
Wikidata on MARS
(Preliminary Report)

Peter F. Patel-Schneider1 and David Martin2

1 Palo Alto Research Center
2 Unaffiliated

Abstract. Multi-attributed relational structures (MARSs) have been
proposed as a formal data model for generalized property graphs, along
with multi-attributed rule-based predicate logic (MARPL) as a useful
rule-based logic in which to write inference rules over property graphs.
Wikidata can be modelled in an extended MARS that adds the (im-
precise) datatypes of Wikidata. The rules of inference for the Wikidata
ontology can be modelled as a MARPL ontology, with extensions to
handle the Wikidata datatypes and functions over these datatypes. Be-
cause many Wikidata qualifiers should participate in most inference rules
in Wikidata a method of implicitly handling qualifier values on a per-
qualifier basis is needed to make this modelling useful. The meaning of
Wikidata is then the extended MARS that is the closure of running these
rules on the Wikidata data model. Wikidata constraints can be modelled
as multi-attributed predicate logic (MAPL) formulae, again extended
with datatypes, that are evaluated over this extended MARS. The result
models Wikidata in a way that fixes several of its major problems.

1 Introduction

Wikidata is already an extremely useful source of information about notable
entities in the world, containing high-quality information about over 87 million
items. However, Wikidata must be used with care as it does not present a co-
hesive view of the world. To pick a simple example, Wikidata has a property
for spouse Wikidata also states that spouse is its own inverse and has symmetric
constraints among its property constraints. Either of these alone should be ade-
quate to allow users of Wikidata to assume that to find the spouse of someone it
suffices to query that someone’s value for spouse. But this is not necessarily so—
as of mid-June 2020 there were over thirty-eight hundred non-symmetric spousal
relationships in Wikidata, for items ranging from Roman gods to politicians. So
any attempt to accurately determine the spouse of someone in Wikidata needs
to perform two queries. Making this fix for spouse is relatively easy, but in gen-
eral it is impossible for an application to automatically determine what to do to
access all the information that it needs that is inherent in Wikidata.

Wikidata has a large, but simple, ontology, containing classes such as human

and person and a subclass of relationship from human to person. Retrieving all the
people in Wikidata should thus be a simple matter of finding all the items that

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



have an instance of link to person. But as of mid-June 2020 there are only about
30 items that have an instance of link to person—far fewer than the over 7.9
million humans in Wikidata. To find all instances of person in Wikidata requires
asking for instances of the transitive closure of subclass of under person. Again,
it is not hard to remedy this particular problem, and it is so important that
most accessors of Wikidata make the extra effort to look through subclasses. On
the other hand, based on our personal experiences the analogous workaround for
subproperties is often not done.

As yet another illustrative example, what if an application wants to know
what information is current, i.e., true at the present time. Wikidata has quite
a number of constructs that specify temporal extents for pieces of information,
including end time. How can the application know what it needs to do to filter
out statements that are not valid at the current time?

Providing an interface to Wikidata that presented all and only the valid
information would make it much easier to write applications that just want
to know what’s true based on what is in Wikidata, as opposed to how the
information is said or who said it.

Maybe this effort is doomed to be fruitless. Maybe Wikidata is just data and
there is no way to provide a decent logical view of the data in Wikidata. This
would indeed be a shame, as Wikidata is the best example of an open Knowledge
Graph, and so it should be possible to treat the Wikidata data logically.

The need for well-founded reasoning capabilities in Wikidata has been noted
and lightly documented in a WikiProject, but to date this project has not pro-
duced any concrete results. The current work may be viewed as a proposal to
satisfy a superset of the requirements documented there.

1.1 Areas To Be Addressed

Wikidata is data, but many portions of Wikidata that are vital to Wikidata’s
utility and success are conceived, discussed, and documented as if Wikidata is
more than just data, as illustrated by spouse and instance of above. To reliably
provide construction of the meanings implicit in the descriptions of even the
central properties of Wikidata requires a formal theory for the properties and an
implementation of this theory. Without such, different users and tool builders
end up determining and implementing the meaning on their own, and this often
produces different, non-compatible results.

