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Abstract. Axiom weakening is a technique that allows for a fine-grained
repair of inconsistent ontologies. Its main advantage is that it repairs on-
tologies by making axioms less restrictive rather than by deleting them,
employing the use of refinement operators. In this paper, we build on pre-
viously introduced axiom weakening for ALC, and make it much more
irresistible by extending its definitions to deal with SROIQ, the expres-
sive and decidable description logic underlying OWL 2 DL. We extend
the definitions of refinement operator to deal with SROIQ constructs,
in particular with role hierarchies, cardinality constraints and nominals,
and illustrate its application. Finally, we discuss the problem of termi-
nation of an iterated weakening procedure.

1 Introduction

The traditional approach to repairing inconsistent ontologies amounts to iden-
tify problematic axioms and to remove them (e.g., [19, 11, 10, 4]). Whilst this
approach is sufficient to guarantee that the obtained ontology is consistent, it
tends to lead to information loss as a secondary effect. For instance, let us assume
that our ontology contains the following axioms:

Polygamist v Person u ≥ 2 married .Person (1)

Polygamist v MarriedPerson (2)

MarriedPerson v Person u ≤ 1 married .Person u ≥ 1 married .Person (3)

Polygamist(mary) (4)

According to a classical approach, repairing such an ontology can be done by
removing any of the four axioms. However, by removing axiom (1) or (2), we
would abandon the polygamist essence of the ontology, by removing axiom (3)
we would abandon the more classical view about marriage, and removing axiom
(4) trivialises the concept Polygamist. Ideally one wants to preserve as much
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information as possible, and replace these axioms by weaker versions thereof
instead of removing them.

Approaches to repair ontologies more gently via axiom weakening were pro-
posed in the literature [8, 7, 20, 2]. In [7], concept refinement in EL++ ontologies
is introduced in the context of concept invention. A concept refinement oper-
ator to generalise EL++ concepts is proposed and its properties are analysed.
This line of work was continued in [20] where the authors define an abstract
refinement operator for generalising and specialising ALC concepts, and weak-
ening ALC axioms. Crucially, they propose a repairing ontology procedure that
solves inconsistencies by weakening axioms and not by removing them. In [2],
the authors present general theoretical results for axiom weakening in Descrip-
tion Logics (and instatiations of their approach for the case of EL). In particular
they show that the repairing procedure always yields a consistent ontology in,
at most, exponential number of iterations. Practical applications are proposed
for EL ontologies.

Refinement operators in Description Logic have been studied with applica-
tion to Machine Learning [5, 15, 14, 16]. Concept refinement operators [13] come
in two flavours. A generalisation operator wrt. an ontology O is a function γ that
associates with a concept C a set γO(C) of concepts which are ‘super-concepts’
of C. Dually, a specialisation operator wrt. an ontology O is a function ρ that
associates with a concept C a set ρO(C) of concepts which are ‘sub-concepts’ of
C. The notions of ‘super’, and ‘sub-concept’ are here implicitly defined by the
respective functions, rather than by a purely syntactic procedure. Intuitively,
a concept D is a generalised super-concept of concept C wrt. to ontology O if
in every model of the ontology the extension of D subsumes the extension of
C. So for instance, the concept ∃has component.Carbon is a generalisation of
LivingBeing and = 2 has bodypart.Legs is a specialisation of LivingBeing (assum-
ing an appropriate background ontology O).

In [20], the authors showed that refinement operators enjoy a few properties
that make them suitable for implementation of axiom weakening. In particular,
deciding whether a concept is a refinement of another concept has the same
worst-case complexity as deciding concept subsumption in the underlying logic.
Refinement operators are then used to weaken axioms, and to repair inconsis-
tent ontologies. Experimentally, it is shown that repairing ontologies via axiom
weakening maintains significantly more information than repairing ontologies
via axiom deletion, using e.g., measures that evaluate preservation of taxonomic
structure. In [18], ontology repairs via concept refinements and axiom weakening
is used to merge two mutually inconsistent ontologies.

