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1 Introduction

In the ontology-based data access paradigm, ontologies act as an interface to
data sources, facilitating query formulation by providing a vocabulary closer to
the users’ understanding. However, accessing data in large and unfamiliar sources
can still be hard. In practice, users may find that the formulated queries have
too many answers to be informative, or at the other extreme, they have very
few or no answers at all. Refining queries can be difficult for users who may not
know how to formulate their information needs according to the data. Moreover,
changes in the query may have no effect on the answers, or dramatically affect
them in unexpected ways. Manual exploration via iterative query evaluation
can be computationally very costly if each minor query variation is evaluated
independently and from scratch. Towards addressing this problem, we propose
a framework for exploring datasets using ontology-mediated queries (OMQs).
Rather than formulating a precise conjunctive query (CQ), the user writes a
template CQ where parts may be marked to indicate that they may be relaxed
or constrained during the exploration. From such a template we build what we
call a query space: a set of OMQs that are ordered according to their specificity
(or generality). The OMQs in the space are obtained from the template using
a fixed set of reformulation rules that modify CQs to be more general or more
specific w.r.t. O and a given dataset A. Navigating the query space from one
query to a more general (or specific one) allows then users to explore the dataset.
The reformulation rules were proposed in our previous work [1], but here their
application is restricted by the template and yields a finite space of queries
that enables data exploration by choosing among the automatically generated
reformulations those which modify the answers in a minimal way.

Our framework can be realized in Datalog. We describe how a query space
can be generated using Datalog rules. The Datalog program is evaluated over
the data and produces a structure (i.e., compilation) that contains all OMQs
in the space and their answers, and which can be used to navigate between
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reformulations and compute answers to individual queries on-the-fly. As a proof-
of-concept, we implement the approach and test its potential for exploring data
in DBpedia, using the VLog Datalog reasoner [10]1.

2 Preliminaries

We assume that the reader has basic knowledge about Description Logics (DLs)[5].
A DL ontology O is simply a TBox expressed in a specific DL. We will focus on
extensions of DL-LiteR [8] with complex role inclusions.

Let us assume an alphabet consisting of countable infinite sets C, R, I of
respectively concept, role, and individual names. Further, we assume the set of
role names is the union of two disjoint sets of simple and non-simple role names.
A DL-LiteH,R TBox T is a finite set of axioms taking the following forms:

A v A′, A v ∃p, ∃p v A A v ∃p.A′ p v s, p− v s r · s v p,

where A,A′ ∈ C and p, r, s ∈ R, and such that: (i) for every r · s v p ∈ T , s is
simple and p is non-simple; (ii) if p v s ∈ T or p− v s ∈ T , and s is a simple
role, then p is also simple. Axioms of the form r · s v p are called complex role
inclusions (CRI). A DL-LiteHRrec-safe TBox is a DL-LiteH,R TBox where all the
CRIs are of the form r · s v r, and for every such CRI there is no axiom of the
form B v ∃s. A DL-LiteR TBox is a DL-LiteH,R TBox without CRIs. We use
ABoxes to formalize datasets. An ABox is a finite set of assertions of the forms
A(a), and p(a, b), with a, b ∈ I, A ∈ C, and p ∈ R.

The semantics of DL is defined in terms of interpretations. An interpretation
I = (∆I , ·I) consists of a nonempty domain ∆I , and interpretation function ·I ;
I is a model of O (I |= O), if I satisfies every axiom in O. An interpretation
I satisfies an ABox A, if aI ∈ AI for all A(a) ∈ A and (aI , bI) ∈ pI , for all
p(a, b) ∈ A. Given a DL ontology O and an ABox A, we denote by IO,A the
canonical model of (O,A), which models (O,A) and can be homomorphically
maped to any other model of (O,A). For DL-LiteR ontologies, if (O,A) has a
model, then it has a canonical model [8].

Ontology-mediated Querying. A conjunctive query q is a first order formula
with free variables x that takes the form ∃y.ϕ(x,y), with ϕ a conjunction of
atoms of the form A(x), r(x, y), and x = a, where A ∈ C, r ∈ R, x, y variables
from x ∪ y and a is an individual. A term is either an individual from I or a
variable. The free variables in a query are called the answer variables. We will
write q(x) to make explicit reference to the answer variables of q, and ϕ(x,y)
to denote the set of atoms in q. The arity of q(x) is defined as the length of x,
denoted |x|.

Let I be an interpretation and q(x) a CQ. A tuple a from ∆I of length |x|
is an answer to q in I if there is a map π from the terms in q to ∆I such that
(i) π(x)=a, (ii) π(b)= bI for each individual b, (iii) I |= P (π(z)) for each P (z)

1 Implementation, evaluation and proofs at https://github.com/medinaandresel/DL2020
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in q, and (iv) π(t) = π(t′) for each t = t′ in q. We use ans(q, I) to denote the
set of all answers to q in I.