One way of providing a common meaning is via a set of axioms in a logic
and a service that implements reasoning in the logic. The service then provides
a common resource that serves up the meaning of the various pieces of Wiki-
data. This is particularly vital for the central, ontological portion of Wikidata,
including instance of as well as symmetric property.

Other parts of Wikidata are also currently under-specified and differentially
implemented and can be improved by a logical formulation. Wikidata constraints
express regularities that are supposed to hold in general, but which may have
exceptions. These constraints are not used to draw inferences but instead to
point out potential problems to interested constributors who can then either fix
the problem or indicate that the particular anomaly is acceptable.



Wikidata constraints, albeit useful, are represented and processed in an in-
complete, ad hoc fashion. Although in most cases they are declared and docu-
mented reasonably clearly, the declarations do not fully express their meaning,
and thus do not provide a precise, unambiguous basis, or a logical foundation,
for constraint-checking implementations. Further, building a constraint checker
for a new constraint may be laborious, idiosyncratic, and error-prone. A logical
formulation and implementation of constraints would permit constraints to be
quickly specified and eliminate the implementation burden for each new type of
constraint.

As noted in [8], Wikidata’s custom data model supports attributed state-
ments (with the attributes referred to as qualifiers), and allows attributes with
multiple values. [8] refers to this sort of generalized Property Graph model as
a multi-attributed graph, and observes that “In spite of the huge practical sig-
nificance of these data models ..., there is practically no support for using such
data in knowledge representation.” This creates not only the challenge of con-
structing a logic in which qualifiers are first-class citizens, but also the challenge
of creating a reasoning framework in which the behavior of qualifiers in axioms
can be specified in a practical fashion.

Wikidata has many classes and properties, such as female human, that are
missing many of their expected instances or relationships. Axioms that give a
logical formulation for these classes and properties would add back their miss-
ing elements and eliminate the incorrect information that currently comes from
accessing them in Wikidata.

Wikidata has several ways of providing something other than a particular
value for a property. The some-value snak represents some “unknown” value
and the no-value snak says that there is no value. However the precise meaning
of both of these is unclear, and a logical formulation for them would provide a
better meaning for these parts of Wikidata.

1.2 Contributions

We provide a logical foundation for Wikidata, building on previous work on
multi-attributed predicate logic (MAPL), including multi-attributed rule-based
predicate logic (MARPL) and multi-attributed relational structures (MARSs)
[8]. Our work 1) supports the explicit expression of Wikidata’s ontological ax-
ioms, and their use in accessing Wikidata; 2) supports the explicit expression of
other axioms that can benefit other areas of Wikidata; 3) supports the specifica-
tion of qualifiers as first-class citizens in axioms and constraints, and provides a
means for effectively handling them; and 4) supports the expression of nearly all
current Wikidata property constraints, plus a variety of other constraints and
the identification of constraint violations, all in one logical framework.

2 Development

Wikidata’s custom data model goes beyond the Property Graph data model,
which associates sets of attribute-value pairs with the nodes and edges of a
directed graph. Marx et al. refer to such generalized Property Graphs as multi-
attributed graphs, and observe that “In spite of the huge practical significance



of these data models ..., there is practically no support for using such data in
knowledge representation”. Given that motivation, Marx et al. introduce the
multi-attributed relational structure (MARS) to provide a formal data model for
generalized Property Graphs, and multi-attributed predicate logic (MAPL) for
modeling knowledge over such structures. MARS and MAPL may be viewed as
extensions of FOL to support the use of attributes (with multiple values).

The essential new elements over FOL are these: a set term is either a set
variable or a set of attribute-value pairs {a1 : b1, ..., an : bn}, where ai, bi can be
object terms. Object terms are the usual basic terms of FOL, and can be either
constants or object variables. a relational atom is an expression p(t1, ...tn)@S,
where p is an n-ary predicate, t1, ...tn are object terms and S is a set term. a
set atom is an expression (a : b) ∈ S, where a, b are object terms and S a set
term. These elements are best illustrated with a simple example (from [8]):

∀x, y, z1, z2, z3.spouse(x, y)@{start : z1, loc : z2, end : z3}
→ spouse(y, x)@{start : z1, loc : z2, end : z3}

(1)

This MAPL formula states that spouse is a symmetric relation, where the inverse
statement has the same start and end dates, and location. The entire second line
of the formula is a relational atom, which includes the set term {start : z1, loc :
z2, end : z3}. If that set term were represented by a set variable U , then one could
make an assertion about its membership using the set atom (start : z1) ∈ U .