In this paper, we extend refinement operators and axiom weakening of [20]
to deal with SROIQ, the logical underpinning of W3C OWL2, with the inten-
tion to make the approach more widely applicable. We also provide a proof of
almost-certain termination of the ontology repairing procedure based on axiom
weakening, originally proposed in [20], and extended here to deal with SROIQ.



2 Preliminaries

From a formal point of view, an ontology is a set of formulas in an appropriate
logical language with the purpose of describing a particular domain of interest.
We briefly introduce SROIQ; for full details see [1]. The syntax of SROIQ is
based on three disjoint sets NC , NR, NI of concept names, role names, and indi-
vidual names, respectively. The set of SROIQ roles and concepts is generated
by the grammar

R,S ::= U | E | r | r− ,

C ::= ⊥ | > | A | ¬C | C u C | C t C | ∀R.C | ∃R.C |
≥ n S.C |≤ n S.C | ∃S.Self | {i} ,

where U and E are the universal role and empty role respectively, r ∈ NR, S is
simple (see further) in the RBox R, A ∈ NC , n is a non-negative integer, and
i ∈ NI . In the following, L(NC , NR, NI) and Lr(NR), denote respectively the
set of concepts and roles that can be built over NC , NR, NI in SROIQ. We
denote by nnf(C) the negation normal form of the concept C.

The size of a concept in L(NC , NR, NI) will be useful in the proofs. We define
it precisely next.

Definition 1. The size |C| of a concept C is inductively defined as follows. For
C ∈ NC ∪ {>,⊥}, |C| = 1. For i ∈ NI , |{i}| = 1. For R ∈ NR, |∃R.Self | = 2.
Then for R ∈ NR and an arbitrary C, |¬C| = 1 + |C|; |C u D| = |C t D| =
1 + |C| + |D|; |∃R.C| = |∀R.C| = 1 + |C|, and for a non-negative integer n,
| ≥ n R.C| = | ≤ n R.C| = log(n) + 1 + |C|.

A TBox T is a finite set of concept inclusions (GCIs) of the form C v D where
C and D are concepts. It is used to store terminological knowledge regarding
the relationships between concepts. An ABox A is a finite set of formulas of the
form C(a), R(a, b), ¬R(a, b), a = b, and a 6= b, which express knowledge about
objects in the knowledge domain. An RBox R is a finite set of role inclusions
(RIA) R v S, complex role inclusions R1 ◦R2 v S, and disjoint(R,S) (R and S
simple, see next), where R, R1, R2, and S are roles. A role R ∈ NR is simple in
R if it is not implied by any composition of roles; it is non-simple otherwise. An
inverse role R− is simple if R is simple. We take U and E as simple. (Transitive,
reflexive, irreflexive, symmetric, and asymmetric roles can be defined through
appropriate TBox or RBox axioms.) A SROIQ ontology O = T ∪ R ∪ A is
defined by a TBox T , an RBox R, and an ABox A, where the R is assumed to
be regular, cf. [9].

The semantics of SROIQ is defined through interpretations I = (∆I , ·I),
where ∆I is a non-empty domain, and ·I is a function mapping every individual
name to an element of ∆I , each concept name to a subset of the domain, and
each role name to a binary relation on the domain; see [1] for details. The
interpretation I is a model of the ontology O if it satisfies all the axioms in O.

Given two concepts C and D, we say that C is subsumed by D wrt. the
ontology O (C vO D) if CI ⊆ DI for every model I of O, where we write CI for



the extension of the concept C according to I. We write C ≡O D when C vO D
and D vO C. C is strictly subsumed by D wrt. O (C @O D) if C vO D and
C 6≡O D. Given two roles, R and S, R is subsumed by S wrt. the ontology O
(R vO S) if RI ⊆ SI for every model I of O. We may use the shortcuts R ≡O S
and R @O S with the obvious interpretation.

