
First Results on How to Certify Subsumptions
Computed by the EL Reasoner Elk Using

the Logical Framework with Side Conditions?

Franz Baader1, Patrick Koopmann1, and Cesare Tinelli2

1 Theoretical Computer Science, TU Dresden, Germany
firstname.lastname@tu-dresden.de

2 Department of Computer Science, The University of Iowa, USA
cesare-tinelli@uiowa.edu

Abstract. The generation of proof certificates and the use of proof
checkers is nowadays standard in first-order automated theorem prov-
ing and related areas. They have, to the best of our knowledge, not yet
been employed in Description Logics, where the focus was on detecting
and repairing errors in the ontology, rather than on catching erroneous
consequences created by an incorrect reasoner. This paper reports on
first steps towards remedying this deficit for subsumptions computed by
the DL reasoner Elk. We use an existing tool for generating proofs of
consequences from Elk, and transform these proofs into a format that
is accepted as certificates by our proof checker. The checker is obtained
as an instance of a generic certification tool based on the Logical Frame-
work with Side Conditions (LFSC), by formalizing the inference rules of
Elk in LFSC. We report on the results of applying this approach to the
classification of a large number of real-world OWL 2 EL ontologies.

1 Introduction

The purpose of this paper is to show that tools developed in first-order au-
tomated theorem proving (ATP) and satisfiability modulo theories (SMT) for
certifying reasoning results can in principle also be employed in Description
Logic (DL) to increase the trust in reasoning results (such as the subsumption
hierarchy) computed by DL reasoners.

Highly-optimized automated reasoning tools are complex software systems,
and thus may produce erroneous results due to programming errors, even if
soundness and completeness of the underlying calculus have been proved in de-
tail. If the results of the reasoning process are used in safety-critical situations
(e.g., when verifying software), then it is important that one can trust these
results. Since it is currently not possible to verify a large and sophisticated soft-
ware system like an automated theorem prover, the solution to this problem is

? Partly funded by the DFG grant 389793660 as part of TRR 248.
Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 F. Baader, P. Koopmann, C. Tinelli

that the prover outputs a proof certificate for the result, which can then easily
be checked using a proof checker. In contrast to the provers, proof checkers are
rather simple pieces of software, and thus are easier to trust or verify. For this
reason, the generation of proof certificates is now common in (general-purpose)
ATP [33,29] and more specialized related areas such as SMT [31,8]. For example,
in most divisions of the ATP system competition CASC [32], it is required that
the participating systems output proofs for theorems and (finite) counter-models
for non-theorems, though this output is not checked automatically. Proofs are
used in particular when ATP and SMT tools are integrated in other reasoning
tools such as skeptical proof assistants [2,9] or certifying software verifiers [22].

Since most DLs [6] are decidable fragments of first-order logic, dedicated de-
cision procedures for specific DLs are usually more efficient for reasoning on DL
knowledge bases than general-purpose theorem provers. Though DL reasoning
is simpler than ATP, efficient DL reasoners1 employ sophisticated optimizations
and data structures, and are thus again complex software systems that may
contain programming errors. In addition, while the correctness of the basic cal-
culi (such as tableaux or consequence-based calculi) may have been proved in
detail, this is not always the case for optimized variants. Nevertheless, the DL
community has mainly concentrated on explaining [15] and repairing [16,7] er-
rors in the input (i.e., the ontology that is classified), rather than on catching
errors created by the reasoning process. In the 2015 OWL Reasoner Evaluation,
the results produced by the reasoners were “validated by comparison between
competitors using a majority vote/random tie-breaking fallback strategy” [26],
which in some cases unfairly penalized a correct reasoner [20].

This paper reports on first steps towards remedying this deficiency, where
we mainly tried to employ existing software rather than implementing new one.
As reasoning task we consider classification for OWL 2 EL ontologies,2 i.e., the
computation of the subsumption hierarchy between the concepts defined in the
given ontology. Our aim is to certify subsumption relationships that have been
computed by the consequence-based DL reasoner Elk [19]. For this purpose, we
use the inference tracing approach of [18] extending Elk to extract proofs of
computed subsumptions, and then transform these proofs into a format that is
accepted as certificates by our proof checker. This checker is obtained by instan-
tiating a generic checker based on the Logical Framework with Side Conditions
(LFSC) [31] with an encoding in LFSC of a sufficiently large subset of Elk’s
inference rules. LFSC is a meta-framework based on the established Edinburgh
LF framework [14], which combines ease of presenting proof systems with a
high-performance checker for proofs in the represented systems.

We have evaluated our approach on a large number of real-world OWL 2 EL
ontologies, obtaining promising results. Our experiments show that the certifi-
cates are usually of manageable size and can be checked in reasonable time,

1 See, e.g., [26] for a list of the reasoners that participated in the OWL Reasoner
Evaluation (ORE) in 2015.

2 OWL 2 EL is a profile of the standard Web Ontology Language OWL 2 https://www.
w3.org/TR/owl2-profiles/.

https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/

Certifying Subsumptions Computed by Elk 3

though creating them may take a relatively long time. The latter problem could
be mitigated by developing reasoners that directly generate certificates, rather
than extracting them from outputs of existing tools not built for this purpose.

2 Certificate Generation and Proof Checking

Certificate generation in ATP and SMT takes various forms depending on the
query issued to the prover and its result. When the query consists in showing that
a goal formula ϕ is entailed by a set of hypotheses Γ and the prover succeeds in
proving that, the generated certificate typically consists in a term that encodes a
proof of ϕ from Γ or, equivalently, a proof of the unsatisfiability of Γ ∪{¬ϕ}. In
the DL context, ϕ could be a subsumption statement C v D and Γ an ontology.
If the subsumption holds, then consequence-based calculi provide us with a proof
of ϕ from Γ whereas tableau-based calculi yield a proof of the unsatisfiability of
Γ with an a ABox of the form {C(a),¬D(a)}, which describes a counterexample
to the subsumption statement.

The encoding of proofs varies depending on the proof system in which the
proof is expressed and the granularity of proof terms. Some provers, such as
Vampire [28] and Z3 [23], generate proof terms that are in fact proof sketches:
an external checker needs proof search capabilities in order to reconstruct a full
proof from the sketch. Others, such as veriT [11], provide fine-grained proof terms
that can be checked with no proof search but require the checker to provide native
support for certain data structures (such as sets, clauses, or sequents) used in the
proof term. Finally, other provers, such as CVC4 [13], provide fine-grained proofs
as terms in a logical framework expressive enough to formalize also the proof
system the proof is based on (such as LF [14], ELF [27] or the λΠ calculus [3]).
The latter require a proof checker that can take as input both the proof term
to be checked and its proof system. Logical frameworks are typically based on
a dependently-typed higher-order logic. This provides not only representational
power but also the ability to uniformly recast proof checking as type checking. A
prover’s proof system is modeled as a type system T , and a proof term represents
a correct proof exactly when it is well typed in T .

The last approach to proof checking provides the highest level of flexibility
because the same proof checker can be used for very different provers and proof
systems as long as those systems are representable in the underlying logical
framework. The approach also provides a high level of trust in principle, for two
reasons. First, a generic checker that has been used successfully with many proof
systems is arguably more trustworthy than one custom-made for a specific proof
system, unless the latter is very simple. Second, because the proof system is an
input to the proof checker, it is expressed as set of proof rules whose soundness
can be proved separately with a proof assistant, such as Coq [34] or Lean [24],
also based on a dependently-typed higher-order logic. This effectively removes
the rules from the trusted core, which then reduces to just the proof checker.

4 F. Baader, P. Koopmann, C. Tinelli

(Kinds) κ ::= type | Πx:τ. κ (Types) τ ::= int | k | τ t | Πx:τ1[{p t}]. τ2
(Terms) t ::= x | c | t:τ | λx[:τ]. t | t1 t2

Fig. 1: LFSC Abstract Syntax. Letter c denotes (possibly higher-order) term
constants, k type constants, x term variables, p side condition programs. Op-
tional syntax components are in square brackets.