An ontology mediated query (OMQ) is a pair (q(x),O) with O an ontology
and q(x) a CQ. Given A, a tuple of individuals a from A with |a| = |x| is a
certain answer of (q(x),O) over A if a ∈ ans(q, I) for each model I of O satis-
fying A, and we use ans(q,O,A) to denote all such tuples. The OMQ answering
problem is: Given (O, q(x)), a dataset A, and a a tuple of individuals of length
equal to |x|, is a a certain answers of (q(x),O) over A. For (q1,O) and (q2,O)
of the same arity, we write q1 ⊆O,A q2 if ans(q1,O,A) ⊆ ans(q2,O,A). In this
case, we say that q1 is a specialization of q2 w.r.t. O,A and, conversely, q2 a
generalization of q1 w.r.t. (O,A).

3 Framework for Exploratory Querying

We start by formalizing a suitable notion of query space.

Definition 1. An exploratory query space for a given ABox A is a preordered
set Q = 〈Q,�〉 of queries mediated by an ontology O, such that (q1,O) � (q2,O)
implies q1 ⊆(O,A) q2. We will write q1 � q2, whenever O is clear from the context.

We now introduce query templates, which is the starting point to build ex-
ploratory query spaces. Syntactically, they are CQs whose atoms may be marked
if we want to consider more specialized(·s) or generalized(·g) versions of them.

Definition 2 (Query Templates). A query template Ψ [x] is an expression
∃y.τ1 ∧ · · · ∧ τn, where each τi is an atom of the form:

A(x) | r(x, y) | x = a | As(x) | Ag(x) | rs(x, y) | rg(x, y) | x = as | x = ag,

where x, y ∈ x ∪ y, x are the answer variables, A ∈ C or >, r ∈ R and a ∈ I.

Example 1. We can succintly describe CQs that retrieve (possibly special types
of) events in Rhodes or in more general locations, using template:

Ψ [x] =∃z Events(x) ∧ hasLocg(x, z) ∧ z = Rhodesg.

Given some Ψ as starting point, we will use reformulation rules to build a set of
related CQs. To guarantee that these queries can be ordered according to their
specificity (or generality), these rules will be guided by a set of reformulation
axioms. In general, O can be used to guide the rules application. However, to
take also the data into account, we allow other sets R of reformulation axioms
as well. For example, R can be a subset of O that the user considers relevant. It
may contain assertions from A, or other axioms implied by O and A, enabling
data-driven query reformulations in the style of [1]. The reformulation rules are
presented in Table 1. We use ‘_’ as a placeholder for a fresh variable; ỹ denotes
the condition (y 6∈ vars(Ψ ′) ∪ x) ∨ (y = _); ŷ denotes that y is not an answer
variable in the template; and rx stands for any of rs, rg, or r.
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(R1) If B v A ∈ R then: Ψ ′ ∧As(x)
s
 Ψ ′ ∧Bs(x) Ψ ′ ∧Bg(x)

g
 Ψ ′ ∧Ag(x)

(R2) If A v ∃r ∈ R then: Ψ ′ ∧ rs(x, ỹ)
s
 Ψ ′ ∧As(x) Ψ ′ ∧Ag(x)

g
 Ψ ′ ∧ rg(x,_)

(R3) If ∃r v A ∈ R then: Ψ ′ ∧As(x)
s
 Ψ ′ ∧ rs(x,_) Ψ ′ ∧ rg(x, ỹ)

g
 Ψ ′ ∧Ag(x)

(R4) If r v p ∈ R then: Ψ ′ ∧ ps(x, y)
s
 Ψ ′ ∧ rs(x, y) Ψ ′ ∧ rg(x, y)

g
 Ψ ′ ∧ pg(x, y)

(R5) If s− v p ∈ R then: Ψ ′ ∧ ps(x, y)
s
 Ψ ′ ∧ ss(y, x) Ψ ′ ∧ sg(x, y)

g
 Ψ ′ ∧ pg(y, x)

(R6) If {B v ∃s.A,
r · s v r} ⊆ R

then: Ψ ′ ∧ rx(x, ŷ) ∧As(ŷ)
s
 Ψ ′ ∧ rx(x, y) ∧Bs(y)

Ψ ′ ∧ rx(x, ŷ) ∧Bg(ŷ)
g
 Ψ ′ ∧ rx(x, y) ∧Ag(y)

(R7) If A(a) ∈ R then: Ψ ′ ∧As(x)
s
 Ψ ′ ∧ x = as Ψ ′ ∧ x = ag

g
 Ψ ′ ∧Ag(x)

(R8) If r(a, b) ∈ R then: Ψ ′ ∧ rs(x, ỹ)
s
 Ψ ′ ∧ x = as Ψ ′ ∧ x = ag

g
 Ψ ′ ∧ rg(x,_)

Ψ ′ ∧ rs(x̃, y)
s
 Ψ ′ ∧ y = bs Ψ ′ ∧ x = bg

g
 Ψ ′ ∧ rg(_, x)

(R9) If {s(a, b),
r · s v r} ⊆ R

then: Ψ ′ ∧ rs(x, ŷ) ∧ ŷ = b
s
 Ψ ′ ∧ rs(x, y) ∧ y = as

Ψ ′ ∧ rg(x, ŷ) ∧ ŷ = ag
g
 Ψ ′ ∧ rg(x, y) ∧ y = bg

Table 1. Rules to derive CQs from query template Ψ [x].

