertyOf relations and cross-relations
between vocabularies were restored or created. Our current RDF graph contains
4 http://www.vraweb.org/

8.6 million triples describing over 100,000 art-objects from 4 different sources
and 7 vocabularies.

The RDF graph is stored in memory [15] and made accessible from Prolog
by means of the predicate rdf(Subject, Predicate, Object). The web-server of
the demonstrator is realised by the SWI-Prolog multi-threaded HTTP server
library5. In this web-server, a predicate serves one (typical) or more HTTP loca-
tions. The handler receives the parsed HTTP request as a Prolog data structure
and writes a CGI document to the current output stream. This approach is
comparable to Tomcat, where a class is defined to handle an HTTP location by
writing a CGI document onto a stream.

Although any Prolog predicate that produces a valid CGI document can be
used, the library html write provides a DCG-based framework to write HTML
and XHTML documents from the same specification. This library ensures proper
nesting of tags and escapes for special characters. The library is described in [14].

The system contains two types of reusable modules. Reasoning modules on
top of RDF provide RDFS (Schema) and limited OWL inferencing as well
as more domain specific reasoning such as various graph-search and graph-
abstraction predicates. Presentation modules define HTML DCG rules produc-
ing reusable components of the interface, such as presenting an image thumbnail
or a widget that allows for selecting a term from a vocabulary using AJAX-based
[7] interactivity.

Based on these reusable modules, different interfaces to the data are realised
by different HTTP locations. Currently we have four interfaces. Basic search
performs a graph-search from literals that match at least one word with the
query to target objects (art-works) and clusters the results based on the RDF
properties and class of the resource in the path from literal to target object.
Relation search describes relations between arbitrary objects. /facet provides a
traditional facetted browser [5] and Mazzle merges basic search with facetted
browsing while providing multiple points of focus, currently art-works, artists
and geographical locations. Figure 1 shows some screenshots of the application,
while the architecture is summarised in Fig. 2

3 Used technologies

It is an explicit aim of the project to use Open Standards where possible. This
implies RDF/OWL for representing meta-data and vocabularies, a web-server
(HTTP) using W3C standards for access. Machine-access is provided by means
of the SPARQL6 or SeRQL [2] RDF query language while human access uses
browser standards.

Standard HTML has two limitations: lack of graphics and lack of interactiv-
ity. Initially these were resolved using SVG for non-interactive graphics and Java
applets for interactivity. Eventually both have been replaced by HTML+CSS
using AJAX for interactivity. HTML+CSS has limited graphical capability, but
5 http://www.swi-prolog.org/packages/http.html
6 http://www.w3.org/TR/rdf-sparql-query/

Prolog

RDF Store

RDFS OWL

Application
Reasoning

HTTP

HTML-WRITE

Reusable
interface DCGs

Basic Search /facet Mazzle

C

Web-Applications

Reusable
application code

Prolog Libraries

Fig. 2. Architectural components of the Prolog-based web-application

sufficient for our needs and they are much better supported by todays browsers.
HTML+CSS with AJAX can deal with the interactivity we require, such as
suggesting relevant vocabulary terms on each key-stroke in a text entry field.
(Re)usable AJAX client scripts are widely available. Providing the required
HTTP service that connects them to the data is easy.

4 Core Web libraries

In this section we describe the core libraries that enable the design. Some libraries
have been described in other publications, in which case we keep the description
concise.

4.1 The RDF library

The RDF library [15] is the core of SWI-Prolog’s Semantic Web infrastructure.
The key predicate is rdf(Subject, Predicate, Object), providing very natural ac-
cess to the triple store. The predicate itself is defined in C. Because we know all
clauses are ground unit clauses, resources are atoms and predicates are organised
in a hierarchy using rdfs:subPropertyOf we can design an optimal representation
minimising space and optimising access times. During the E-culture project we
realised several enhancements to the core RDF library that are not described in
previous publications and which we describe below.

Multi-threading support is enhanced by introducing read-write locks and
transactions. During normal operation, multiple readers are allowed to work con-
currently. Transactions are realised using rdf transaction(:Goal, +Context). If
a transaction is started, the thread waits until other transactions have finished. It
then executes Goal, adding all write operations to an agenda. During this phase
the database is not actually modified and other readers are allowed to proceed.