Definition 2. Let O be a SROIQ ontology. The set of subconcepts of O is
given by

sub(O) = {>,⊥} ∪
⋃

C(a)∈O

sub(C) ∪
⋃

CvD∈O

sub(C) ∪ sub(D) ,

where sub(C) is the set of subconcepts in C.

We now define the upward and downward cover sets of concept names and
atomic roles respectively. Intuitively, the upward cover of the concept C collects
the most specific subconcepts of O that subsume C; conversely, the downward
cover of C collects the most general subconcepts from O subsumed by C. The
interpretation of the upward and downcover covers of atomic roles is similar.
The concepts in sub(O) are some concepts that are relevant in the context of
O, and that are used as building blocks for generalisations and specialisations.
The properties of sub(O) guarantee that the upward and downward cover sets
are finite.

Definition 3. Let O = T ∪R∪A be an ontology. Let C be a concept, the upward
cover and downward cover of C wrt. O are:

UpCovO(C) := {D ∈ sub(O) | C vO D and

@.D′ ∈ sub(O) with C @O D
′ @O D},

DownCovO(C) := {D ∈ sub(O) | D vO C and

@.D′ ∈ sub(O) with D @O D
′ @O C}.

Let r be a role name, the upward cover and downward cover of r wrt. O (where
N−R = {r− | r ∈ NR}):

UpCovO(r) := {s ∈ NR ∪N−R ∪ {E,U} | r vO s and

@.s′ ∈ NR ∪N−R ∪ {E,U} with r @O s
′ @O s and

s, s′ are simple in R}.
DownCovO(r) := {s ∈ NR ∪N−R ∪ {E,U} | s vO r and

@.s′ ∈ NR ∪N−R ∪ {E,U} with r @O s
′ @O s and

s, s′ are simple in R}.

Let n be a non-negative integer:

UpCovO(n) := {n, n+ 1},

DownCovO(n) :=

{
{n− 1, n} when n > 1

{n} when n = 0.



In and of themselves, UpCovO and DownCovO miss ‘interesting’ refinements.

Example 1. LetNC = {A,B,C} andO = {A v B}. Then sub(O) = {A,B,>,⊥}.
Now UpCovO(A u C) = {A}. Iterating, we get UpCovO(A) = {A,B} and
UpCovO(B) = {B,>}. We could reasonably expect B u C to be also a gen-
eralisation of A u C wrt. O but it will be missed by the iterated application
of UpCovO, because B u C 6∈ sub(O). Similarly, UpCovO(∃R.A) = {>}, even
though we could expect ∃R.B to be a generalisation of ∃R.A.

To take care of these omissions, we introduce generalisation and specialisation
operators that will recursively exploit the structural complexity of the concept
being refined.

Let ↑ and ↓ be two functions with domain L(NC , NR, NI)∪Lr(NR)∪N. They
map every concept to an element of the powerset of L(NC , NR, NI), every role
to an element of the powerset of Lr(NR), and every non-negative integers to the
powerset of N. We define ζ↑,↓, the abstract refinement operator, by induction on
the structure of concept descriptions as shown in Table 1.
We now define concrete refinement operators from the abstract operator ζ↑,↓.

Definition 4. The generalisation operator and specialisation operator are de-
fined, respectively, as

γO = ζUpCovO,DownCovO and ρO = ζDowCovO,UpCovO .

Returning to Example 1, notice that for NC = {A,B,C} and O = {A v B}, we
now have γO(A u C) = {A u C,B u C,A u >, A}.

Some comments are in order about Table 1. As in [20] the domain of γO
and ρO is the set of concepts in negative normal form. In practice it can be
extended straightforwardly to all concepts by modifying the clause ζ↑,↓(¬A) with
ζ↑,↓(¬C) = {nnf(¬C ′) | C ′ ∈ ↓(C)} ∪ ↑(¬C). The cases of ∀R.C and ∃R.C were
already present for ALC in [20]. Here, they are amended with the possibility to
refine the R-role. Specific cases have been added to deal with SROIQ concepts
and roles constructs.