Marx et al. go on to introduce multi-attributed rule-based predicate logic
(MARPL), roughly the Horn-clause fragment of MARS plus functions that com-
pute the attributes of atoms in the consequent of rules. MARPL is decidable for
fact entailment, but still provides a high level of expressivity. Note that Formula
1 falls within the MARPL fragment.

2.1 eMARS

MARPL is close to what is needed as a basis for Wikidata but MARPL is miss-
ing datatypes and each rule in MARPL has to specifically account for attributes
(essentially the qualifiers of Wikidata). Datatypes play a large role in Wikidata
and handling Wikidata qualifiers correctly requires accounting for many quali-
fiers in each of many rules, which is infeasible from a practical perspective with
MARPL. Using an extension of MARPL means that we have the chance of be-
ing able to relatively easily compute the consequences of Wikidata. We also use
MAPL formulae in constraints, so we also need to extend MAPL.

As MARPL and MAPL are based on MARSs we start by adding datatypes to
MARSs. As Wikidata, like RDF [2], has a single domain for everything, including
predicates, we will be extending MARS in this direction, but in a way that does
not permit some of the strange situations possible in RDF. Because of space
limitations we write our definitions in a somewhat informal manner. More details
can be found in the extended technical report version of the paper [10].

Definition 1. A datatype theory, D, consists of a finite set of named datatypes,
D, each of which has a finite or infinite set of data values; a finite set of named
and typed datatype relations, R, over D; and a finite set of named and typed
datatype functions, F , over D. The relations are closed under negation.



Definition 2. An extended MARS (eMARS), M, is a MARS extended with a
datatype theory, D. All datatypes, datatype relations, and datatype functions of
D as well as all predicates are distinct elements of the domain of M, δM. All
data values in D are also elements of δM. Each datatype is a unary predicate of
M which is true on the data values of the datatype.

Wikidata datatypes. The defined datatypes of Wikidata are IriValue; String-

Value; MonolingualTextValue, strings with language tags; MultilingualTextValue, strings
in multiple langauges; QuantityValue, with an associated unit; GeoCoordinatesValue,
in some coordinate system; and TimeValue, including a timezone. The last three
of these are unusual in that they have imprecise values, containing a main value
and some notion of precision (not necessarily symmetric), indicating an interval
or range of possible values.

In our datatype theory for Wikidata all datatypes have equality and inequal-
ity relations that take into account all aspects of the data values. The precise
datatypes have the usual set of relations and functions that extract their pieces.

Imprecise datatypes have as well equality and inequality for their main val-
ues, a predicate for whether a value is precise, and overlaps and disjoint and
emptiness. They also have intersection functions that result in a smallest (in
imprecision) value that includes the intersection of the two values, if the two
values intersect, otherwise an empty value (not currently in Wikidata) results;
and a kind of union function that produces a smallest (again in imprecision)
value that includes both the values. (Some imprecise Wikidata datatypes have
multiple values that are equivalent. Some imprecise Wikidata dataypes are not
closed under intersection.)

QuantityValue has ordering relations of three flavours, one for the main value,
e.g., the main value of the first argument is less than that of the second; one
for necessary ordering, e.g., all possible values of first argument are less than
those of the second; and and one for possible ordering, e.g., some possible values
of first argument is less than one of the second. GeoCoordinatesValue has various
direction relations, such as north of, must be north of and can be north of, the latter
two taking into account imprecision.

TimeValue has ordering relations, as for QuantityValue, although the base names
are before and after. There are also functions to return the part of one time that
must (or can) be before (or after) the second. As well, there is a first function
whose returned TimeValue has a main time, first possible time, and last possible
time that are the earlier ones from either of its two (TimeValue) arguments, and
an analogous last function.

This is just an initial set of relations and functions, and needs expansion.