If Goal succeeds, the thread waits until all readers have completed and updates
the database. If Goal fails or throws an exception the agenda is discarded and
the failure or error is returned to the caller of rdf transaction/2. Note that
this behaviour is different from multi-threaded Prolog assert/retract.

– In multi-threaded (SWI-)Prolog, accessing a dynamic predicate for read or
write demands synchronisation only for a short time. In particular, readers or
writers with a choice-point allow other threads to operate on the same predi-
cate. At the same time logical update semantics are realised. This is achieved
using time-stamps and keeping erased clauses around until the predicate is
sufficiently ‘dirty’ and there are no readers or writers.

– Multiple related modifications are bundled in a transaction. This is often
desirable as many high-level (RDFS/OWL) changes involve multiple triples.
Using transactions guarantees a consistent view of the database and avoids
partial modifications.

RDF literals have been promoted to first class citizens in the database.
Typed literals are supported using arbitrary Prolog terms as RDF object. Num-
bers (float, integer) are store in their native C representation, Unicode strings
are stores as Prolog atom-handles and other Prolog terms are stored using the
recorded-database access provided by SWI-Prolog through the foreign interface
by means of PL record(), PL recorded() and PL erase(). All literals are kept in
an AVL-tree, where

numeric-literals < string-literals < term-literals

Numeric literals are sorted by value. String literals are sorted alphabetically,
case insensitive and after removing diacritics. String literals that are equal after
discarding case and diacritics are sorted on Unicode value. Other Prolog terms
are sorted on Prolog standard order of terms. Sorted string literals are used for
fast prefix search which is important for suggestions and disambiguation as-you-
type with AJAX style interaction.

The literal search facilities are completed by means of monitors. Using
rdf monitor(:Goal, +Events) we register a predicate to be called at one or
more given events. Monitors that trigger on literal creation and destruction are
used to maintain a word-index for the literals as well as an index from stem to
word and metaphone [8] key to word. Monitors are also used to achieve persis-
tency. For persistency, each named graph is backed up by a file containing the
state after initial load or last check-point and a file describing actions on the
named graph, the journal.

4.2 Library HTML write

The HTML writer library uses Prolog DCGs in ‘write’ mode to translate a
ground Herbrand term into a list of HTML tokens. The tokens are written to a
Prolog stream using print html/2 to produce valid HTML. The Herbrand term
can have embedded \term sequences, which causes nested invocation of the DCG

referenced by term. We introduce the HTML library using an example from the
OpenID7 library. Note the in-line invocation of the rules openid title//0 and
hidden//2. Details have been described in [14].

4.3 Session management

The core HTTP library defines a hook to expand the HTTP re-
quest. This hook is exploited by the session management library to re-
alise cookie-based session management. The session library also defines
http session assert(+Term), http session retract(?Term) and common as-
sert/retract variations to realise storage of session specific data which can be
queried using http session data(?Term).

Session-data is automatically retracted after session timeout. Start and end
of a session is broadcasted (see Sect. 4.6), to enable additional processing by
individual modules.

4.4 The HTTP dispatching code

The core HTTP library, described in [12], handles all requests through a single
predicate. Normally this predicate is defined ‘multifile’ to split the source of the
server over multiple files. This approach proved inadequate for a larger server
with multiple developers for the following reasons:

– There is no way to distinguish between non-existence of an HTTP location
and failure of the predicate due to a programming error. This is an omission
in itself, but with a larger project and multiple developers it becomes more
serious.

– There is no easy way to tell where the specific clause is that handles an
HTTP location.

– As the order of clauses in a multi-file predicate that come from different
files is ill defined, it is not easy to reliably redefine the service behind a given
HTTP location. Redefinition is desirable for re-use as well as for experiments
during development.