Definition 5. Given a DL concept C, its i-th refinement iteration by means of
ζ↑,↓ (viz., ζi↑,↓(C)) is inductively defined as follows:

– ζ0↑,↓(C) = {C};
– ζj+1
↑,↓ (C) = ζj↑,↓(C) ∪

⋃
C′∈ζj↑,↓(C) ζ↑,↓(C

′), j ≥ 0.

The set of all concepts reachable from C by means of ζ↑,↓ in a finite number of
steps is ζ∗↑,↓(C) =

⋃
i≥0 ζ

i
↑,↓(C).

2.1 Basic properties

Some basic properties about γO and ρO will help to build intuition, and will be
useful in the remainder of this paper.

Lemma 1. For every ontology O:



Table 1. Abstract refinement operator.

ζ↑,↓(A) = ↑(A) , A ∈ NC

ζ↑,↓(¬A) = {nnf(¬C) | C ∈ ↓(A)} ∪ ↑(¬A) , A ∈ NC

ζ↑,↓(>) = ↑(>)

ζ↑,↓(⊥) = ↑(⊥)

ζ↑,↓(C uD) = {C′ uD | C′ ∈ ζ↑,↓(C)}∪
{C uD′ | D′ ∈ ζ↑,↓(D)} ∪ ↑(C uD)

ζ↑,↓(C tD) = {C′ tD | C′ ∈ ζ↑,↓(C)}∪
{C tD′ | D′ ∈ ζ↑,↓(D)} ∪ ↑(C tD)

ζ↑,↓(∀R.C) = {∀R′.C | R′ ∈ ↓(R)} ∪ {∀R.C′ | C′ ∈ ζ↑,↓(C)} ∪ ↑(∀R.C)

ζ↑,↓(∃R.C) = {∃R′.C | R′ ∈ ↑(R)} ∪ {∃R.C′ | C′ ∈ ζ↑,↓(C)} ∪ ↑(∃R.C)

SROIQ concepts:

ζ↑,↓(∃R.Self ) = {∃R′.Self | R′ ∈ ↑(R)} ∪ ↑(∃R.Self )

ζ↑,↓({i}) = ↑({i})
ζ↑,↓(≤ n R.C) = {≤ m R.C | m ∈ ↑(n)} ∪ {≤ n R′.C | R′ ∈ ↓(R)}∪

{≤ n R.C′ | C′ ∈ ζ↓,↑(C)} ∪ ↑(≤ n R.C)

ζ↑,↓(≥ n R.C) = {≥ m R.C | m ∈ ↓(n)} ∪ {≥ n R′.C | R′ ∈ ↑(R)}∪
{≥ n R.C′ | C′ ∈ ζ↑,↓(C)} ∪ ↑(≥ n R.C)

SROIQ roles:

ζ↑,↓(r) = ↑(r)

ζ↑,↓(r
−) = {s− | s ∈ ↑(r), s ∈ NR} ∪ {s | s− ∈ ↑(r), s− ∈ N−R }

ζ↑,↓(U) = ↑(U)

ζ↑,↓(E) = ↑(E)

1. generalisation: if X ∈ γO(Y ) then Y vO X
specialisation: if X ∈ ρO(Y ) then X vO Y

2. cover nontriviality: if C 6≡O > then there exists some D ∈ UpCovO(C)
such that C @O D, and if C 6≡O ⊥ then there exists some D ∈ DownCovO(C)
such that D @O C

3. cover triviality: if C ≡O > then > ∈ UpCovO(C), and if C ≡O ⊥ then
⊥ ∈ DownCovO(C)

4. trivial generalisability: > ∈ γ∗O(C), U ∈ γ∗O(r)
falsehood specialisability: ⊥ ∈ ρ∗O(C), E ∈ ρ∗O(r)

5. generalisation finiteness: γO(C) is finite
specialisation finiteness: ρO(C) is finite

Lemma 2. L(NC , NR, NI) is closed under γO and ρO. If C ∈ L(NC , NR, NI)
then every refinement in γO(C) and ρO(C) is also in L(NC , NR, NI).