2.2 eMAPL

Extended MAPL (eMAPL) is then MAPL based on eMARS. Datatype predi-
cates and functions are allowed in eMAPL, of course. To support the representa-
tion of constraints, we add equality and, as syntactic sugar, counting quantifiers.

Definition 3. eMAPL terms are MAPL terms with the addition of datatype
function applications. eMAPL formulae are MAPL formulae using eMAPL terms



plus the addition of datatype relations as predicates, an equality predicate, and
counting quantifiers. Atoms with datatype relations cannot have non-empty at-
tribute sets.

Definition 4. An eMAPL interpretation is a MAPL interpretation with the
following additions and modifications:

– An eMAPL interpretation is into an eMARS.
– The interpretations of datatypes, predicate and datatype relations, and func-

tions are themselves.
– The interpretation of a datatype function term is the application of the (fixed)

function to its arguments.
– The interpretation of datatype relations use the datatype relation itself.
– The interpretation of the equality predicate is the identity relation.
– Counting quantifiers have the obvious interpretation.

2.3 eMAPL rules

Because we are interested in effective reasoning, we restrict axioms to rules. We
make the usual additions and allowances for datatype predicates and functions.

Definition 5. An eMAPL rule is a MAPL rule modified as in eMAPL. (Note
that the functions in MAPL rules are different from datatype functions.) A vari-
able is relational if it occurs in the rule body as the argument of a predicate that
is not a datatype relation (including the datatype equality relations). Terms in
rule bodies can use datatype functions, but the variables in these terms must be
relational. Atoms in rules can use datatype relations but variables in these atoms
must be relational.

Remember that in MARPL ontologies attributes are processed using rules
that take attributes and their values from instantiations of body atoms and
determine how they augment the head instantiation that is the consequent of
the rule. We want to be able to handle attributes (Wikidata qualifiers) in a
uniform manner so that each rule does not need to say, for example, how the
Wikidata temporal qualifiers are processed.

We do this by characterizing each Wikidata qualifier, providing instructions
on how it is to be processed in each rule that does not say anything about how
the attribute’s values are added to the consequences of the rule.

Definition 6. An attribute is characterized in one of several ways.

– No values for the attribute are to be added to the consequents of rules. We
expect that most qualifiers will have this (default) ignore characterization.

– The values of the attribute in the facts matched by body atoms are each added
to the consequents of rules, in an additive fashion.

– The consequents of rules are given a single value for the attribute, formed
by combining all the values for the attribute in matched body atoms by a
datatype function that maps pairs of values in one datatype into a value in
the same datatype. If the result fails to satisfy a unary predicate then the
rule produces no result.



– The most sophisticated characterization involves starting by combining val-
ues for several attributes as above and then blending the resultant values us-
ing a different function, provided that the resultant values satisfy a datatype
relation.

Combination is only suitable for an attribute whose value has the datatype
of the function. The datatype function should be commutative and associative,
but other functions could be used if there is only a single value for the attribute,
with the resultant value being the left reduction of the values taken in the order
of occurence in the body of the rule.
Wikidata qualifiers. Wikidata has the qualifier point in time, which is used to
state when some statements are valid. Combining statements with this qualifier
should take into account whether the time intervals overlap, so this qualifier
would be characterized as a combining qualifier with the intersection function
and the emptiness predicate.

Other Wikidata statements use the qualifiers start time and end time to indicate
the period when the statement is valid. To produce the value for start time when
making inferences from statements with these qualifiers requires first finding the
last possible start time and the first possible end time and then taking the part
of the combined start times that can be before the combined end times.

So the Wikidata start qualifier could be characterized as a blending qualifier
by first combining start and end qualifiers using the last and first functions, respec-
tively, giving start and end times for the result, and then using the could be before

function to cut out start times that cannot be before the end time. If there is no
start time before the end time (not could be before is true between the combined
start and end times), then the inference produces no result.1

Definition 7. An eMARPL ontology consists of a finite set of eMAPL rules, a
finite set of function definitions, and a finite set of attribute characterizations
as above. The function definitions are as in MARPL ontologies except that they
can have datatype function terms in their consequences (i.e., in the consequents
of their conditionals).

These attribute characterizations are used as macros, modifying the functions
and rules of an eMARPL ontology.