To overcome these limitations we introduced a new library http dispatch that
defines the directive http handler(Location, Predicate, Options). The directive
is handled by term expansion/2 to manage a multi-file predicate. This pred-
icate in turn is used to build a Prolog term stored in a global variable that
provides fast search for locations. Modifications to the multi-file predicate cause
re-computation of the Prolog term on the next HTTP request. Options can be
used to specify access rights as well as a priority that allows for overruling ex-
isting definitions. Typically, each location is handled by a dedicated predicate.
Based on the handler definitions, we can easily distinguish failure from non-
existence as well as find, edit and debug the predicate implementing an HTTP
location.
7 http://openid.net/

%% openid_login_form(+ReturnTo, +Options)// is det.

%

% Create the OpenID form. This is exported as a separate DCG,

% allowing applications to redefine /openid/login and reuse this

% part of the page.

openid_login_form(ReturnTo, Options) -->

{ option(action(Action), Options, verify)

},

html(div(class(’openid-login’),

[\openid_title,

form([name(login),

action(Action),

method(’GET’)

],

[\hidden(’openid.return_to’, ReturnTo),

div([input([class(’openid-input’),

name(openid_identifier),

size(30)

]),

input([type(submit),

value(’Verify!’)

])

])

])

])).

hidden(Name, Value) -->

html(input([type(hidden), name(Name), value(Value)])).

openid_title -->

html(div(class(’openid-title’),

[a(href(’http://openid.net/’),

img([src(’file?name=openid_logo’), alt(’OpenID’)])),

span(’Login’)

])).

Fig. 3. HTML DCG presenting OpenID login page.

4.5 Setting management

Managing settings of the application is not typical for Web-servers, but the size
of this project raised the need for central management of settings. Initial man-
agement was based on a file called parms.pl that defined setting/1, containing
clauses like setting(thumbnail_size(100,100)). As the project grew we re-
alised it was difficult for different developers to maintain different values for the
settings without corrupting the central file under CVS revision control and this
central file, holding information for many modules, seriously harmed modularity
of the application and we introduced two new libraries. One for declaring, stor-
ing and asking setting values and one for querying and editing settings through
the web-interface.

Declaration of a setting is achieved using the directive setting(:Name,
+Type, +Default, +Comment). Settings are local to a module. Settings from
other modules can be defined and requested using the standard 〈module〉:〈name〉
syntax instead of using a plain atom for the name. The interface includes set-
ting(:Name, -Value), set setting(:Name, +Value), save settings(+File) and
load settings(+File). When settings are saved to file, only those that have a
value not equal to their default are saved. Setting default declarations provide
syntactical constructs to ask for environment variables and the value of other
settings. Numerical settings can use arithmetic expressions and textual settings
can use the + operator for concatenation.

Whenever a setting is modified the broadcast library described in Sect. 4.6 is
informed. This allows modules to react on changes to settings immediately, also
for settings that are only read during initialisation of the service.

The result provides distributed declaration of settings that no longer harms
modularity. Proper typing and comments simplify reuse of settings over the
application and an extensible web-interface manages the application settings.

4.6 The broadcasting service

The Prolog library broadcast was initially developed for the graphical subsystem
XPCE to deal with application events and distributed information gathering. Its
function can be compared to hooks, but central administration makes it easier
to inspect broadcasted events and check who is listening to what events. The
hooks are called listeners and are owned, where the owner is represented by
an arbitrary ground term. When omitted, this is the module-name making the
registration. We illustrate the functionality using a simple session. The atom me
represents the owner. Details and source can be requested from the SWI-Prolog
documentation server8.

?- listen(me, hello(X), format(’Hello ~w~n’, [X])).
?- broadcast(hello(world)).
Hello world
?- unlisten(me).

8 http://gollem.science.uva.nl/SWI-Prolog/pldoc/

?- broadcast(hello(world)).

Where broadcast/1 runs a failure driven loop over all listeners, broad-
cast request/1 is non-deterministic and succeeds on any listener that succeeds.

The web-libraries use the broadcasting service for session and setting man-
agement.

5 SWI-Prolog enabling features

Discussed with more detail in [14], we will briefly summarise the requirements
on Prolog that enable its use as Semantic Web application platform.

– Scalability requires for a multi-threaded Prolog engine. Next to exploiting
multi-CPU hardware efficiently, it also avoids slow queries from making the
server inaccessible.

– Using unlimited-length Unicode atoms and atom garbage collection allows
for uniform and simple representation of arbitrary text for web-applications.