The Logical Framework with Side Conditions

For this work, we have used the LFSC [31], a logical framework that extends LF,
the Edinburgh Logical Framework [14], with a bare-bones functional program-
ming language to express procedural side conditions for proof rules. Intuitively,
the extension to side conditions allows one to define proof systems more com-
pactly, with proof rules that delegate low-level checks on the rule’s premises
(such as, for instance, that a given term occurs in a given premise) to a side
program. We refer the interested reader to Stump et al. [31] for more details on
the use of side conditions and focus on the main language instead.

A slightly simplified version of LFSC’s abstract syntax is provided in Figure 1.
It is an extension of LF’s λΠ calculus, itself an extension of the simply typed
λ-calculus. The λΠ calculus has three levels of semantic entities, all denoted
by terms: values; types, understood as collections of values; and kinds, families
of types. The constant type denotes the kind of types. Types and kinds can be
dependent on (i.e., indexed by) values. Syntactically, if τ2[x] is a type term whose
set of free term variables is {x} and τ1 is a type term with no free variables, the
expression Πx:τ1.τ2[x] denotes in the calculus the (dependent) type of functions
that return a value of type τ2[v] for each value v of type τ1 for input x. When
τ2 has no free variables, the type Πx:τ1.τ2 is just the type τ1 → τ2 of simply
typed λ-calculus,3 and we will use the latter notation for it, treating → as right
associative. The same sort of parametrization applies to kinds as well, allowing
one for instance to define the type of vectors of size n with a type constant vec
of kind Πn:int. type where int is the predefined type of mathematical integers.
LFSC adds to the λΠ calculus the possibility of imposing restrictions on the
parameters of a depended type. These restrictions are expressed operationally
by side conditions of the form {p t} where p is a program in the side condition
language and t is an LF term. The restriction, enforced at type checking time,
is that p does not fail and its result is equal to (more precisely, matches) t.

The LFSC Checker

The LFSC checker developed at the University of Iowa is a small, high perfor-
mance type checker for LFSC written in C++.4 It takes as input one or more

3 The type of unary functions with inputs of type τ1 and outputs of type τ2.
4 The checker is available in source form at https://github.com/CVC4/LFSC.

https://github.com/CVC4/LFSC

Certifying Subsumptions Computed by Elk 5

signature files containing an LFSC encoding of a proof system with side con-
ditions, and a file containing the certificate, the proof term to be checked, and
reports whether the term is a correct proof or not. For any of the LFSC checker’s
applications, the trusted core consists of the signature(s) used and the checker
itself which has, however, a rather small code base. Although the checker was
developed originally to check SMT proofs [31], and is used mainly for that pur-
pose,5 thanks to its generality it has also been used for other kinds of reasoners,
such as SAT solvers [25], model checkers [22] and, in our case, DL reasoners.
In fact, we argue that the LFSC checker (or similar logical framework-based
checkers such as Dedukti [3]) is particularly well-suited for Description Logics
given the large number of such logics and proof systems for them. In this work,
we chose the proof system adopted by the high-performance reasoner Elk for
the logic EL [4] mainly because Elk produces proof traces for its subsumption
checks, which can be converted to full LFSC proofs. The next section explains
how we did that and how we formalized ELK’s proof system in LFSC.

3 Certifying OWL EL Classification Results

We focus on the subset of OWL 2 EL corresponding to EL+
⊥ [4,6] since it is

supported by Elk and is expressive enough to provide us with a large number
of real-world ontologies for our experiments. Starting with mutually disjoint sets
NC and NR of concept and role names, respectively, EL+

⊥ concepts are constructed
from concept names using the constructors top concept (>), bottom concept (⊥),
conjunction (C uD), and existential restriction (∃r.C). EL+

⊥ ontologies are then
finite sets of axioms of the form C v D for concepts C,D (concept inclusion,
CI) and r1 ◦ . . . ◦ rn v r for role names r1, . . . , rn, r (role inclusion, RI). The
semantics of EL+

⊥ concepts and ontologies, which defines how interpretations I
assign sets CI to concepts C and under what conditions an interpretation is a
model of an ontology, is formalized in the usual way (see [4,6] for details).

One of the most important inference problems is subsumption: given EL+
⊥

concepts C,D and an EL+
⊥ ontology O, we say that C is subsumed by D w.r.t.

O (written C vO D) if CI ⊆ DI holds for all models I of O. The subsumption
problem in EL+

⊥ is known to be decidable in polynomial time [4]. DL systems
offer classification as basic inference service, i.e., when reading in an ontology
O, they usually compute all subsumption relationships between the concept
names occurring in O, as well as > and ⊥. Some DL systems actually compute
(and store) not the full set of these subsumptions, but their transitive reduct,
by leaving out those relationships that can be obtained by transitivity from
others. Whereas systems that use tableaux-based subsumption reasoning realize
classification by repeated calls of a basic subsumption algorithm [5], consequence-
based approaches [4,17] classify the whole ontology in one go.

5 The SMT solvers CVC3 and CVC4 produce LFSC proofs.

6 F. Baader, P. Koopmann, C. Tinelli

R0
C v C R>

C v > R−u
C v D u E

C v D C v E R+
u
C v D C v E
C v D u E

R∃
C v ∃r.D D v E

C v ∃r.E R⊥
C v ∃r.D D v ⊥

C v ⊥ Rv
C v D
C v E : D v E ∈ O

R◦
C0 v ∃r1.C1 C1 v ∃r2.C2 . . . Cn−1 v ∃rn.Cn

C0 v ∃r.Cn
: r1 ◦ . . . ◦ rn v r ∈ O

Fig. 2: Basic calculus used by Elk.

conc, role, axiom, ont : type h : axiom→ type

v : conc→ conc→ axiom ∅ : ont ; : axiom→ ont→ ont

⊥,> : conc u : conc→ conc→ conc ∃ : role→ conc→ conc

R0 :
Πc:conc.

h(c v c) R−u1 :
Πc, d, e:conc.

h(c v d u e)
→ h(c v d)

R−u2 :
Πc, d, e:conc.

h(c v d u e)
→ h(c v e)

R> :
Πc:conc.

h(c v >)
R+
u :

Πc, d, e:conc.
h(c v d)→ h(c v e)
→ h(c v d u e)

R∃ :
Πc, d, e:conc. Πr:role.

h(c v ∃ r d)→ h(d v e)
→ h(c v ∃ r e)

R⊥ :
Πc, d:conc. Πr:role.

h(c v ∃ r d)→ h(d v ⊥)
→ h(c v ⊥)

Rv :
Πc, d, e:conc. Πo:ont {(in d v e o) tt}.

h(c v d)
→ h(c v e)

Fig. 3: Partial LFSC encoding of the Elk calculus.

How Elk Proves Subsumption

For EL+
⊥, Elk follows a consequence-based approach for classification [19], which

basically starts with the CIs in O, and then uses classification rules (see Fig-
ure 2 for example rules) to add derived subsumptions. This saturation process
terminates after a polynomial number of rule applications, and a subsumption
between concept names in O follows from O iff it is contained in the saturated
set computed by Elk. Note that, for efficiency reasons, in some of the rules the
axioms of the ontology O are distinguished from the derived subsumptions by
being used as side conditions rather than as premises.

The OWL 2 EL standard defines a range of axioms that can be seen as syn-
tactic sugar for EL+

⊥-axioms. In addition to the rules shown here, Elk uses rules
that convert those axioms into CIs or RIs, and some other rules we do not discuss
for space constraints. To allow the certification of Elk proofs, we designed and
implemented an LFSC signature specifying datatypes and rules corresponding
to the language constructs and rules used in Elk. In the source code of Elk, we
found 50 classes implementing the interface ElkInference for rule applications.
We restricted ourselves to the inferences on (syntactic variations of) EL+

⊥-axiom,
and identified the rules actually used in the corpora discussed in the next section.
This resulted in a set of 18 rules which we then implemented in LFSC.