Proof. (Sketch) The possibly delicate cases involve the refinements of roles. The
condition on the upcover and downcover of a role R to contain only simple
roles (cf. Definition 3) forces that every refinement of a role is simple. So, the
restriction to simple roles guarantees that, e.g., ζ↑,↓(≤ n R.C) and ζ↑,↓(≥ n R.C)
are in SROIQ, as no complex role may appear in the scope of the cardinality
restriction.

Notice that, by dropping that condition, we may have that, e.g., for roles
p, q, r, s and axioms r v s, p ◦ q v s in O, when generalising from (≥ n r.C) to
(≥ n s.C) we violate the simplicity condition for roles in cardinality restrictions.

ut

2.2 Complexity

We now analyse the computational aspects of the refinement operators.

Definition 6. Given a SROIQ ontology O and concepts C,D, the problems
γO-membership and ρO-membership ask whether D ∈ γO(C) and D ∈ ρO(C),
respectively.

The refinement operators γO and ρO are efficient, in the sense that decid-
ing γO-membership and ρO-membership is not harder than deciding concept
subsumption in SROIQ. Recall that subsumption in SROIQ is N2ExpTime-
complete [12]. We can show that γO-membership and ρO-membership belong
to the same complexity class.

Theorem 1. γO-membership and ρO-membership are N2ExpTime-complete.

Proof. (Sketch) We sketch the case of γO-membership. The case of
ρO-membership is analogous.

For proving hardness, we first show that deciding whether C ′ ∈ UpCoverO(C)
is as hard as concept subsumption. Then we show that γO-membership is just
as hard. The proofs are identical to the ones in [20].

For the upper bound, we first establish the complexity of computing the
sets UpCoverO(C), DownCoverO(C), UpCoverO(r), DownCoverO(r). It suffices to
check for every D ∈ sub(O) whether D ∈ UpCovO(C), or D ∈ DownCovO(C),
and collect those concepts for which the answer is positive. Each check can be
done with at most 1 + 4| sub(O)| calls to a SROIQ subsumption sub-routine
in non-deterministic double exponential time. The size of sub(O) is linear in the
size of T ∪A. An analogous exhaustive check of all roles in NR ∪{U,E} permits
to compute UpCovO(r), and DownCovO(r). Checking whether a role s is simple
in R can be done efficiently.

Finally, we can decide γO-membership resorting to at most |C| (one for every
subconcept and role in C) computations of the sets UpCovO(r), DownCovO(r),
UpCoverO(C ′) and DownCoverO(C ′), where |C ′| ≤ |C|.

Overall, the problem of deciding whether D ∈ γO(C) can be simulated by
a deterministic oracle Turing machine with a polynomial number of calls to an
N2ExpTime oracle. ut



3 Repairing Ontologies

Our refinement operators can be used as components of a method for repairing
inconsistent SROIQ ontologies by weakening, instead of removing, problematic
axioms. In this paper, we do not refine the RBox, so the regularity of the role
hierarchy remains intact in weakened ontologies.

Given an inconsistent ontology O = T ∪ A ∪ R, we proceed as described
in Algorithm 1. We first need to find a consistent subontology Oref of O to
serve as reference ontology to be able to compute a non-trivial upcover and
downcover. One approach is to pick a random maximally consistent subset of O,
FindMaximallyConsistentSet(O), and choose it as reference ontology Oref; another
is to choose the intersection of all maximally consistent subsets of O (e.g., [17]).

Once a reference ontology Oref has been chosen, and as long as O is incon-
sistent, we select a “bad axiom” FindBadAxiom(O) (in T ∪ A) and replace it
with a random weakening of it with respect to Oref. We can randomly samples a
number of (or all the) minimally inconsistent subsets of axioms I1, I2, . . . Ik ⊆ O
and return one axiom in T ∪ A from the ones occurring the most often.