– The system requires support for incremental compilation, so code can be
modified and the server can be updated and tested without restart or loos-
ing sessions. SWI-Prolog offers make/0, which reloads all modified source-
files comfortably. Currently, temporal inconsistencies in the running program
during reload can cause errors in services that run concurrently. We plan to
enhance this using read-write locks that synchronise program update with
the HTTP worker threads. Lacking these locks is generally no problem for
local development or non-critical public services.

6 The role of RDF query languages

Most Semantic Web applications are modelled after relational database applica-
tions, where the application logic accesses the database through SQL. We see a
number of Semantic Web equivalents to SQL, such as SeRQL [2] and the W3C
recommendation SPARQL9. Both allow for specifying a graph expression con-
sisting of a number of obligatory and optional edges and nodes extended with
conditions on literal values, SeRQL matches the graph expression on the tran-
sitive closure using the semantics of RDFS. The SPARQL standard does not
specify whether or not entailment reasoning is performed by the database en-
gine. We implemented SeRQL and SPARQL support on top of the SWI-Prolog
Semantic Web library using the HTTP infrastructure defined in this document
to make the server accessible for both humans and machines.

The E-culture application, however, does not use SeRQL or SPARQL. In-
stead, queries by the application logic are expressed as Prolog goals on the raw
RDF database and/or RDFS/OWL reasoning modules. At places where the or-
der of executing conjunctions is critical and cannot easily be predicted by the

9 http://www.w3.org/TR/rdf-sparql-query/

application programmer, we use the query optimiser we developed for the SeRQL
server [13], which rewrites a Prolog goal involving multiple calls to rdf/3 and
tests for optimal performance. Semantic Web query languages are not used in
the application logic because

– Prolog itself already provides a completely transparent and easy to use API.
As the application programmer uses Prolog anyway, Prolog syntax is a nat-
ural choice. Note that a classical approach for accessing relational databases
from Prolog is by translating Prolog goals into SQL statements [6]. We see
only a role using a query language for access by external applications and if
query expressions are used to specialise the application for a specific envi-
ronment and this specialisation is done outside the application itself.

– SPARQL lacks expressiveness to construct complex path expressions. For ex-
ample, SPARQL does not support regular expressions in query paths, there-
fore, there exists no query that gets the root of a resource given a transitive
property. Note that PSPARQL [3] is being developed to support exactly this.

– For our purpose we often need specific RDFS/OWL reasoning support in
different parts of the demonstrator. Partial reasoning that fulfil our require-
ments is easily implemented and performs well. We believe efficient complete
DL-reasoning over our large and generally inconsistent RDF store is not re-
alistic.

– We have a need for dedicated graph search in which we guarantee quick
termination by limiting the ‘semantic distance’ based on weighted relations.

– Current Semantic Web query languages support for literal search is generally
limited to regular expression search and numerical conditions. We have need
for searching for keywords that can appear inside literals, possibly consider-
ing stemming. We also require fast prefix search for the suggestion interface,
both on full literals and on keywords. Many applications solve this prob-
lem by populating a general text indexing engine such as Lucene10 with the
literals.
Indexing integrated with the RDF store, however, greatly reduces memory
requirements and access times, while simplifying maintenance when the RDF
store is modified.

7 Deployment

Like Apache, Tomcat, etc., the Prolog based HTTP server can talk directly to a
standard compliant browser. This setup, running the Prolog server interactively
from a non-privileged port is normally used by the developers.

With some care, public deployment can also use the Prolog server directly.
On a typical Unix system this requires the server to be started as root and make
the required system calls available from Prolog to drop privileges after opening
the server port. Typically this setup asks for a dedicated, possibly virtual, server
machine. Due to practical considerations we opted for the option to use a public
10 http://lucene.apache.org/

Apache server as reverse proxy. It also allows placing the Prolog server inside
a firewall and realises a greater level of reliability because ill-formed requests
are already blocked by the proxy server. The configuration file below makes the
demo available from apache. Apache requires the standard modules proxy and
proxy http to be enabled The Prolog server listens to port 3020.