Certifying Subsumptions Computed by Elk 7

{P v R u S, P v ∃r.T, T v U} ⊆ O

P v P
R0

P v ∃r.T
Rv

T v T
R0

T v U
Rv

P v ∃r.U R∃

P v P
R0

P v R u S
Rv

P v R
R−u1

P v ∃r.U u R
R+
u

(a) Elk proof

P, R, S, T, U : conc r : role

o = P v R u S ; P v ∃ r T ; T v U ; ∅
p = R0 (P v P)

check (R+
u

(R∃
(Rv o p)
(Rv o (R0 (T v T))))

(R−u1 (Rv o p))

) : h(P v ∃ r U uR)

(b) LFSC proof

Fig. 4: From Elk to LFSC proofs.

Encoding Elk Proofs in LFSC

For illustration purposes, Figure 3 contains a fragment of the LFSC signature,
in abstract syntax, showing how the first seven Elk rules from Figure 2 could
be encoded in LFSC.6 The first three rows declare a number of types (with conc
for concepts, ont for ontologies, and so on) and constants corresponding to the
symbols of EL+

⊥. For increased readability, for constants we use the same symbols
as the corresponding operator in EL+

⊥. The subset of ontology axioms used in
the proof are encoded as a sequence of axiom constructed with the operators ∅
and ;. The type constant h is used to construct proof judgments, statements of
the form h(a) expressing that axiom a is provable.

A proof rule is represented by a dependently-typed constant whose type di-
rectly encodes the rule’s premises and conclusion. We name each such constant as
its corresponding rule in Figure 2, except for rules R−u1 and R−u2 which correspond
respectively to the first and the second conclusion of rule R−u from that figure.
For brevity, we use notation like Πx, y:τ1. τ2 as a shorthand for Πx:τ1. Πy:τ1. τ2.
The type of each rule is parametrized by term variables that correspond to the
schema variables in the Elk rule. For instance, R+

u , which has type

Πc:conc.Π d:conc.Π e:conc. h(c v d)→ h(c v e)→ h(c v d u e),

is parametrized by variables c, d, and e of type conc which correspond, respec-
tively, to the schema variables C, D, and E of the corresponding Elk rule. The
return type h(c v d u e) of R+

u encodes the conclusion C v D u E of the Elk
rule whereas the argument types h(c v d) and h(c v e) encode the two premises
C v D and C v E. The other rules are similar. Note that the type of Rv en-
codes the side condition of the corresponding Elk rule by means of an LFSC
side condition that checks whether the axiom c v d occurs in the input ontology
o. This is done by the side condition program in (whose definition is not shown),
which scans o looking for c v d and returns tt if, and only if, it finds it.

6 The actual LFSC signature for the Elk calculus, including the side condition code,
is provided in full in the appendix in the Lisp-like concrete syntax of LFSC.

8 F. Baader, P. Koopmann, C. Tinelli

Figure 4 shows side-to-side an Elk proof tree deriving the subsumption P v
∃r.UuR from an ontology containing the axioms P v RuS, P v ∃r.T, and T v
U, and a possible encoding of this proof and relevant subontology in LFSC. The
encoding starts by declaring constants for the various concepts and roles used
in the proof. It then defines variable o as an ontology (i.e., a value of type ont)
consisting of all the relevant axioms. The proof is encoded as the proof term

(R+
u (R∃ (Rv o (R0 (P v P))) (Rv o (R0 (T v T))))

(R−u1 (Rv o (R0 (P v P)))))

with the optimization that the two occurrences of subterm (R0 (P v P)) are
factored out by the defined constant p. In each rule application, underscores
are used for arguments whose value does not need to be specified as it can be
generated by type inference from the remaining arguments. The term directly
represents the proof tree of the Elk proof. Intuitively, for the inner rule applica-
tions, the result of the rule (its conclusion) is given as input to the surrounding
rule application. The term is a correct proof of P v ∃r.UuR exactly if it is well
typed and has type h(P v ∃ r U u R). Using the type ascription operator :, the
check command directs the LFSC checker to verify that.

Extracting Proofs Using Elk’s Explanation Servive

To generate LFSC proofs that can serve as certificates, we used the explanation
service implemented in Elk 0.5 [18]. Ideally, these certificates would be created
during classification and returned together with the classification result to the
user. As a first step towards this, we used the proof extraction methods that
are provided by Elk 0.5 [18] and can be direcly used from within Java. While
Kazakov et al. [18] describe algorithms for extracting proofs that could serve
as certificates, the implementation available in Elk 0.5 is tailored towards the
explanation service within the OWL ontology editor Protégé,7 which presents
some limitations for our use case. The aim of the explanation service in Protégé
is to provide users with detailed explanations of the different inference steps
that could lead to a particular concept inclusion. If an axiom can be inferred in
different ways using Elk, the front-end shows all these possibilities. Users can
select the inference they are interested in and ask for inferences of each of the
premises, thus exploring different proofs step-wise for the concept inclusion of
interest. In a similar way, we use this service to reconstruct a proof automatically:
for a given axiom derived by Elk, we can ask for the possible rule applications
that have this axiom as conclusion. To construct the whole proof, we select one
such rule application, and then iteratively continue on the premises. A naive
implementation of this approach would lead to termination problems, since the
same axiom may occur twice in the resulting structure.

This non-termination issue is solved in Algorithm 1 by keeping track, in
the variable inferences, of the set of inferences (i.e., rule applications including

7 https://protege.stanford.edu/

https://protege.stanford.edu/

Certifying Subsumptions Computed by Elk 9

Algorithm 1 Algorithm used for generating proofs.

1: knownProofs← new Map[Axiom,Proof]
2:
3: procedure generateProof(α : Axiom, inferences : Set[Inference])
4: if α ∈ knownProofs.keys then
5: return knownProofs.get(α)
6: else
7: for all inf ∈ (getInferencesFor(α) \ inferences) do
8: proofs← {generateProof(β, inferences ∪ {inf}) | β ∈ inf.premises}
9: if fail 6∈ proofs then

10: proof ← (α, inf, proofs)
11: knownProofs.put(α 7→ proof)
12: return proof
13: end if
14: end for
15: return fail
16: end if
17: end procedure

premises and conclusion) for the current branch of the proof being constructed.
To generate a proof of an axiom α, we start with the call generateProof(α, ∅) with
an empty set of inferences. Then we ask Elk via getInferencesFor(α) for inference
steps, but consider only those inferences that are not already in inferences. For
each inference inf, we call the procedure recursively on the premises involved,
adding the current inference to the set inferences (Line 8). If the proof construc-
tion did not fail for any premise, we have constructed the proof and can return
it (Line 12). To further speed up the computation, we use a global cache to store
previously constructed proofs or sub-proofs (Line 1, 4, 5 and 11).

4 Evaluation

We used our approach to generate certificates for EL+
⊥ ontologies and verified

them using LFSC. Our experiments, including classification, certificate genera-
tion, and certification, were performed on an Intel(R) Core(TM) i5-4590 CPU
with 4 cores at 3.30GHz and 32 GB RAM. The operating system was Debian
GNU/Linux 9. The code is available online.8

We generated classification certificates for two corpora of EL+
⊥ ontologies:

the OWL EL classification track of the OWL Reasoner Evaluation 2015 (ORE
2015) [26], and the Manchester OWL Corpus (MOWLCorp) [21]. From the cor-
pora, we removed all ontologies that (1) contained axioms not corresponding
to (syntactical variants of) EL+

⊥-axioms; or (2) were inconsistent. These two
cases only applied to ontologies in MOWLCorp. For each ontology, we used Elk
to generate the transitive reduct of the classification result, that is, we only
included strict subsumptions that could not be derived via transitivity from

8 https://lat.inf.tu-dresden.de/dl2020-certifying-classification-results

https://lat.inf.tu-dresden.de/dl2020-certifying-classification-results

10 F. Baader, P. Koopmann, C. Tinelli

101 103 105
100

101

102

103

104

105

#Axioms

#
E

n
ta

il
m

en
ts

ORE

100 101 102 103 104 105
100

101

102

103

104

#Axioms

#
E

n
ta

il
m

en
ts

MOWLCorp

Fig. 5: Number of axioms and entailments in the ontologies of the two corpora.

others, while also taking care that equivalence classes of concepts stayed intact.
Specifically, for each such equivalence class, we would pick an arbitrary cyclic
chain of subsumption relations to be included. Furthermore, we excluded con-
cept inclusions/equivalences that were explicitly stated in the ontology. In the
following, when talking of the classification result, we always refer to the set
of inferred subsumption relationships obtained this way, that is, the transitive
reduct without explicitly stated concept inclusions and equivalences. We also
removed ontologies for which the transitive closure of the stated subsumptions
produced the whole hierarchy. After these removals, the ORE corpus contains 62
ontologies and the MOWLCorp corpus contains 310 ontologies. Figure 5 shows
the number of axioms and the number of entailments to be verified.