Definition 8. The expansion of an eMARPL ontology uses the attribute char-
acterization to modify its rules as follows:

– First give each rule its own function by making copies of functions or creating
a new function for the rule. Ensure that each atom in the rule body has its
own set variable, adjusting the function as needed to access this set variable.

– For each attribute whose characterization is addition, for each rule where
the function does not mention the attribute in its consequences, augment the
function to copy over all the attribute’s values.

1 In actuality, all three of these qualifiers should take into account all of them, so a
better characterization would have a more complex blending specification.



– For each attribute whose characterization is combine, for each rule where
the function does not mention the attribute in its consequences, augment the
function to add a single attribute value that is the combination of all the
values in the body atoms. Also add a new body atom to check whether the
combined value satisfies the combination predicate. This will require adding
multiple clauses to the function as well as splitting the rule to take into
acccount the presence or absence of the attribute in body atoms.

– For each attribute whose characterization is blend, for each rule where the
function does not mention the attribute in its consequences, augment the
function to compute the combination values and add the blend result. Also
add a new body atom to check whether the blended value satisfies the blend
predicate. This will cause similar but more pronounced increase in the num-
ber of clauses than combination attributes.

The meaning of an expanded eMARPL ontology on an eMARS is just the
inferential closure of the rules on the eMARS.

2.4 Complexity

An expansion can be exponentially larger than the original ontology in the num-
ber of attributes with combination or blending characterizations. Implementa-
tions would not actually construct the expansion, instead gathering up values
internally and applying the functions and predicates only to the existing values.
So the size of the expansion is not a real complexity problem, by itself.

Datatype functions and relations are limited so that rules cannot add new
datatype values to predicate extensions, eliminating this particular cause of in-
tractability or undecidability in rules.

Even so, reasoning in MARPL, let alone eMARPL, is intractable because the
number of attribute values can grow large. We view this as unavoidable, but we
do not expect this worst-case intractability to be much of a problem in practice.

3 Wikidata on eMARS

Now that eMARPL ontologies have been defined we can show how we determine
the meaning of Wikidata as an eMARS. Following that, we will show how the
eMARS can be used to check Wikidata’s constraints.

Objects in Wikidata are items, which include predicates (properties). Facts in
Wikidata are statements, consisting of a subject (an item) and a main snak. Snaks
are predicate-object pairs, or some-value snaks, or no-value snaks. Statements
also have associated qualifiers, which are also snaks. Statements have a rank,
which is regular, preferred, or deprecated. Wikidata also provides optional typing
information for the values of properties. We also use a characterization for each
property used in a qualifier in Wikidata; a set of ontological rules for Wikidata;
and a set of constraints.

First we turn Wikidata itself into an eMARS. The domain elements of the
eMARS are all the items in Wikidata, with additions as below. The predicate
extensions in the eMARS are pairs of subjects and objects from statements with
the predicate as property. Statements whose main snak is a some-value snak



are modelled by adding a fresh element to the domain. (This treats a some-
value snak as stating that its value is a distinct domain element, which might
not be quite the best treatment, but avoids computational problems having to
do with determining which regular domain element the value is equal to.) Each
qualifier snak becomes an attribute of the statement, in the obvious manner. For
statement ranks we add a special rank attribute with value preferred or normal.
We ignore reference records for now.

Statements whose main snak is a no-value snak are ignored here, and left for
future work. We think the best treatment of a no-value snak is as a constraint
but it is unclear whether a no-value snak means no value at all, no value with
the same qualifiers, or something in between. These options can be modelled as
eMAPL constraint formulae.

Property typing is modelled as rules requiring that the values of the property
belong to the datatype. So the datatype for date of birth is modelled by the rule:

date of birth(s, o) → Point in time(o) (2)

3.1 Wikidata Ontology Rules

Some parts of formalizing the Wikidata ontology have already been described
above as examples of quantifier characterizations. Arguably, the most impor-
tant part of this formalization, though, is formalizing the ontological rules of
Wikidata.