The set of all weakenings of an axiom with respect to a reference ontology is
defined as follows:

Definition 7 (Axiom weakening). Let O = T ∪A∪R be a SROIQ ontology
and φ be an axiom in T ∪A. The set of (least) weakenings of φ is the set gO(φ),
such that:

– gO(C v D) = {C ′ v D | C ′ ∈ ρO(C)} ∪ {C v D′ | D′ ∈ γO(D)};
– gO(C(a)) = {C ′(a) | C ′ ∈ γO(C)};
– gO(R(a, b)) = {R′(a, b) | R′ ∈ γO(R)};
– gO(¬R(a, b)) = {¬R′(a, b) | R′ ∈ ρO(R)};
– gO(a = b) = {a = b,⊥ v >};
– gO(a 6= b) = {a 6= b,⊥ v >}.

The subprocedure WeakenAxiom(φ,Oref) randomly returns one axiom in gOref(φ).
For every subsumption or assertional axiom φ, the axioms in the set gOref(φ) are
indeed weaker than φ, in the sense that – given the reference ontology Oref – φ
entails them (and the opposite is not guaranteed).

Lemma 3. For every subsumption or assertional axiom φ, if φ′ ∈ gO(φ), then
φ |=O φ′.

Proof. Suppose C ′ v D′ ∈ gO(C v D). Then, by definition of gO and Lemma 1.1,
C ′ v C and D v D′ are inferred from O. Thus, by transitivity of subsumption,
we obtain that C v D |=O C ′ v D′. For the weakening of assertions, the result
follows immediately from Lemma 1.1 again. ut

Clearly, substituting an axiom φ with one axiom from gO(φ) cannot diminish
the set of interpretations of an ontology: if I is an interpretation that satisfies
the axioms of ontology before such a replacement, I satisfies the same axioms
even after it. By Lemma 1.4, any subsumption axiom is a finite number of



Algorithm 1 RepairOntologyWeaken(O)

Oref ← FindMaximallyConsistentSet(O)
while O is inconsistent do

φbad ← FindBadAxiom(O)
φweaker ← WeakenAxiom(φbad, O

ref)
O ← O \ {φbad} ∪ {φweaker}

end while
Return O

weakenings away from the trivial axiom ⊥ v >. This holds also for equality and
inequality ABox axioms. Any assertional axiom C(a) is also a finite number of
generalisations away from the trivial assertion >(a). Similarly, every assertional
axioms R(a, b) and ¬R(a, b) are a finite number of generalisations away from the
trivial assertions U(a, b) and ¬E(a, b), respectively.

Example 2. Consider the ontology O containing the inconsistent set of axioms
1-4 in the introduction. Suppose that FindBadAxiom(O) returns axiom 3 as the
most problematic one. According to our definitions, a possible weakening of the
axiom returned by WeakenAxiom(3, Oref) may be MarriedPerson v Person u ≤
2 married .Person u ≥ 1 married .Person. Replacing axiom 3 with its weakening,
the resulting ontology is consistent.

Example 3. Imagine that the RBox of both our reference ontology Oref and the
ontology O contains the following axioms: parent of v ancestor of ; father of v
parent of ;mother of v parent of ; parent of ◦ parent of v grandparent;
disjoint(parent of , grandparent); parent of − ≡ child of .
And imagine that O includes also the following statements, which cause inconsis-
tency: father of (bob,mary) (1);mother of (mary, alice) (2); child of (alice, bob) (3)
A possible resolution of the inconsistency could be the weakening of axiom (3):
WeakenAxiom((3), Oref) : ancestor of −(alice, bob).