We computed certificates for each classification result and verified them with
the LFSC checker. For one of the ontologies from MOwlCorp, we terminated
the certificate generation after 16 hours, while for all ontologies in ORE certifi-
cate was generated. In Figure 6, we show for each of the ontologies the time
taken for classification, certificate generation, and verification by LFSC, where
the x-axis shows the number of entailments that was certified. One can see that
certificate generation took significantly longer than the classification task itself,
while certificate verification took significantly less time in almost all cases. The
long time for certificate generation is to due the backtracking approach used
to reconstruct the proofs with Elk. We expect this to incur a much smaller
overhead if certificates were generated directly during reasoning. It is therefore
more insightful to look at the sizes of the generated certificates. In Figure 7,
we plot those sizes against the number of entailments in each ontology. Most
certificates had a size between 1 KB and 1 MB, with the largest certificate being
1.43 GB. Note that these are certificates for the whole subsumption hierarchy,
and not for single subsumptions. Certificates for single subsumptions are quite
small. Despite their large sizes, the certificates were verified by the LFSC checker
in the order of milliseconds. Since we generated proofs for each entailment sep-

Certifying Subsumptions Computed by Elk 11

100 101 102 103 104 105
100

102

104

106

#Entailments

D
u
ra

ti
o
n

(m
s.

)

ORE

classification

generation

certification

100 101 102 103 104
100

102

104

106

#Entailments

D
u
ra

ti
o
n

(m
s.

)

MOWLCorp

classification

generation

certification

Fig. 6: Running times of classification, certificate generation, and verification.

100 101 102 103 104 105

101

103

105

#Entailments

C
er

ti
fi
ca

te
S
iz

e
(K

il
o

B
y
te

s)

ORE

100 101 102 103 104
100

101

102

103

104

#Entailments

C
er

ti
fi
ca

te
S
iz

e
(K

il
o

B
y
te

s)
MOWCorp

Fig. 7: File sizes of the certificates generated.

arately, our classification certificates collectively contained a lot of redundancy.
By caching and sharing subproofs, the cumulative size of the certificates for all
the entailments could be significantly reduced.

5 Conclusion

We have implemented a prototypical proof certification system for the reasoner
Elk, utilizing the proof-generation facilities available in Elk for the generation
of certificates, and employing the LFSC checker as proof-checker. Our evalua-
tion demonstrates that, even though certificates may be quite large, they can
nevertheless be verified in very short time. We exploited the explanation ser-
vice of Elk to generate proof certificates a posteriori. Ideally, the generation

12 F. Baader, P. Koopmann, C. Tinelli

of certificates should take place during reasoning. This would reduce certificate
generation times considerably and result in smaller certificates. Before embark-
ing on the major task of implementing a proof-producing reasoner for EL, we
found it sensible to assess first whether proof checking of DL reasoning results
based on LFSC is viable in principle.

Since our focus was on evaluating certificate checking rather than certificate
generation, our algorithm for extracting proofs from Elk is fairly unsophisticated
and not optimal. For instance, by building the proof starting from the relevant
axioms in the ontology, rather than from the conclusion, we would avoid the need
for detecting cycles. This should lead to a procedure with the same (polynomial)
time complexity as Elk. The Proof Utility Library PULi9 or the techniques by
Alrabbaa et al. [1] for extracting proofs of minimal size from Elk could be
of further help in implementing a more efficient certificate generation service.
Nevertheless, note that the size of certificates and the time required to generate
them constitutes a bottleneck only if one intends to certify all reasoning results
(i.e., the whole subsumption hierarchy). The current unoptimized approach to
certification could already be useful in cases where a specific subsumption result
by a DL reasoner is called into question; for example, if the user doubts it, or if
it differs from the result produced by another reasoner.

Certification of reasoning results is even more important for more expres-
sive DLs than the one supported by Elk since reasoners for them are more
complex and so more likely to contain errors. There are reasoners for more ex-
pressive DLs, such as Avalance [35], Konklude [30] and Sequoia [12], that use
consequence-based reasoning similarly to Elk, sometimes in combination with
other techniques. For such reasoners, our approach should be relatively easy to
adapt. To the best of our knowledge, none of the tableau-based DL reasoners
generate proofs of their computed consequences, though there was some early
work on how to extract sequent proofs from a run of a tableaux algorithm [10].

Encoding complex proof systems in LFSC has the cost of trusting, or proving
formally, the soundness of the encoded proof rules for each system. An alterna-
tive approach would be to design a standardised, simpler proof system for all
DLs, and have reasoners translate their proofs into proofs in that system. The
challenge in that case is probably more of a social than a technical nature as it
requires a community-wide acceptance of a common standard.

Finally, we point out that proofs, and proof checkers, can be used only to
validate the soundness of a classification result. In principle, the completeness of
classification results can be certified if the reasoner provides counter-examples
for non-entailed subsumption relations, which could then be validated using
model checking techniques for first-order logic. Because the number of non-
subsumptions is usually much higher than the number of subsumptions, the
challenge in this case would be finding common certificates for a large number
of non-subsumptions at a time.

9 https://github.com/liveontologies/puli

https://github.com/liveontologies/puli

Certifying Subsumptions Computed by Elk 13

References

1. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding
small proofs for description logic entailments: Theory and practice. In: Albert, E.,
Kovács, L. (eds.) LPAR 2020: 23rd International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning. EPiC Series in Computing, vol. 73, pp.
32–67. EasyChair (2020), https://easychair.org/publications/paper/qgX6

2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud,
J., Shao, Z. (eds.) Proceedings of the First International Conference on Certified
Programs and Proofs, CPP 2011. Lecture Notes in Computer Science, vol. 7086,
pp. 135–150. Springer (2011). https://doi.org/10.1007/978-3-642-25379-9 12

3. Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., Gilbert,
F., Halmagrand, P., Hermant, O., Saillard, R.: Expressing theories in the λΠ-
calculus modulo theory and in the Dedukti system. In: Ghilezan, S., Geuvers, H.,
Ivetic, J. (eds.) Proceedings of the 22nd International Conference on Types for
Proofs and Programs, TYPES 2016. vol. 97. Novi SAd, Serbia (2016)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2005). pp. 364–369. Morgan Kaufmann, Los Altos, Edinburgh (UK) (2005)

5. Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.J.: An empiri-
cal analysis of optimization techniques for terminological representation systems
or: Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management 4, 109–132 (1994)

6. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press (2017)

7. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in descrip-
tion logics more gentle. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Proc. of the
Sixteenth International Conference on Principles of Knowledge Representation and
Reasoning (KR 2018). pp. 319–328. AAAI Press (2018)

8. Barrett, C., de Moura, L., Fontaine, P.: Proofs in satisfiability modulo theories.
In: Delahaye, D., Woltzenlogel Paleo, B. (eds.) All about Proofs, Proofs for All,
Mathematical Logic and Foundations, vol. 55, pp. 23–44. College Publications,
London, UK (Jan 2015)

9. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reasoning 9(1), 101–148 (2016). https://doi.org/10.6092/issn.1972-
5787/4593

10. Borgida, A., Franconi, E., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F.:
Explaining ALC subsumption. In: Horn, W. (ed.) Proc. of the 14th Eur. Conf. on
Artificial Intelligence (ECAI 2000). pp. 209–213. IOS Press (2000)

11. Bouton, T., Oliveira, D.C.B.D., Déharbe, D., Fontaine, P.: veriT: An open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) Proceedings of
the 22nd International Conference on Automated Deduction, CADE-22. Lec-
ture Notes in Computer Science, vol. 5663, pp. 151–156. Springer (2009).
https://doi.org/10.1007/978-3-642-02959-2 12

12. Cucala, D.T., Grau, B.C., Horrocks, I.: Sequoia: A consequence based reasoner
for SROIQ. In: Simkus, M., Weddell, G.E. (eds.) Proceedings of the 32nd In-
ternational Workshop on Description Logics, Oslo, Norway, June 18-21, 2019.
CEUR Workshop Proceedings, vol. 2373. CEUR-WS.org (2019), http://ceur-ws.
org/Vol-2373/paper-27.pdf

https://easychair.org/publications/paper/qgX6
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1007/978-3-642-02959-2_12
http://ceur-ws.org/Vol-2373/paper-27.pdf
http://ceur-ws.org/Vol-2373/paper-27.pdf

14 F. Baader, P. Koopmann, C. Tinelli

13. Hadarean, L., Barrett, C., Reynolds, A., Tinelli, C., Deters, M.: Fine grained
SMT proofs for the theory of fixed-width bit-vectors. In: Davis, M., Fehnker,
A., McIver, A., Voronkov, A. (eds.) Proceedings of the 20th International Con-
ference on Logic for Programming, Artificial Intelligence, and Reasoning (Suva,
Fiji). Lecture Notes in Computer Science, vol. 9450, pp. 340–355. Springer (2015).
https://doi.org/10.1007/978-3-662-48899-7 24

14. Harper, R., Honsell, F., Plotkin, G.: A Framework for Defining Logics. Journal of
the Association for Computing Machinery 40(1), 143–184 (Jan 1993)

15. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W.,
Thirunarayan, K. (eds.) 7th International Semantic Web Conference(ISWC 2008).
Lecture Notes in Computer Science, vol. 5318, pp. 323–338. Springer-Verlag (2008)

16. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C.: Repairing unsatisfiable concepts in
OWL ontologies. In: Sure, Y., Domingue, J. (eds.) Proc. of the 3rd Eur. Semantic
Web Conference (ESWC’06). Lecture Notes in Computer Science, vol. 4011, pp.
170–184. Springer-Verlag (2006)

17. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In:
Boutilier, C. (ed.) Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2009). pp. 2040–2045. IJCAI/AAAI (2009)

18. Kazakov, Y., Klinov, P.: Goal-directed tracing of inferences in EL ontologies. In:
Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C.A., Vrandecic,
D., Groth, P.T., Noy, N.F., Janowicz, K., Goble, C.A. (eds.) Proc. of the 13th
International Semantic Web Conference (ISWC 2014). Lecture Notes in Computer
Science, vol. 8797, pp. 196–211. Springer (2014)

19. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial
procedures to efficient reasoning with EL ontologies. J. Autom. Reasoning 53(1),
1–61 (2014)

20. Lee, M., Matentzoglu, N., Parsia, B., Sattler, U.: A multi-reasoner, justification-
based approach to reasoner correctness. In: Arenas, M., Corcho, Ó., Simperl, E.,
Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P.T., Dumontier, M., Heflin,
J., Thirunarayan, K., Staab, S. (eds.) Proc. of the 14th International Semantic
Web Conference (ISWC 2015). Lecture Notes in Computer Science, vol. 9367, pp.
393–408. Springer (2015)

21. Matentzoglu, N., Bail, S., Parsia, B.: A snapshot of the OWL Web. In: Alani,
H., Kagal, L., Fokoue, A., Groth, P.T., Biemann, C., Parreira, J.X., Aroyo, L.,
Noy, N.F., Welty, C., Janowicz, K. (eds.) The Semantic Web - ISWC 2013 - 12th
International Semantic Web Conference, Sydney, NSW, Australia, October 21-25,
2013, Proceedings, Part I. Lecture Notes in Computer Science, vol. 8218, pp. 331–
346. Springer (2013). https://doi.org/10.1007/978-3-642-41335-3 21, https://doi.
org/10.1007/978-3-642-41335-3 21

22. Mebsout, A., Tinelli, C.: Proof certificates for SMT-based model checkers for
infinite-state systems. In: Piskac, R., Talupur, M. (eds.) Formal Methods in
Computer-Aided Design (FMCAD 2016). pp. 117–124. IEEE (2016)

23. de Moura, L.M., Bjørner, N.: Proofs and refutations, and Z3. In: Rudnicki, P.,
Sutcliffe, G., Konev, B., Schmidt, R.A., Schulz, S. (eds.) Proceedings of the LPAR
2008 Workshops Knowledge Exchange: Automated Provers and Proof Assistants.
CEUR Workshop Proceedings, vol. 418. CEUR-WS.org (2008)

24. de Moura, L.M., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) Pro-
ceedings of the 25th International Conference on Automated Deduction, CADE-25.
Lecture Notes in Computer Science, vol. 9195, pp. 378–388. Springer (2015)

https://doi.org/10.1007/978-3-662-48899-7_24
https://doi.org/10.1007/978-3-642-41335-3_21
https://doi.org/10.1007/978-3-642-41335-3_21
https://doi.org/10.1007/978-3-642-41335-3_21

Certifying Subsumptions Computed by Elk 15

25. Ozdemir, A., Niemetz, A., Preiner, M., Zohar, Y., Barrett, C.W.: Drat-based bit-
vector proofs in CVC4. In: Janota, M., Lynce, I. (eds.) Proceedings of the 22nd
International Conference on Theory and Applications of Satisfiability Testing, SAT
2019. Lecture Notes in Computer Science, vol. 11628, pp. 298–305. Springer (2019).
https://doi.org/10.1007/978-3-030-24258-9 21

26. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL
Reasoner Evaluation (ORE) 2015 competition report. J. Autom. Reasoning 59(4),
455–482 (2017). https://doi.org/10.1007/s10817-017-9406-8

27. Pfenning, F.: Elf: A language for logic definition and verified meta-programming.
In: Proceedings of the 4th IEEE Symposium on Logic in Computer Science. pp.
313–322 (1989)

28. Reger, G.: Better proof output for Vampire. In: Kovács, L., Voronkov, A. (eds.)
Proceedings of the 3rd Vampire Workshop. EPiC Series in Computing, vol. 44, pp.
46–60. EasyChair (2017)

29. Reger, G., Suda, M.: Checkable proofs for first-order theorem proving. In:
Reger, G., Traytel, D. (eds.) ARCADE 2017. 1st International Workshop on
Automated Reasoning: Challenges, Applications, Directions, Exemplary Achieve-
ments. EPiC Series in Computing, vol. 51, pp. 55–63. EasyChair (2017).
https://doi.org/10.29007/s6d1

30. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: System description. J. Web Se-
mant. 27-28, 78–85 (2014). https://doi.org/10.1016/j.websem.2014.06.003, https:
//doi.org/10.1016/j.websem.2014.06.003

31. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking
using a logical framework. Formal Methods in System Design 42(1), 91–118 (2013)

32. Sutcliffe, G.: The 9th IJCAR automated theorem proving system competition –
CASC-J9. AI Communications 31(6), 495–507 (2018)

33. Sutcliffe, G., Schulz, S., Claessen, K., Gelder, A.V.: Using the TPTP language for
writing derivations and finite interpretations. In: Furbach, U., Shankar, N. (eds.)
Proceedings of the Third International Joint Conference on Automated Reasoning,
IJCAR 2006. Lecture Notes in Computer Science, vol. 4130, pp. 67–81. Springer
(2006). https://doi.org/10.1007/11814771 7