ProxyPass /demo/ http://mn9c.mydomain.org:3020/demo/
ProxyPassReverse /demo/ http://mn9c.mydomain.org:3020/demo/

The Prolog server is started from a Unix boot script. Maintenance of the E-
culture demo such as re-loading modified Prolog source files using make/0 is
realised by means of HTTP commands. The SWI-Prolog documentation server11

is realised with a similar setup, but the Prolog server runs interactively in a
terminal inside a VNC server session using an unprivileged user that is started
from a Unix boot script. This setup allows easy monitoring and modifications
by contacting the VNC virtual desktop.

8 Metrics

Our current RDF store contains 8.6 million triples while we plan to deal with
150 million triples on a server with 8 CPUs and 32GB main memory within 2
years. The application specific code is about 35,000 lines. The SeRQL/SPARQL
infrastructure counts 18,000 lines. Finally, the SWI-Prolog HTTP library is 5,100
lines and the Semantic Web database 7,300 lines Prolog and 11,000 lines of C.

Time to load all 8.6 million triples from RDF/XML and Turtle source is 350
seconds. Time to restore from the file-based persistent database is 40 seconds.
Timings are measured on an Intel core duo X6800@2.93Ghz using the 64-bit
version of SWI-Prolog 5.6.34 under SuSE Linux 10.2. Initial load and restore are
currently not multi-threaded.

Process’ data size is 1.8GB (64-bit mode). Resources are represented as
atoms. We counted 3,4 million atoms, 0.6 million for the literal index, 2.8 million
for resources and literals and only 18,000 for the program.

The 8.6 million triples contain 1.9 million literals. The token and stem indices
are built in 90 seconds and require 200MB memory. The token index contains
1.0 million words and numbers. The stem index has 380,000 stems.

We acquired some statistics on public server. During 3 days of operation
using 8 worker threads on 2 CPUs it used 12,000 seconds CPU time, an average
of 2.5% of the system capacity. Table 1 shows how calls to rdf/3 are distributed
over the possible instantiation patterns.

9 Problems experienced

Our server uses a large amount of not very well established technology. There
is not much established technology in the Semantic Web world, making this un-
avoidable in that part of the application. For serving general web-pages however
11 http://gollem.science.uva.nl/SWI-Prolog/pldoc/

Indexed Calls

- - - 14,430
+ - - 833,552
- + - 3,600
+ + - 216,792,146
- - + 2,252,522
- + + 38,739,699
+ + + 2,337,826

Table 1. Indexing pattern on rdf(Subject,Predicate,Object) calls after 3 days of oper-
ation.

there are many alternatives such as Tomcat servlets, jsp, php, asp, etc. Doing
it all in Prolog greatly simplifies and enhances the performance in the interac-
tion between the RDF store and the general web-page generation. It also greatly
simplifies deployment. An installed version of SWI-Prolog and the hierarchy of
Prolog source files are the only dependencies.

Upgrading a platform that had only be tested on small scale applications
developed by one programmer to a large demanding application with multiple
developers proved to be a challenge that requested the concurrent development of
modules to deal with dispatching, session management and setting management.
We also had to establish the best practices to use the infrastructure, notably
to reach at proper re-usability of interface components. Affinity with Prolog
programming in the whole team was necessary to make this work. We hope
the matured Prolog libraries for web-programming with a planned Open Source
release of the demonstrator provides a platform for other teams.

There were two main sources of bugs in the platform. One was still incomplete
or false processing in both the HTML/HTTP infrastructure and the Semantic
Web libraries. The other source of problems was found in the low-level RDF
store, notably locking for thread-safety and memory management issues in the
C-code.

10 Lessons learned

We started this project based on the SeRQL server running on top of the SWI-
Prolog Semantic Web and HTTP libraries [13]. This system was fairly simple
and small, handling about 50 HTTP locations that had largely be defined by the
OpenRDF [2] project. It was developed by a single programmer. The E-culture
project has a larger development team, is aiming at a demanding and stable
server platform while the best way to support end-users based on Semantic Web
data is explored using multiple prototype web interfaces.

It quickly became apparent that this required infrastructure and best-practice
guidelines on how web-applications needed to be written for optimal re-usability
and modularity.

– The http dispatch library greatly enhanced the ability to find and debug
code handling an HTTP location.