4 Iterated refinements and termination

As noted by Lemma 1.5 the set of “one-step” refinements of a concept is always
finite. Moreover, Lemma 1.4 indicates that every concept can be refined in a
finite number of iterations to > (or ⊥). Nonetheless, an iterated application of
the refinement operator can lead to cases of non-termination. For instance, given
an ontology defined as O = {A v ∃r.A}, if we generalise the concept A wrt. O
it is easy to see that we can obtain an infinite chain of generalisations that never
reaches >, i.e., A vO ∃r.A vO ∃r.∃r.A . . . For practical reasons this may need
to be avoided, or mitigated. Running into this non-termination ‘problem’ is not
new in the DL literature. In [3], the problem occurs in the context of finding a
least common subsumer of DL concepts. Different solutions have been proposed
to avoid this situation. Typically, some assumptions are made over the structure
of the TBox, or a fixed role depth of concepts is considered. In the latter view, it



is possible to restrict the number of nested quantifiers in a concept description to
a fixed constant k, to forbid generalisations/specialisations already picked along
a chain from being picked again, and to introduce the definition of role depth
of a concept to prevent infinite refinements. If this role depth upper bound is
reached in the refinement of a concept, then > and ⊥ are taken as generalisation
and specialisation of the given concept respectively.

Another possibility is to abandon certain termination and adopt almost-sure
termination, that is, termination with probability 1. The idea is to associate
probabilities to the refinement ‘branches’ available at each refinement step.

In what follows we will show that, indeed, if we start from any concept
C and choose uniformly at random a generalisation out of its set of possible
generalisations (or a refinement out of its set of refinements: the proofs are
entirely symmetrical) we will almost surely reach > (⊥) within a finite number
of steps. This implies at once that an axiom will almost surely not be indefinitely
weakened by our procedure, and that Algorithm 1 will almost surely terminate.

The key ingredient of the proof is Lemma 4, which establishes an upper-
bound on the rate of growth of the set of possible generalisations (refinements)
along a chain.

Definition 8. Let O be a SROIQ ontology and let C ∈ sub(O). Then let
F (C) = |γO(C)| be the number of generalisations of C, let F ′(C) = |ρO(C)|
be the number of specialisations of C and let G(C) = max({|C ′| | C ′ ∈ γO(C) ∪
ρO(C)}) be the maximum size of any generalisation or specialisation of C.

By setting an upper bound to the size of γ(C) and ρ(C), part 1 of the following
lemma may in particular be seen as a quantitative version of Lemma 1.5.

Lemma 4. Let O be a SROIQ ontology and let C be any concept (not
necessarily in sub(O)). Furthermore, let k = | sub(O)| + 2|NR| + 2 and q =
max({|C|, |nnf(¬C)| | C ∈ sub(O}). Then

1. F (C), F ′(C) ≤ 3k|C|;
2. G(C) ≤ |C|+ q.

Proof. The full proof via structural induction is lengthy but presents no partic-
ular difficulties. The intuition behind it is the following: by our definitions, in a
generalisation/specialisation step we essentially select a single subcomponent C ′

(or r) of the current expression C and we replace it with some element of sub(O)
(or of NR∪N−R ). But these two sets are finite, and the number of subcomponents
of an expression C increases linearly with the size of C. Thus, the number of
possible generalisations/specialisations of C increases linearly with the size of
C, and every generalisation/specialisation step increases the size of the resulting
expression by some at most constant amount. ut

We can now prove our required result by showing that, even though the size of
the concept expression – and, therefore, the number of possible generalizations
– grows with every generalization step, it grows slowly enough that the general-
ization chain will almost surely eventually pick an element in the upcover of the
current concept which is strictly more general than it. Thus, > will be almost
surely reached in a finite number of steps.



Theorem 2. Let O be a SROIQ ontology, let C be any SROIQ concept, and
let (Ci)i∈N be a sequence of concepts such that C0 = C and each Ci+1 is chosen
randomly in γO(Ci) according to the uniform distribution.

Then, with probability 1, there exists some i ∈ N such that Ci = >.

Proof. Let us first prove that, if C 6≡O >, there is almost surely some Ci in the
chain such that Ci ≡O > (and, therefore, such that Ci′ ≡O > for all i′ > i).