.
Definition 3. A reformulation axiom is either an ABox assertion or a TBox
axiom in DL-LiteHRrec-safe. Given a template Ψ and a set of reformulation axioms
R, we say that Ψ ′ is derivable from Ψ using R if there is a sequence of refor-
mulations Ψ ∗

 Ψ1 . . .
∗
 Ψn = Ψ ′, with n ≥ 1 and ∗ ∈ {s, g}, using the rules in

Table 1. We will use Ψ R Ψ ′, to indicate that Ψ ′ is derivable from Ψ w.r.t. R,
and we will write cq(Ψ) to denote the CQ obtained from Ψ by removing all the s
and g labels. Then we define:
– QRΨ is the set of all CQs {q(x) | Ψ [x] R Ψ ′[x], cq(Ψ ′[x]) = q(x)}.
– For each pair q1, q2 ∈ QRΨ , we set q1 �RΨ q2 if q1 = q2, or there are templates
Ψ1 and Ψ2 such that cq(Ψi) = qi and either Ψ2

s
 R Ψ1, or Ψ1

g
 R Ψ2.

Note that, following [1], we are allowing CRIs in our reformulation axioms
to be able to reformulate our queries along dimensions that are not captured
by the subclass or subrole relations. For example, a location dimension that has
different granularity levels connected by a ‘part-of’ rather than by a ‘subclass-of’
relation. For example, using axioms like City v ∃partOf .Country and the CRI
hasLoc · partOf v hasLoc, we can generalize a query asking for events in a city
to one that asks for events in a country instead. We call this particular kind of
generalization operation a ‘roll up’ and its specialization counterpart ‘drill down’
(see rules R6 and R9).

Rules in Table 1 specialize As(x) as either B(x) using (R1) or r(x,_) using
(R3), which are more specific than A, or as A(a), with a a known instance of
concept A using (R7). Atoms ps(x, y) are specialized as r(x, y) with r a role
more specific than r using (R4) or (R5), or B(x) (or B(y)), with B a concept
that is more specific than ∃r (or ∃r−) with rule (R2). The rules work similary
for the generalizing counterparts.

Example 2. Let us consider again the template Ψ [x] from Example 1, and the set
of reformulation axioms: R1 = {hasLoc · partOf v hasLoc, partOf(Rhodes,Greece)}.
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Rule (R9) is applicable for Ψ and R1 (since z is not an answer variable):

Events(x) ∧ hasLocg(x, z) ∧ z = Rhodesg
g
 Events(x) ∧ hasLocg(x, z) ∧ z = Greeceg

By removing the special markers, the following query is part of QR1

Ψ :

q1(x) : ∃z Event(x) ∧ hasLoc(x, z) ∧ z = Greece.

Thus, cq(Ψ) �R1

Ψ q1. The semantics of Ψ change if we consider, for example,
the set of reformulation axioms R2 = {Conference v Event}. Using rule (R1)
we can capture the query q2(x) : ∃z Conference(x) ∧ hasLoc(x, z) ∧ z = Rhodes.

Let O be written in a language that enjoys the canonical model property. Then
we call a set R of reformulation axioms compatible with (O, A) if IO,A � R.
Compatibility of R ensures that we obtain an exploratory query space.

Lemma 1. Let Ψ be a template, R a set of reformulation axioms, and O an
ontology in a language that enjoys the canonical model. If A is such that R is
compatible with (O,A), then 〈QRΨ ,�RΨ 〉 is exploratory for A.

Example 3. Let O = {Workshop v Conference, Conference v Event} and A =

{Workshop(DL2020), hasLoc(DL2020,Rhodes),

hasLoc(DL2020,Greece), partOf(Rhodes,Greece)}.

{hasLoc ·partOf v hasLoc} is compatible with (O,A) and the rest of R1 and R2

are in (O,A), so both (QR1

Ψ ,�R1

Ψ ) and (QR2

Ψ ,�R2

Ψ ) are exploratory for (O,A).

If R is not a subset of O ∪ A, we need to test its compatibility. When O is in
DL-LiteHRrec-safe, such test can be done in PTime [2].

3.1 Exploring Query Spaces

The order in a query space enables users to explore the dataset by navigat-
ing from one query to a more general (or specific one) on demand. However,
obtaining all reformulations may not be satisfactory if there are too many of
them, and we may need to identify the most relevant ones. For example, as-
suming that a dataset contains in addition to the assertions in Example 3:
Conference(KR2020), hasLoc(KR2020,Rhodes), a natural way to filter out the
answers to q(x): Event(x) ∧ hasLoc(x, z) ∧ z = Rhodes is to navigate to qn(x) :
Conference(x)∧hasLoc(x, z)∧ z = Rhodes. This reformulation however does not
change the set of answers – {KR2020,DL2020}, and it may be more interesting
to directly specialize to qs(x) : Workshop ∧ hasLoc(x, z) ∧ z = Rhodes, which
drops KR2020 as answer. By identifying such queries in the space, the data can
be explored in a more effective step-by-step fashion.