34. development team, T.C.: The coq proof assistant reference manual version 8.9
(2019), https://coq.inria.fr/distrib/current/refman/

35. Vlasenko, J., Daryalal, M., Haarslev, V., Jaumard, B.: A saturation-based algebraic
reasoner for ELQ. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Proceedings of
the 5th Workshop on Practical Aspects of Automated Reasoning co-located with
International Joint Conference on Automated Reasoning (IJCAR 2016), Coimbra,
Portugal, July 2nd, 2016. CEUR Workshop Proceedings, vol. 1635, pp. 110–124.
CEUR-WS.org (2016), http://ceur-ws.org/Vol-1635/paper-10.pdf

https://doi.org/10.1007/978-3-030-24258-9_21
https://doi.org/10.1007/s10817-017-9406-8
https://doi.org/10.29007/s6d1
https://doi.org/10.1016/j.websem.2014.06.003
https://doi.org/10.1016/j.websem.2014.06.003
https://doi.org/10.1016/j.websem.2014.06.003
https://doi.org/10.1007/11814771_7
https://coq.inria.fr/distrib/current/refman/
http://ceur-ws.org/Vol-1635/paper-10.pdf

16 F. Baader, P. Koopmann, C. Tinelli

A LFSC signature for Elk’s calculus

Included below is the LFSC signature used to model the fragment of the calculus
of Elk used for our experiments. The source code of our implementation, CSV
files with evaluation results, and information on how to repeat the experiments
are provided under

https://lat.inf.tu-dresden.de/dl2020-certifying-classification-results .

For space constraints, the paper glosses over a number of lower level technical
points. For instance, the handling of role chains is more complex in practice, and
an exact description would have been out of the scope of the paper. The main
points are the following.

– LFSC does not support rules with a variable number of premises, which is
why we had to represent rule applications of this kind by a sequence of rule
application with a fixed number of premises. For the ◦-rule, the easiest way
to do this is to allow existential role restrictions to contain role chains instead
of roles, as we can then build up the role chain step-wise, before matching
it with the role inclusion axiom.

– For certification purposes, it is more convenient to use the needed axioms
from the ontology as proof assumptions, instead of having side conditions
that check their membership in the ontology. Checking that proof assump-
tions are from a given ontology can be achieved with the TBox proof rule.

– Types rname, rchain, concept, axiom, and ontology are used respectively for
roles, role chains, concepts, axioms, and ontologies.

– An LFSC signature is defined by a series of commands for declaring or
defining constants, for checking the well-typedness of term, and for defin-
ing side-condition programs. New type or term constants are introduced by
the declare command. Side condition programs are defined by the program

command.
– The concrete syntax of LFSC is s-expression-based, as in Lisp and Scheme,

so all the encoded EL operators are prefix operators (and typically have
an alphanumeric name). Comments in the signature (lines starting with ;)
relate these operators to the EL ones they encode.

– While we do not use TBox axioms as side conditions in the certification, side
conditions are used for various technical reasons not discussed in the paper.
For instance, they are used to compute the concatenation of two role chains.

The actual LFSC signature used in the experiments follows next.

https://lat.inf.tu-dresden.de/dl2020-certifying-classification-results

Certifying Subsumptions Computed by Elk 17

;; LFSC encoding of ELK proof system

;; Authors: Patrick Koopmann and Cesare Tinelli

;; Date: June 2020

;--------

; Legend

;--------

; (t1 t2) denotes function application

; (! x τ1 τ2) " Πx : τ1.τ2
; (\ x t) " λx.t
; (% x τ t) " λx : τ.t
; (@ x t e) " let x = t in e
; (: τ t) " t : τ

;; Note: Except for function applications, the syntax above is

;; used in LFSC terms, not in side condition programs

;----------------

; Proof Language

;---------------

;; Note: Every user-defined type τ in LFSC is effectively

;; an algebraic datatype:

;; every function of return type τ is a constructor for τ.
;;

; Role name type

(declare rname type)

;; Note: no constructors are needed for rname,

;; using variables of type rname is enough.

; Role chain type

(declare rchain type)

;; Note: rchain is used to represent concatenations of roles

;; in (flat) normal form.

; Role chain constructors

;

; empty role chain

(declare erc rchain)

; non-empty role chain constructor

(declare rc (! x rname (! y rchain rchain)))

;; Note: rchains are essentially erc-terminated lists.

; Concept type

(declare concept type)

18 F. Baader, P. Koopmann, C. Tinelli

; Concept constructors

;

; atomic concept (has the form (ac 0), (ac 1), ...)

(declare ac (! n mpz concept))

;; Note: mpz is the builtin type in LFSC of (infinite precision)

;; integers. The usual integer operators are built in.

;

; >
(declare top concept)

; ⊥
(declare bot concept)

; _ u _

(declare inter (! x concept (! y concept concept)))

; ∃ _._

(declare ex (! x rchain (! y concept concept)))

;; Note: The first argument of ex is a *role chain*, not a role.

;; This is for convenience.

;

;; ¬ _

(declare neg (! c concept concept))

;; Note ¬ should not be part of EL, but interestingly,

;; some rules of ELK use it.

; Axiom type

(declare axiom type)

; Axiom constructors

;

; Concept inclusion _ v _

(declare sub (! x concept (! y concept axiom)))

; Concept equivalence _ ≡ _

(declare eq (! x concept (! y concept axiom)))

; Role (chain) inclusion _ v _

(declare rsub (! x rchain (! y rchain axiom)))

; Role (chain) equivalence _ ≡ _

(declare req (! x rchain (! y rchain axiom)))

; object property domain axioms

(declare roleDomain (! x rchain (! y concept axiom)))

; object property range axioms

(declare roleRange (! x rchain (! y concept axiom)))

; transitive property axiom

(declare transRole (! r rchain axiom))

; Ontology type

(declare ontology type)

; Ontology constructors

;

; empty ontology

Certifying Subsumptions Computed by Elk 19

(declare eon ontology)

; non-empty ontology constructor

(declare on (! x axiom (! y ontology ontology)))

;; Note: An ontology is essentially a (flat, eon-termindated)

;; list of of axioms.

;-------------------------

; Side Condition Programs

;-------------------------

;; Side condition terms can appear directly in a side condition

;; or can be abstracted in named, parametrized programs.

;; Programs are functional, monomorphic, and first-order.

;; They can be recursive but not mutually recursive. They can

;; diverge, terminate normally (returning a value), or

;; abnormally (raising a "fail" exception).

;; Inputs and output are LF terms which need not be ground,

;; that is, they can contain logical variables. Those are not

;; to be confused with program variables, i.e., input parameters

;; and local variables.

;; Local variables are introduced by the match and let

;; constructs. Program variables are lexically scoped.

;; Program evaluation is eager, with pass-by-value semantics.

; Useful for side condition programs

(declare bool type)

; bool constructors

(declare tt bool)

(declare ff bool)

; (IsIn t1 t2) returns tt if t1 occurs as an axiom of t2;

; it returns ff otherwise.

(program isIn ((a axiom) (o ontology)) bool

(match o

(eon ff)

((on a1 o1)

; evaluates to tt if a1 is syntactically equal to a;

; and to the value of (isIn a o1) otherwise

(ifequal a1 a tt (isIn a o1)))))

;; Note: For (IsIn t1 t2) to terminate normally t2 cannot be

;; a logical variable; it has to have the form eon or

;; (on a1 (on a2 ... (on an eon) ...)), otherwise match will fail.

;; However, t1, a1, ..., an can all be or contain logical variables.