– The setting management library realises distributed management of appli-
cation settings.

– Instead of mixing application logic, general HTML primitives and the spe-
cific code to handle a set of HTTP locations in a single file we started a
libraries with HTML primitives, general primitives based on the Semantic
Web libraries and more high-level application logic.

Note that the design as a web application makes it easy to deploy multiple
user-interfaces concurrently on the same server from different HTTP locations.
Based on a stable low-level RDF and HTML output routines, experimental code
and (semi-) production code live together on the same server.

New explorations are not handled using a branch in the revision control sys-
tem, but using a copy of the code running on another HTTP location. Not using
CVS branches simplifies refacturing needed to deal with evolving new infrastruc-
ture such as the introduction of the dispatch, setting and session management
libraries.

The HTML write library based on DCG with inline calling of other rules
using the \-syntax proves to work well. It can generate both traditional HTML
and XHTML from the same Prolog source and allows for easy reuse of common
components. An open issue is the content of the HTML head, notably required
references to CSS and Javascript files. We must consider a syntax where DCG
components can specify required CSS and Javascript which is moved to the head
in an extra rewriting step.

Initially interactivity and graphics was provided by means of Java applets
running SeRQL queries on the server. Modifications required changing and re-
compiling the applet code and quite commonly restarting the browser. Later we
moved the application logic from the applet to the Prolog server, only keeping
the interface behaviour in the applet. With stable applets, we can now change the
application logic on the server and deploy the changes using a simple make/0
at the server.

In early development all interaction was handled server-side, which required
a new HTTP request and an update of the entire page for each action. A more
responsive solution is available with client-side programming in Javascript. Sim-
ple interactions for which all data is already available on the client side can be
solved completely client side with Dynamic HTML, an example is the thumbnail
browser in /facet.

If the interaction requires additional data, the XMLHttpRequest [7] allows
this to be requested from to the server asynchronously. The server response,
typically in XML or JSON, is then processed on the client side where it updates
the HTML through the Document Object Model (DOM). The combination of
these technologies, also known as AJAX, allows for rich interaction strategies
while reducing the server workload.

Various interface widgets, such as trees and tabbed views, are publicly avail-
able in several JavaScript libraries. Furthermore, services for geographical map-

ping, timeline and calendar visualisations are easily integrated and updated with
AJAX technology.

11 Future plans

Scalability will be tested against two axis. By incorporating more collections we
plan to scale to 150 million RDF triples. As the system becomes more widely
knows and serves a larger set of collections more user-friendly we anticipate
higher loads. It is planned to test scalability on an 8 CPU system with 32 GB
main memory.

As the connectivity between vocabularies grows, the graph-based algorithms
require more selective exploration of the graph and different abstraction mech-
anisms to provide sufficiently simple abstractions to satisfy the user.

We also foresee that a larger part of reasoning in the system will be speci-
fied in standard (Semantic Web) languages. Notably OWL descriptions can be
used to specify target objects and rules (SWRL) can be be used to express
simple reasoning and mappings that cannot be expressed using subPropertyOf
or owl:sameAs. Such expressions can be translated into Prolog programs and
optimised before execution.

We plan to rewrite parts of the web-interface and base it on the Yahoo
UI library12. Replacing our widgets by professional (web-)widgets enhances the
look-and-feel and releases the project from browser compatibility issues. Data
interchange with the server will be based on JSON13.

12 Related work

As far as we know, there are no Prolog systems offering comprehensive sup-
port for web programming concentrating on the Semantic Web. Many Prolog
systems offer some form of support for the HTTP protocol. The most widely
known example is the PiLLoW library [4] developed by the Ciao Prolog team
and available for at least Ciao, SWI-Prolog, SICSTus Prolog and YAP. In [14] we
compare PiLLoW and the SWI-Prolog infrastructure for handling HTML docu-
ments. ProWeb [1] is an ALP-Prolog library aimed at embedded HTTP servers
for controlling appliances. Its notion of Request Processing Modules (RPM) is
probably comparable to our http dispatch library. Lack of details on RPM make
an actual comparison impossible. WebLS by Amzi! [10] appears specialised for
question-answering type of applications.