Definition 4. For queries q1 6= q2 in Q = (Q,�) such that q1 � q2, we say
that q1 is a neutral specialization of q2, written q1 ' q2, if ans(q1,O,A) =
ans(q2,O,A); it is a strict specialization of q2, written q1 ≺ q2, if ans(q1,O,A) (
ans(q2,O,A). Conversely, q2 is a neutral, respectively strict, generalization of
q1. Further,
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– If q1 ' q2, we say that q1 is a maximal neutral specialization of q2 if for each
q′ ∈ Q such that q′ � q1, it holds that q′ ≺ q2. Conversely, q2 is a maximal
neutral generalization of q1 if for each q′ ∈ Q such that q2 � q′, we have
q1 ≺ q′.

– q1 is a minimal strict specialization of q2, if q1 ≺ q2 and for each q′ ∈ Q
such that q1 � q′ � q2 we have q′ ' q2. Conversely, q2 is a minimal strict
generalization of q1 if for each q′ ∈ Q such that q1 � q′ � q2 we have q1 ' q′.

We denote by maxNeusA(q,Q) and minStrsA(q,Q) the set of all maximal neutral
and of all minimal strict specializations, respectively, and similarly for general-
izations. Maximal neutral reformulations are useful, since they allow us to easily
identify the minimal strict reformulations desirable for navigating the space.

Observation 1 Let Q = 〈Q,�〉 be an exploratory query space for A mediated
by O, and let �c extend � so that q1 �c q2 whenever q1 ' q2. For q ∈ Q, we
have:
– q1 ∈ minStrsA(q,Q) iff q1 6�c q, and q1 �c q2 for some q2 ∈ maxNeusA(q,Q).
– q1 ∈ minStrgA(q,Q) iff q1 6�c q, and q2 �c q1 for some q2 ∈ maxNeugA(q,Q).

Not surprisingly, identifying minimal strict reformulations is not feasible in poly-
nomial time in general. It is at least as hard as the following following decision
problem: given q and q′ in Q, verify if q′ is a maximal neutral specialization (or
generalization) of q in Q. Specifically, coNP-hardness for maximal neutral spe-
cializations can be proved even for monadic tree-shaped CQs mediated by the
empty ontology, by reducing the problem of verifying if a given EL concept is the
most specific concept for individuals a1, . . . , an, given ABox A [13]. However, we
show in the next section that using an offline-phase that compiles the answers
to the queries in the space, computing such relevant reformulations can still be
realized efficiently using Datalog with stratified negation (since the size of the
compilation is comparably smaller than the size of the dataset).

4 Capturing Query Spaces in Datalog

In this section, we describe a way to realize our exploratory framework using
Datalog. Before proceeding, we recall the syntax and semantics of Datalog pro-
grams with stratified negation [3].

Datalog with Equality and Stratified Negation. Let P,V andK be count-
able infinite sets of predicates, variables and constants. Variables and constants
are terms. An atom β is either (i) p(v) with v a tuple of terms of the same arity
as p, or (ii) v = v′ for terms v, v′. A Datalog rule ρ has the form:

p(v)← β1, . . . , βk,¬βk+1, . . . ,¬βm

where m ≥ k, p(v) is called the head of ρ and denoted by head(ρ), while the set
of atoms {β1, . . . , βm} is the body of ρ; body+(ρ) denotes the positive atoms and
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body−(ρ) the negative ones. As usual, all variables in head(ρ) and in body−(ρ)
must also occur in body+(ρ). A rule with empty body is called fact and maybe
written p(v).

A Datalog program Π is a set of Datalog rules. Π is stratified if it can be
partitioned as Π1, . . . ,Πn such that for each p, all rules with p in the head are
in the same partition Πi, and for all atoms in the bodies of those rules, the
definitions of such predicates are in some Πj , with j ≤ i if the atom is positive,
or j < i for negative atoms.

A set of facts I satisfies a rule ρ if there exists a mapping h : vars(ρ) 7→
term(I) such that whenever h(body+(ρ)) ⊆ I and h(body−(ρ)) 6⊆ I, then h (head
(ρ)) ⊆ I. A model of Π is any set of facts that satisfies each ρ ∈ Π. For a
stratified program Π and finite set of facts D, Π(D) denotes the minimal model
of Π (which is unique and always exists) consisting of

⋃n
i=0 Ii, where I0 = D

and for 1 ≤ i ≤ n, each Ii minimally extends Ii−1 such that Ii is a model of Πi.