; Concatenates two role chains (like list append)

(program concat ((rc1 rchain) (rc2 rchain)) rchain

(match rc1

20 F. Baader, P. Koopmann, C. Tinelli

(erc rc2)

((rc r rs) (rc r (concat rs rc2)))))

;; Note: For similar reason as in isIn, (concat t1 t2) fails

;; if t1 is a logical variable

; (icontains c1 c2) succeeds if c1 is syntactically equal to c2

; of it is a intersection of c2 with other concepts

(program icontains ((c concept) (d concept)) bool

(ifequal c d tt

(match c

((inter c1 c2) (match (icontains c1 d) (tt tt) (ff (icontains c2

d))))

(top ff)

(bot ff)

((ex ch c1) ff)

((ac c1) ff))))

;-------------

; Proof Rules

;-------------

; Proof judgment for assumed or proved axioms.

; Technically, a type dependent on input axiom c.

(declare holds (! c axiom type))

;; The proof rules are functions whose return type has the form

;; (holds a) where a is the rule’s conclusion.

;; The input parameters correspond to the rule’s parameters

;; and premises, if any

; TBox

; Every axiom in o is derivable

(declare TBox (! o ontology (! a axiom ; rule parameters

; ; premises (none)

(! sc (^ (isIn a o) tt) ; side condition

; -----------------------

(holds a) ; conclusion

;

))))

;; Note: For notational convenience, side conditions are

;; introduced as fake arguments whose "type" has the form

;; (^ p r) where

;; - p is a side condition program (a term in the side-condition

;; language) and

;; - r is a term (possibly with variables).

Certifying Subsumptions Computed by Elk 21

;; When a proof rule is applied to actual arguments,

;; the side condition succeeds iff

;; 1) running p doesn’t cause a fail exception and

;; 2) the result of p matches r

;; Any unbound variables in r get bound by the matching

;; substitution.

;; In TBox, p is the call (isIn a o) and r is the ground Boolean

;; term tt.

;; Note: The term (TBox t1 t2) is well typed iff

;; - t1 has type ontology,

;; - t2 has type axiom, and

;; - (isIn t1 t2) evaluates to tt

;; Since the the formal parameter sc of TBox is fictitious,

;; no actual parameter for it is needed in the rule application

;; (TBox t1 t2).

; Bottom Subclass

(declare Bottom (! c concept ; rule parameters

; ; premises (none)

; -------------------

(holds (sub bot c)) ; conclusion ⊥ v C
;

))

; Top Superclass

(declare Top (! c concept

;

;---------------------

(holds (sub c top)) ; C v >
))

; Class Inclusion Tautology

(declare subRef (! c concept

;

; -----------------

(holds (sub c c)) ; C v C
;

))

; Property Inclusion Tautology

(declare rsubRef (! r rchain

;

; ------------------

(holds (rsub r r)) ; r v r
;

))

; Intersection Decomposition 1

22 F. Baader, P. Koopmann, C. Tinelli

(declare InterDec1 (! c concept (! d concept

;

; ---------------------------

(holds (sub (inter c d) c)) ; C uD v C
;

)))

; Intersection Decomposition 2

(declare InterDec2 (! c concept (! d concept

;

; -----------------------------

(holds (sub (inter c d) d)) ; C uD v D
;

)))

; Intersection Decomposition

; Useful for nested intersections

(declare InterDec (! c concept (! d concept

;

(! sc (^ (icontains c d) tt) ; D occurs in C
; ----------------------------

(holds (sub c d)) ; C v D
;

))))

; Intersection Composition

(declare InterComp (! c concept (! d concept (! e concept

;

(! p1 (holds (sub c d)) ; C v D
(! p2 (holds (sub c e)) ; C v E

; ---------------------------

(holds (sub c (inter d e))) ; C v D u E
;

))))))

; Existential of Bottom

(declare ExBottom (! r rchain

;

; ----------------------------

(holds (sub (ex r bot) bot)) ; ∃r.⊥ v ⊥
;

))

; Existential Filler Expansion

(declare ExExpand (! r rchain (! c concept (! d concept

;

(! p (holds (sub c d)) ; C v D
; -------------------------------

(holds (sub (ex r c) (ex r d))) ; ∃r.C v ∃r.D
;

Certifying Subsumptions Computed by Elk 23

)))))

; Existential Property Expansion

(declare ExExpandRole (! c concept (! r1 rchain (! r2 rchain

;

(! p (holds (rsub r1 r2)) ; r1 v r2
; ---------------------------------

(holds (sub (ex r1 c) (ex r2 c))) ; ∃r1.C v ∃r2.C
)))))

;; Note: The Existential Composition rule of ELK cannot be

;; encoded as a single LFSC rule because it has a variable

;; number of premises. So it has by several variants in LFSC.

; Existential Composition 1

(declare ExComp1 (! c0 concept (! c1 concept (! c2 concept

(! r1 rchain (! r2 rchain (! r rchain

;

(! p1 (holds (sub c0 (ex r1 c1))) ; C0 v ∃r1.C1

(! p2 (holds (sub c1 (ex r2 c2))) ; C1 v ∃r2.C2

(! sc (^ (concat r_1 r_2) r) ; r = r1 ◦ r2
; ---------------------------------

(holds (sub c0 (ex r c2))) ; C0 v ∃r.C2

;

)))))))))))

; Existential Composition 2

(declare ExComp2 (! c0 concept (! c1 concept

(! r1 rchain (! r rchain

;

(! p1 (holds (sub c0 (ex r1 c1))) ; C0 v ∃r1.C1

(! p2 (holds (rsub r1 r)) ; r1 v r
; ---------------------------------

(holds (sub c0 (ex r c1))) ; C0 v ∃r.C1

;

)))))))

; Existential Composition

(declare ExComp (! c0 concept (! c1 concept (! c2 concept

(! r1 rchain (! r2 rchain (! r12 rchain (! r rchain

;

(! p1 (holds (sub c0 (ex r1 c1))) ; C0 v ∃r1.C1

(! p2 (holds (sub c1 (ex r2 c2))) ; C1 v ∃r2.C2

(! p3 (holds (rsub r12 r)) ; r12 v r
(! sc (^ (concat r1 r2) r12) ; r12 = r1 ◦ r2

; ---------------------------------

(holds (sub c0 (ex r c2))) ; C0 v ∃r.C2

;

24 F. Baader, P. Koopmann, C. Tinelli

))))))))))))

; Class Hierarchy

(declare ConHi (! c1 concept (! c2 concept (! c3 concept

;

(! p1 (holds (sub c1 c2)) ; C1 v C2

(! p2 (holds (sub c2 c3)) ; C2 v C3

; -------------------------

(holds (sub c1 c3)) ; C1 v C3

;

))))))

; Property Hierarchy

(declare RolHi (! r1 rchain (! r2 rchain (! r3 rchain

;

(! p1 (holds (rsub r1 r2)) ; r1 v r2
(! p2 (holds (rsub r2 r3)) ; r2 v r3

; --------------------------

(holds (rsub r1 r3)) ; r1 v r3
))))))

; Equivalent Classes Decomposition 1

(declare EqDec1 (! c concept (! d concept

;

(! p (holds (eq c d)) ; C ≡ D
; ---------------------

(holds (sub c d)) ; C v D
;

))))

; Equivalent Classes Decomposition 2

(declare EqDec2 (! c concept (! d concept

;

(! p (holds (eq c d)) ; C ≡ D
; ---------------------

(holds (sub d c)) ; D v C
;

))))

; Classes Inclusion Cycle

(declare ConCyc (! c concept (! d concept

;

(! p1 (holds (sub c d)) ; C v D
(! p2 (holds (sub d c)) ; D v C

; -----------------------

(holds (eq c d)) ; D ≡ C
;

)))))

Certifying Subsumptions Computed by Elk 25

; Proof judgment used to single out a goal.

(declare goal (! c axiom type))

; Proof judgment used for convenience.

; All goal-oriented proofs end in done.

(declare done type)

; Allows one to provide a proof goal explicitly.