By the previous lemma, we know that γO(Ci) contains at most 3k|Ci| con-
cepts. Furthermore, for every concept Ci such that Ci 6≡O > there exists at least
one C ′ ∈ UpCovO(Ci) ⊆ γO(Ci) such that C @O C ′ (c.f., Lemma 1.2): therefore,
the probability that the successor of Ci will be some Ci+1 ∈ UpCovO(Ci) such
that Ci @O Ci+1 is at least 1/(3k|Ci|). Now let |C0| = N : since Ci+1 ∈ γO(Ci),
we then have that |Ci| ≤ qi + N . Therefore, the probability that at step i we
do not select randomly an element of UpCovO(Ci) that is strictly more general

than Ci will be at most 3k(qi+N)−1
3k(qi+N) = i+`−ε

i+` for ` = N/q and ε = 1/(3kq).

But then the probability that we never select a strictly more general element
from the upcover will be at most

∏∞
i=0

i+`−ε
i+` = 0,3 and thus our generalisation

sequence C = C0 vO C1 vO C2 . . . will almost surely contain some Ci such
that Ci+1 ∈ UpCovO(Ci) ⊆ sub(O) and C vO Ci @O Ci+1. By the same argu-
ment, the generalisation sequence starting from Ci+1 will almost surely eventu-
ally reach some Cj+1 ∈ sub(O) with C @O Ci+1 @O Cj+1, and so forth; and by
applying this line of reasoning | sub(O)| times, we will almost surely eventually
reach some concept D ≡O >, as required.

Now let us consider a generalisation chain D = D0 vO D1 vO D2 . . ., where
as before everyDi+1 is chosen randomly among γ(D), starting from some concept
D ≡O >. Now, since D ≡O > and D vO Di for all i, > ∈ UpCovO(Di) ⊆ γO(Di)
for all i (c.f., Lemma 1.3). Thus, at every iteration step i we have a probability of
at least 1/|γ(Di)| that Di+1 = >; and if we let N ′ = |D|, by the previous results
we obtain at once that |γ(Di)| ≤ iq+N ′, and hence that the probability that we
do not end up generalising Di to > is at most (3k(iq +N ′)− 1)/(3k(iq +N ′)),

and finally that the probability that we never reach > is
∏∞
i=0

3k(iq+N ′)−1
3k(iq+N ′) =∏∞

i=0
i+`′−ε′
i+`′ = 0 where `′ = N ′/q and ε′ = 1/3kq. ut

Note that, by our definitions, > can be further generalized to all elements
of its upcover (that is, all concepts of sub(O) which are equivalent to > with
respect to O), and similarly ⊥ can be further specialized to other concepts in
its downcover. If this behaviour is unwanted, it is easy to force the upcover of >
to contain only >, and likewise for ⊥; but regardless of this, our results imply

3 One way to verify this is to observe that the series
∑∞

i=0(log(i+ `− ε)− log(i+ `))
diverges to minus infinity. This in turn may be verified by noting that

∑∞
i=0(log(i+

` − ε) − log(i + `)) ≤
∑∞

i=0(log(i + d`e − ε) − log(i + d`e)) =
∑∞

i=d`e(log(i − ε) −
log(i)), because log(i+ `− ε)− log(i+ `) ≤ log(i+ d`e − ε)− log(i+ d`e), and then
showing that −

∑∞
i=d`e(log(i−ε)− log(i)) =

∑∞
i=d`e log(i)− log(i−ε) diverges to plus

infinity by means of the integral method: the terms of the series are all positive, and∫ U

d`e log(x)− log(x− ε)dx goes to infinity when U goes to infinity. Since the integral

diverges, so does the series, which gives us our conclusion.



at once that every axiom will almost surely be weakened into > v ⊥ in a finite
number of weakening steps.

5 Outlook

We presented a set of refinement operators covering most aspects of the full
SROIQ language. Further additions to the general rules of refinements may
be studied, e.g. those governing refinements of roles that can be obtained by
considering complex roles in the up and down covers. Refinement operators have
so far been implemented for the ALC fragment. This implementation will need
to be extended to deal with the SROIQ refinement operators presented here.
As done in [20] for ALC ontologies, this will allow us to run experiments to
evaluate the usefulness of SROIQ ontology fine repairs via axiom weakening.
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