4.1 Datalog Encoding of Template-generated Query Spaces

We now build a Datalog program that derives and evaluates all the queries in
a space. In this section we fix a template Ψ = ∃y.τ1 ∧ · · · ∧ τn with answer
variables x = (x1, . . . , x`), as well as a set of reformulation axioms R. Further,
we assume that all non-answer variables occuring only once in Ψ have been
substituted by ‘_’, and for convenience, assume x ∪ y ⊆ V (these are the only
Datalog variables written in lower-case). Since we denote concepts, roles and
individuals by constants, we assume for simplicity C ∪ R ∪ I ⊆ K. We also
assume a constant vx ∈ K for every variable x and a constant cτ for each atom
τ in Ψ . A special constant null acts as placeholder for ‘_’ and as a ‘filler’ for
irrelevant predicate positions. For each atom τi, we use xi to denote (x, null) if
τi is either P x(x), P x(x,_) or x = ax; (null, x) if τi = P x(_, x); and (x, y) if
τi = P x(x, y). By convention, U = (U1, . . . , Un) and V = (V1, . . . , Vn) are n-ary
tuples of variables, and X is an `-ary tuple of variables.

In Table 2, we show how Ψ and R are encoded: each atom τ in Ψ is mapped
(7→) to a fact in DΨ , and axioms in R to facts in DR. A fixed program Πrules
simulates the reformulation rules from Table 1. These rules derive a atms atom for
each reformulation of a specializing atom, and a atmg atom for each reformulation
of a generalizing atom in Ψ . The final group of rules ΠQ build up the set of
OMQs in the space. Each tuple in refAtms represents a reformulated version
of each atom in the template, and allows us to build a query by putting the
corresponding variables in the right positions.

We can now make precise how the query space is captured. We denote by
tr(q) the translation of a given CQ q(x) into the signature of our Datalog pro-
gram, obtained by applying to each atom in q the function tr with tr(x = a) =
uAtm(a, t(x)), tr(A(x)) = uAtm(A, t(x)), and tr(r(x, y)) = bAtm(r, t(x), t(y)),
where for each xi, t(xi) = null if x = _ and t(xi) = Xi otherwise.

Definition 5. We let ΠΨ = Πrules ∪ ΠQ and DΨ,R = DΨ ∪ DR, and call the
pair 〈ΠΨ , DΨ,R〉 the Datalog encoding of (Ψ,R).
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DR: A 7→ conc(A),

r 7→ role(r),

a 7→ const(a),

A v A′ 7→ cISA(A,A′) A(A) 7→ uAssrt(A, a)

∃r v A 7→ cISA(r, A) r(a, b) 7→ bAssrt(r, a, b)
A v ∃r 7→ cISA(A, r) {s(a, b), r · s v r} 7→ ddn(b, a, r), rup(a, b, r)
s v r 7→ rISA(s, r) {A v ∃s.A′, r · s v r} 7→ ddn(A’,A, r)

p− v r 7→ rISAinv(p, r) {A v ∃s.A′, r · s v r} 7→ rup(A,A’, r)

DΨ : x /∈ x 7→ nAns(vx) Ax(x) 7→ atms(cτ ,A, vx, null) A(x) 7→ refAt(cτ ,A, vx, null)
A 7→ conc(A) rx(x, y) 7→ atms(cτ , r, vx, vy) r(x, y) 7→ refAt(cτ , r, vx, vy)

r 7→ role(r) x = ax 7→ atms(cτ , a, vx, null) x = a 7→ refAt(cτ , a, vx, null)
a 7→ const(a) with x ∈ {s, g}

Encoding of the reformulation rules Πrules

(R1–3)

atms(Vτ , U, Y, Z) ← atms(Vτ , U
′, Y, Z), cISA(U,U ′), conc(U ′).

atmg(Vτ , U
′, Y, Z) ← atmg(Vτ , U, Y, Z), cISA(U,U ′), conc(U).

atms(Vτ , U, Y, null) ← atms(Vτ , U
′, Y, null), cISA(U,U ′), conc(U), role(U ′).

atmg(Vτ , U
′, Y, null) ← atmg(Vτ , U, Y, null), cISA(U,U ′), conc(U ′), role(U).

(R4), (R5)

atms(Vτ , U, Y, Z) ← atms(Vτ , U
′, Y, Z), rISA(U,U ′).

atmg(Vτ , U
′, Y, Z) ← atmg(Vτ , U, Y, Z), rISA(U,U ′).

atms(Vτ , U, Y, Z) ← atms(Vτ , U
′, Z, Y ), rISAinv(U,U ′).

atmg(Vτ , U
′, Y, Z) ← atmg(Vτ , U, Z, Y ), rISAinv(U,U ′).

(R6), (R9)

atms(Vτ , U
′,W, null) ← ddn(U,U ′, Z), atms(Vτ , U,W, null),W 6= null,

refAt(Vτ ′ , Z, Y,W ), Vτ 6= Vτ ′ , nAns(W ).

atmg(Vτ , U
′,W, null) ← rup(U,U ′, Z), atmg(Vτ , U,W, null),W 6= null,

refAt(V ′τ , Z, Y,W ), Vτ 6= Vτ ′ , nAns(W ).