(declare Proved (! g axiom

; from:

(! p1 (goal g) ; a goal g to be proven and

(! p2 (holds g) ; a proof of g

; ---------------

done ; we can conclude that we are done

))))

;--

; Missing Rules used by ELK but not mentioned in ELK paper

;--

; Property Domain Translation

(declare RoleDomain (! r rchain (! c concept

;

(! p1 (holds (roleDomain r c)) ; The domain of r is C
; ------------------------------

(holds (sub (ex r top) c)) ; ∃r.> v C
))))

; Transitive Role

(declare TransitiveRole (! r rchain (! rr rchain

;

(! p1 (holds (transRole r)) ; r is transitive

(! sc (^ (concat r r) rr) ; rr = r ◦ r
; ---------------------------

(holds (rsub rr r)) ; rr v r
)))))

; Negation Clash

(declare NegationClash (! c concept

;

; ----------------------------------

(holds (sub (inter c (neg c)) bot)) ; C u ¬C v ⊥
))

26 F. Baader, P. Koopmann, C. Tinelli

B Sample LFSC certificates

Included below is a file with several proof certificates The certificates were man-
ually generated for greater readability. A few of the certificates automatically
generated with our implementation are available at
https://lat.inf.tu-dresden.de/dl2020-certifying-classification-results.

;---

; Sample proof certificates for ELK signature

;---

; check proof that > v >
(check

(: (holds (sub top top))

(InterDec top top)

))

; check proof that C uD v C
(check

(% C concept

(% D concept

(: (holds (sub (inter C D) C))

(InterDec (inter C D) C)

)))))

; check proof that C uD v D
(check

(% n1 mpz

(% n2 mpz

(@ C (ac n1)

(@ D (ac n2)

(: (holds (sub (inter C D) D))

(InterDec (inter C D) D)

))))))

; Deductive proof of Kidney v Kidney

; Shows an axiom derivable from no assumption

(check

(% Kidney concept

(: (holds (sub Kidney Kidney))

(subRef Kidney)

)))

; Goal oriented proof of Kidney v Kidney

; the expected goal is specified beforehand

(check

; --

https://lat.inf.tu-dresden.de/dl2020-certifying-classification-results

Certifying Subsumptions Computed by Elk 27

; Concepts

(% Kidney concept

; --

; Goal

(% g (goal (sub Kidney Kidney))

; --

; Proof of goal from no assumptions

(: done

(Proved _ g (subRef Kidney))

))))

;; Note:: _ above can be used instead of the actual

;; parameter whenever the latter can be constructed

;; from the other actual parameters by type inference.

;; In this case, the inferred actual parameter is

;; (sub Kidney Kidney)

; Proof from assumptions

; Check that

; AntiDiuresis v ∃isFunctionOf.Kidney
; follows from:

; - AntiDiuresis v ExcretionOfUrine

; - ExcretionOfUrine v ∃isFunctionOf.Kidney
(check

; Roles

(% isFunctionOf rname

; Concepts

(@ AntiDiuresis (ac 1)

(@ Excretion (ac 3)

(@ ExcretionOfUrine (ac 4)

(@ Kidney (ac 5)

; Goal: AntiDiuresis v ∃isFunctionOf.Kidney
(% g (goal (sub AntiDiuresis (ex (rc isFunctionOf erc) Kidney)))

; Assumptions

; AntiDiuresis v ExcretionOfUrine

(% p1 (holds (sub AntiDiuresis ExcretionOfUrine))

; ExcretionOfUrine v ∃isFunctionOf.Kidney
(% p2 (holds (sub ExcretionOfUrine (ex (rc isFunctionOf erc) Kidney)))

; Proof of goal from assumptions

(: done

(Proved _ g (ConHi _ _ _ p1 p2))

))))))))))

; Proof from ontology

;

; Check that AntiDiuresis v ∃isFunctionOf.Kidney
; follows from an ontology containing

; - AntiDiuresis ≡ (Excretion u ∃actsSpecificallyOn.Urine

28 F. Baader, P. Koopmann, C. Tinelli

; u ∃hasProcessActivity.decreasedActivityLevel)
; - AntiDiuresis v ExcretionOfUrine

; - ExcretionOfUrine v ∃isFunctionOf.Kidney
(check

; Roles

(% actsSpecificallyOn rname

(% hasProcessActivity rname

(% isFunctionOf rname

; Concepts

(@ AntiDiuresis (ac 1)

(@ decreasedActivityLevel (ac 2)

(@ Excretion (ac 3)

(@ ExcretionOfUrine (ac 4)

(@ Kidney (ac 5)

(@ Urine (ac 6)

; Axioms

; AntiDiuresis ≡ (Excretion u ∃actsSpecificallyOn.Urine
; u ∃hasProcessActivity.decreasedActivityLevel)
(@ a1 (eq AntiDiuresis

(inter Excretion

(inter (ex (rc actsSpecificallyOn erc) Urine)

(ex (rc hasProcessActivity erc) decreasedActivityLevel))))

; AntiDiuresis v ExcretionOfUrine

(@ a2 (sub AntiDiuresis ExcretionOfUrine)

; ExcretionOfUrine v ∃isFunctionOf.Kidney
(@ a3 (sub ExcretionOfUrine (ex (rc isFunctionOf erc) Kidney))

; Ontology

(@ o (on a1 (on a2 (on a3 eon)))

; Goal: AntiDiuresis v ∃isFunctionOf.Kidney
(% g (goal (sub AntiDiuresis (ex (rc isFunctionOf erc) Kidney)))

; Assumptions

; Proof of goal from assumptions

(: done (Proved _ g

(ConHi _ _ _

(TBox o a2)

(TBox o a3)

)

))))))))))))))))))

;; Note: the applications of TBox are not really needed.

;; A proof of g from explicit assumptions a2 and a3

;; should suffice as a proof certificate.

;; Proof from assumptions (no TBox applications)

(check

; Roles

(% actsSpecificallyOn rname

(% hasProcessActivity rname

(% isFunctionOf rname

; Concepts

Certifying Subsumptions Computed by Elk 29

(@ AntiDiuresis (ac 1)

(@ decreasedActivityLevel (ac 2)

(@ Excretion (ac 3)

(@ ExcretionOfUrine (ac 4)

(@ Kidney (ac 5)

(@ Urine (ac 6)

; Goal: AntiDiuresis v ∃isFunctionOf.Kidney
(% g (goal (sub AntiDiuresis (ex (rc isFunctionOf erc) Kidney)))

; Assumptions

; AntiDiuresis ≡ (Excretion u ∃actsSpecificallyOn.Urine
; u ∃hasProcessActivity.decreasedActivityLevel)
(% p1 (holds (eq AntiDiuresis

(inter Excretion

(inter (ex (rc actsSpecificallyOn erc) Urine)

(ex (rc hasProcessActivity erc)

decreasedActivityLevel)))))

; (Excretion u ∃actsSpecificallyOn.Urine) ≡ ExcretionOfUrine

(% p2 (holds (eq (inter Excretion

(ex (rc actsSpecificallyOn erc) Urine))

ExcretionOfUrine))

; ExcretionOfUrine v ∃isFunctionOf.Kidney
(% p3 (holds (sub ExcretionOfUrine

(ex (rc isFunctionOf erc) Kidney)))

; Proof of goal from assumptions

(: done

(Proved _ g

(ConHi _ _ _

(ConHi _ _ _

(InterComp _ _ _

(ConHi _ _ _

(EqDec1 _ _ p1)

(InterDec1

Excretion ; actually inferrable, kept for readability

(inter (ex (rc actsSpecificallyOn erc) Urine)

(ex (rc hasProcessActivity erc)

decreasedActivityLevel))))

(ConHi _ _ _

(EqDec1 _ _ p1)

(InterDec

(inter Excretion

(inter (ex (rc actsSpecificallyOn erc) Urine)

(ex (rc hasProcessActivity erc)

decreasedActivityLevel)))

(ex (rc actsSpecificallyOn erc) Urine))))

(EqDec1 _ _ p2))

p3)))

))))))))))))))

	First Results on How to Certify Subsumptions Computed by the EL Reasoner Elk Using the Logical Framework with Side Conditions