13 Conclusions

We presented the SWI-Prolog (Semantic) web application platform with the E-
culture demo server. The platform combines an RDF in-core database that is
12 http://developer.yahoo.com/yui/
13 http://www.json.org/

seamlessly connected to Prolog with an HTTP server infrastructure, The award-
winning web-application, developed by five researchers proves the applicability
of Prolog for Semantic Web applications. All described infrastructure is available
as Open Source under the LGPL license. The source of the application as a whole
will be made available later during the project.

Acknowledgements

This research was supported by the MultimediaN project funded through the
BSIK programme of the Dutch Government.

References

1. Manfred Bathelt, Ulrich Gall, Bernd Hindel, and Christian Kurzke. Accessing
embedded systems via www: the proweb toolset. In Selected papers from the sixth
international conference on World Wide Web, pages 1065–1073, Essex, UK, 1997.
Elsevier Science Publishers Ltd.

2. Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: An archi-
tecture for storing and querying rdf and rdf schema. In Proc. First International
Semantic Web Conference ISWC 2002, Sardinia, Italy, volume 2342 of LNCS,
pages 54–68. Springer-Verlag, 2002.

3. cois Baget Jérôme Euzenat Faisal Alkhateeb, Jean-Fran˙RDF with regular expres-
sions. Technical Report RR-6191, INRIA Rhône-Alpes, May 22 2007.

4. Daniel Cabeza Gras and Manuel V. Hermenegildo. Distributed WWW program-
ming using (ciao-)prolog and the piLLoW library. TPLP, 1(3):251–282, 2001.

5. Michiel Hildebrand, Jacco van Ossenbruggen, and Lynda Hardman. /facet: A
Browser for Heterogeneous Semantic Web Repositories. In The Semantic Web -
ISWC 2006, pages 272–285, November 2006.

6. Matthias Jarke, Jim Clifford, and Yannis Vassiliou. An optimizing prolog front-end
to a relational query system. SIGMOD Rec., 14(2):296–306, 1984.

7. Linda Dailey Paulson. Building Rich Web Applications with Ajax. IEEE Com-
puter, 38(10):14–17, 2005.

8. Lawrence Philips. The double metaphone search algorithm. C/C++ Users J.,
18(6):38–43, 2000.

9. Guus Schreiber, Alia Amin, Mark van Assem, Viktor de Boer, Lynda Hardman,
Michiel Hildebrand, Laura Hollink, Zhisheng Huang, Janneke van Kersen, Marco
de Niet, Borys Omelayenko, Jacco van Ossenbruggen, Ronny Siebes, Jos Taekema,
Jan Wielemaker, and Bob J. Wielinga. Multimedian e-culture demonstrator. In
Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Pe-
ter Mika, Michael Uschold, and Lora Aroyo, editors, International Semantic Web
Conference, volume 4273 of Lecture Notes in Computer Science, pages 951–958.
Springer, 2006.

10. Arvindra Sehmi and Mary Kroening. Webls: A custom prolog rule engine for
providing web-based tech support. Technical report, Amzi! inc.

11. Mark van Assem, Maarten R. Menken, Guus Schreiber, Jan Wielemaker, and
Bob J. Wielinga. A method for converting thesauri to rdf/owl. In International
Semantic Web Conference, pages 17–31, 2004.

12. J. Wielemaker.

16 Wielemaker, et all,

13. Jan Wielemaker. An optimised semantic web query language implementation in
prolog. In Maurizio Baggrielli and Gopal Gupta, editors, ICLP 2005, pages 128–
142, Berlin, Germany, October 2005. Springer Verlag. LNCS 3668.

14. Jan Wielemaker, Zhisheng Huang, and Lourens van der Mey. SWI-Prolog and the
Web. Paper submitted to tplp, HCS, University of Amsterdam, 2006.

15. Jan Wielemaker, Guus Schreiber, and Bob Wielinga. Prolog-based infrastructure
for RDF: performance and scalability. In D. Fensel, K. Sycara, and J. Mylopoulos,
editors, The Semantic Web - Proceedings ISWC’03, Sanibel Island, Florida, pages
644–658, Berlin, Germany, october 2003. Springer Verlag. LNCS 2870.