(R7), (R8)

atms(Vτ , V, Y, null) ← atms(Vτ , U, Y, null), uAssrt(U, V ).

atmg(Vτ , U, Y, null) ← atmg(Vτ , V, Y, null), uAssrt(U, V ).

atmg(Vτ , U, null, Y ) ← atmg(Vτ , V
′, Y, null), bAssrt(U, V, V ′).

atmg(Vτ , U, Y, null) ← atmg(Vτ , V, Y, null), bAssrt(U, V, V
′).

atms(Vτ , V, Y, null) ← atms(Vτ , U, Y, null), bAssrt(U, V, V
′), Y 6= null.

atms(Vτ , V
′, null, Z) ← atms(Vτ , U, null, Z), bAssrt(U, V, V ′), Z 6= null.

refAx(U ′, U)← cISA(U,U ′). refAx(U ′, U)← rISA(U,U ′).

refAx(U,X)← uAtm(U,X). refAx(U,X)← bAtm(U,X, Y ).

refAx(U, Y )← bAtm(U,X, Y ). refAx(U ′, U)← rISAinv(U,U ′).

refAx(U ′, U)← rup(U,U ′, Z). refAx(U,U ′)← ddn(U,U ′, Z)

refAt(Vτ , U,X, Y )← atms(Vτ , U,X, Y ). refAt(Vτ , U,X, Y )← atmg(Vτ , U,X, Y ).

Query space encoding ΠQ:

refAtms(U1, . . . , Un)← refAt(cτ1 , U1,x1), . . . , refAt(cτn , Un,xn).

queryΨ (U ,x)← refAtms(U), qAtmτ1
(U1,x1), . . . , qAtmτn

(Un,xn).

qAtmτ (U,X, null)← uAtm(U,X), conc(U).

qAtmτ (U,X, null)← U = X, const(U).

qAtmτ (U,X, Y )← bAtm(U,X, Y ), role(U).

Table 2. Datalog encoding of Ψ [x], R and reformulation rules

.
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Πref: strs(U [Ui 7→ V ], cτi , V
′)←refAx(V, V ′), refAt(cτi , V,X, Y ), refAt(cτi , V

′, X ′, Y ′),

queryΨ (U [Ui 7→ V ],X), ¬ queryΨ (U [Ui 7→ V ′],X).

strg(U [Ui 7→ V ′], cτi , V )←refAx(V, V ′), refAt(cτi , V,X, Y ), refAt(cτi , V
′, X ′, Y ′),

queryΨ (U [Ui 7→ V ],X), ¬ queryΨ (U [Ui 7→ V ′],X).

nrts(U [Ui 7→ V ], cτi , V
′)←refAx(V, V ′), refAtms(U [Ui 7→ V ]),¬ strs(U [Ui 7→ V ], cτi , V

′).

ntrg(U [Ui 7→ V ], cτi , V
′)←refAx(V ′, V ), refAtms(U [Ui 7→ V ]),¬ strg(U [Ui 7→ V ], cτi , V

′).

nrtx(U [Ui 7→ V ], cτi , V
′′)← nrtx(U [Ui 7→ V ], cτi , V

′), nrtx(U [Ui 7→ V ′], cτi , V
′′).

maxNtrx(U [Ui 7→ V ], cτi , V
′)← nrtx(U , cτi , V

′), ¬ nrtx(U , cτi [Ui 7→ V ], V ′′), V ′ 6= V ′′.

maxx(U ,V )← refAtms(U),maxNtrx(U1, cτ1 , V1), . . . ,maxNtrx(Un, cτn , Vn).

with x ∈ s, g

mins(U , V1, . . . , Vi−1, V
′, Vi+1, . . . , Vn)← maxs(U ,V ), strict(U , cτi , Vi, V

′).

ming(U , V1, . . . , Vi−1, V
′, Vi+1, . . . , Vn)← maxg(U ,V ), strict(U , cτi , V

′, Vi).

Table 3. Datalog program to compute query reformulations

Let c = (c1, . . . , cn) be a tuple of constants from C∪R∪ I. The unfolding of ΠΨ

for c is the rule obtained from
queryΨ (c,x)← refAtms(c), qAtmτ1(c1,x1), . . . , qAtmτn(cn,xn)

by choosing some ρ ∈ ΠQ for each qAtmτi(ci,xi), and a substitution σ such that
– head(ρ)σ = qAtmτi(ci,xi), and
– each atom conc(ci), role(ci) and const(ci) is contained in DΨ,R

and then: (i) replacing qAtmτi(ci,xi) with body(ρ)σ, and (ii) removing each atom
from body(queryΨ (c,x)) that is contained in ΠΨ (DΨ,R). If the body of the un-
folding ΠΨ for c is tr(q) for some CQ q, we call c the ΠΨ -encoding of q.

Example 4. Let c = (Conference, hasLoc,Rhodes). The unfolding of ΠΨ for c is
queryΨ (c, x)← uAtm(Conference, x), bAtm(hasLoc, x, z), z = Rhodes.

The body matches tr(q2), so c is a ΠΨ -encoding for q2.

If q has a ΠΨ -encoding, then it is derivable from Ψ w.r.t R. Conversely, for each
derivable q we can find a ΠΨ -encoding.

Lemma 2. A CQ q is derivable from Ψ using R iff there exists a ΠΨ -encoding
of q.

4.2 Evaluation of the Datalog Translation for DL-LiteR OMQs

We now fix an ABox A and a DL-LiteR ontology O, and consider the evaluation
of the queries (q,O) in QRΨ over A. The relevant q are encoded in 〈ΠΨ , DΨ,R〉,
but we still need an OMQ answering algorithm for the DL of O. In the case
of DL-LiteR, one could call an external query rewriting engine for the encoded
queries. However, we chose to partially complete the data w.r.t. O, and then
evaluate the Datalog encoding over the extended dataset.2

2 Such a procedure is very easy to realize if an existential rule engine [10] is chosen
instead of a plain Datalog, as we do in the next section.
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We say that a CQ template is rooted if each variable is either an answer
variable or occurs in a join sequence of the form r1(x0, x1), . . . , rk(xk−1, xk),
where x1 is an answer variable and for 1 < i ≤ k, xi occurs existentially in
Ψ . We define the join length of a CQ template as the length of its longest join
sequence, and let k be the join length of Ψ . In the following, B denotes either a
concept name or ∃r. Then, we apply the following procedure:
1. For Σ denoting the signature of (Ψ,R), we build a k-bounded Σ-expansion
AO,kΣ of A w.r.t.O constructed by taking for each A ∈ Σ and each r ∈ Σ:
• If T � B v A and A |= B(a), then A(a) ∈ AO,kΣ .
• If T � B v ∃r1 v . . . v ∃rn, T � ∃r−n v A and A � B(a), then
A(ar1...rn) ∈ A

O,k
Σ , where ar1...rn is a fresh individual not in A and n ≤ k.

• If T � s v r (with s possibly inverse) and A � s(a, b), then r(a, b) ∈ AO,kΣ .
• If T � B v ∃r1 v . . . v ∃rn v ∃r and A � B(a) then r(ar1...rn , ar1...rnr) ∈
AO,kΣ , where k ≥ n ≥ 0 and ar1...rn and ar1...rnr are fresh individuals.

2. Lastly, we translate AO,kΣ into the signature of ΠΨ , similarly as before. For
that, we assume that each individual in AO,kΣ is a constant in K. We define
DA = tr(AO,kΣ ), where tr translates each assertion in AO,kΣ as above.

We formulate a minor adaptation of a well known result in the OMQ literature
[14, 6].

Lemma 3. Let (q,O) be a rooted DL-LiteR OMQ over the signature Σ. Then,
ans(q,O,A) = ans(q, ∅,AO,kΣ ).

If the template is rooted, then we can answer all (q,O) in the space by evaluating
ΠΨ over DΨ,R ∪DA. From Lemmas 2 and 3 we obtain:

Theorem 1. Let Ψ be rooted. Let q ∈ QRΨ , and let cq be the ΠΨ -encoding of q.
Then

a ∈ ans(q,O,A) iff queryΨ (cq,a) ∈ ΠΨ (DΨ,R ∪DA)

4.3 Datalog Program to Compute Query Reformulations

Finally, we also define a set Πref of Datalog rules that compute the minimal
strict reformulations of each query in the space, which are the most relevant
for exploration. The program Πref is presented in Table 3. In a nutshell, it
derives atoms ming(cq, cq′) for tuples of ΠΨ -encodings of queries q, q′ such that
q′ ∈ minStrgA(q,Q), and analogously for the specializations. For this, it relies on
finding pairs cq and cq′ of ΠΨ -encodings that are the result of applying one
reformulation axiom such that queryΨ (cq,a) and ¬queryΨ (cq′ ,a). Using pairs of
strict reformulations and stratified negation, we can identify the reformuations
that are neutral, and again use negation to find the maximal neutral ones.

Relying on Observation 1, it is not hard to prove that Πref computes the
relevant reformulations that we use to explore the dataset:



A Framework for Exploratory Query Answering with Ontologies 11

Template Ψi [ # atoms in Ψi] Ψ1[2] Ψ2[3] Ψ3[5] Ψ4[5] Ψ5[6]

Size of Πi = (Di) (MB) 0.45 5 0.2 18.8 0.5

# Queries in QRΨi with answers 4 82 56 316 119

Sum of answers over all queries 1774 3431 16 2758 113

∆s(Ψi) / ∆g(Ψi) 350.7 / 175.2 236 / 1005 1.32 / 1.28 139 / 510 3.9 / 40

Time

Computation of Πi(Di) (s) 2.4 4.04 2 10.7 5.6

Avg. retrieval of answers q ∈ QRΨi (ms) 0.5 0.17 0.3 0.09 0.16

Avg. retrieval q′ ∈ minStrG/S(q) (ms) 0.3 / 0.4 0.10 / 0.09 0.14 / 0.1 0.04 / 0.03 0.10 / 0.09

Table 4. Experiment results over DBpedia. Here Πi = ΠΨi∪Πref and Di = DΨi,R∪DA.

Theorem 2. Let Q = (QRΨ ,�RΨ ) and let Dall = DΨ,R ∪DA. For q, q′ ∈ Q, let
cq be ΠΨ -encoding of q and cq′ the ΠΨ -encoding of q′. Then, for x ∈ {s, g}:
(a) q′ ∈ maxNeuxA(q,Q) iff maxx(cq, cq′) ∈ ΠΨ,R,ref(Dall),
(b) q′ ∈ minStrxA(q,Q) iff minx(cq, cq′) ∈ ΠΨ,R,ref(Dall).

5 Implementation and Evaluation

We implemented our exploratory framework using Rulewerk Java API for VLog
Datalog reasoner [10]. The implementation consists of a template parser and
a translator of the template and rules of the encoding into Rulewerk syntax.
All experiments have been performed on a MacBook Pro (2.7 GHz i5 8GB) us-
ing JavaSE 14.0.1 and Rulewerk version 0.5.03. We used the DBpedia ontology
and dataset, accessed via the endpoint4. We used one set R of reformulation
axioms with 336 axioms and assertions extracted from DBpedia. With its sig-
nature and the DBpedia ontology, we computed the k-bounded Σ-extension DA
using existential rules in VLog. The resulting dataset was computed relatively
fast, given that the data was remotely accessed, and it took in total about 3
minutes to materialize. The size of the extended dataset is around 700 MB. We
have designed templates of various sizes and shapes over the ontology vocabulary
containing classes such as: Events, Museums, ArtWorks, Organizations etc., prop-
erties startDateg,museums, hasLocations, headquarterg etc., and resources e.g.,
Parisg. The main goals of our evaluation were (a) to test the feasibility of our
framework in practice, in particular the tradeoff between the time to evaluate the
Datalog program and the time to answer and compute query reformulations from
the pre-computed model, and (b) to test if the template-generated query spaces
ensure a gradual navigation of the answers. For each input Ψi we have measured:
|QRΨi | - number of generated queries with answers, total number of answers cap-
tured by the query space, and as well as the computational time: to evaluate the
Datalog program, average time to read the answers to queries and average time
to compute reformulations from the compiled model. Then, for each query q, we
3 https://github.com/knowsys/rulewerk
4 SPARQL endpoint: https://dbpedia.org/sparql
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measure ∆s(q) – the average number of answers that are droped by minStrsA(q),
respectively∆g(q) the average number of answers thatminStrgA(q) ensures. Then,
for the entire query space, ∆s(Ψi) = (

∑
q∈QΨi

∆s(q))/|QΨi | measures the average
discarded answers when navigating the query space and similarly for ∆g(Ψi).
Table 4 summarizes our evaluation. Evaluating the Datalog program over the
materialized data is done within seconds for all the query spaces and depends on
the number of answers captured by the query space (i.e., the larger the number
of answers the longer it took to compile). Reading the answers to queries and
navigating the query space is done in less than 1 ms in all cases. The selectivity
and inclusivity of the minimal strict reformulations leads to a reasonably gradual
exploration of the data, relative to the number of answers captured by each space.

6 Related Work and Conclusions

In recent years, several exploratory search engines have been proposed to sup-
port data access for different exploratory purposes. The basic idea at the core
of many of them is to guide the query formulation process, in a step-by-step
fashion. The many proposed techniques for exploring ontology-mediated data
include similarity-based methods such as [17, 21], and visual query languages [4,
18, 19], which include ontology reasoning with query language expresivity rang-
ing between tree-shaped CQs and monadic positive existential queries. More
recently, [20] is able to cover formulation of SPARQL queries, however without
ontological reasoning. To abstract away the ontology reasoning step needed to
obtain complete answers, in [7] a schema-agnostic approach to rewrite DL-LiteR
OMQs into SPARQL 1.1. is proposed.

Query generalizations have been proposed as a technique for interpreting
null answers (i.e., empty answers) in cooperative database systems [16]. The
considered generalizations are similar to the ones we propose, however they also
consider numeric comparisons, while we additionally consider the roll-up and
drill-down operations. In line with, [15], we propose a query template language
also designed to ease the process of constructing queries that allows to describe
a set of CQs that are semantically related via two types of taxonomies: concept
and role hierarchies, and dimensions. Then, navigating the query space is done
by moving from one query to another that minimally changes the answers. One
advantage of our approach is that it is implementable in Datalog. Evaluating the
obtained Datalog program is related to the problem of answering queries using
views, which has been intensively studied for relational data [12, 11]. As shown in
[9], to answer OMQs using views, a different semantics to materialize the views
is needed. However, for DL-LiteR this can be done using existing techniques.

From our preliminary evaluation on DBpedia using VLog reasoner, our ap-
proach seems feasible in practice, however an extended evaluation is part of
future work. It would also be interesting to exploit the compilation for analyti-
cal purposes and to extend the reformulation rules to relate queries that have a
different structure.
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