The ontology problems with Wikidata can be solved by treating Wikidata as
an eMARPL ontology, transforming Wikidata into an eMARS and adding a few
ontology rules, such as those shown in (3). Each atom on the right-hand side of
these rules is implicitly associated with an attribute set that is constructed by
a rule function.

subclass of(c, d) ∧ subclass of(d, e) → subclass of(c, e)

instance of(y, c) ∧ subclass of(c, d) → instance of(y, d)

subproperty of(c, d) ∧ subproperty of(d, e) → subproperty of(c, e)

subproperty of(p, q) ∧ p(x, y) → q(x, y)

instance of(p, symmetric property) ∧ p(y, x) → p(x, y)

instance of(p, transitive property) ∧ p(x, y) ∧ p(y, z) → p(x, z)

(3)

These rules look higher order, but they are not. The quantification is only
over Wikidata properties, so the rules can be rewritten using a triple-based
formulation, as in:

T(p, instance of,Wikidata property) ∧ T(p, subproperty of, q) ∧ T(x, p, y) → T(x, q, y)

So far, these ontology rules are just MARPL, and even just regular Horn
rules. But Wikidata qualifiers need to be taken into account, even if qualifiers
are forbidden in ontology atoms (i.e., those with predicates instance of, subclass of,
subproperty of), because of occurrences of non-ontology atoms such as p(x, y)
in some rules. In MARPL, such rules would either have to take into account



every possible Wikidata qualifier, or different rules would have to be written for
each Wikidata property, but even these rules would have to take into acount
all the qualifiers that are present on Wikidata statements for the property. In
eMARPL a single rule can be written, without regard to qualifiers, and the
qualifier characterizations are used to handle the qualifiers that are present.

3.2 Wikidata Qualifier Characterization

The most important, and most involved, Wikidata qualifier characterizations are
probably the ones for temporal qualifiers, as they impact very many statements
in Wikidata and missing temporal qualifiers can lead to considering statements
that are not relevant to the user’s context. The characterizations of temporal
qualifiers above as blending attributes are, we feel, typical and show off the
capabilities of eMARPL.

Many Wikidata qualifiers have little logical import or are specific to a state-
ment, such as the measurement method used to determine a statement or the
location of an event. The former can be simply ignored for most uses of Wiki-
data and the latter, although of interest, should not be carried along in most
inferences, so they would be classified in the default classification. Other Wiki-
data qualifiers have logical import and thus should be carried along, but are
multivalued and do not in general interact with other qualifiers. These can be
categorized in the “additive” categorization.

3.3 The Meaning of Wikidata

The meaning of Wikidata is then the inferential closure of the eMARS above
under this eMARPL ontology. It is this eMARS that is to be used when querying
or otherwise requesting what is true in Wikidata, or checking constraints.

3.4 Constraints

Wikidata has constraints that do not add directly to the meaning of Wikidata
but instead provide signals that there is something questionable in Wikidata,
consistent with the view taken by other work on constraints for knowledge-
graph-like systems [3,11]. We model Wikidata constraints as eMAPL formulae
that are evaluated over the eMARS that is the meaning of an eMARPL ontology.
Instantations of these constraints that are false are to be reported as violations
of the constraint.

For example, the distinct values constraint in Wikidata is supposed to say that
a given property should have different values for different items. Constraints
like this one are currently implemented (if at all) by special-purpose code. The
following eMAPL formula embodies this constraint

property constraint(p, distinct values constraint)∧
p(s1, o1) ∧ p(s2, o2) ∧ s1 6= s2 → o1 6= o2

(4)

In a separate paper [6] we show that with the proposed formalism nearly
all of Wikidata’s existing property constraints can be given a complete charac-
terization in an economical, natural, and relatively easy-to-understand fashion.



Such characterizations, unlike documentation in natural language, provide an
unambiguous basis for understanding and for implementing constraint checkers.
Moreover, we show that additional constraints can easily be added, so long as
they are expressible in eMAPL. eMAPL allows for representing and handling a
broad range of constraints, which goes beyond property constraints, in the same
formalism.

3.5 Rules for Recognizing Class Instances

There are many classes in the Wikidata ontology that have very few instances,
even when considering instances of subclasses. For example, as of mid-June 2020
in Wikidata female human has only 5 instances, even including instances of sub-
classes, as opposed to the several million expected. The problem is that most
female humans are stated as belonging to human and having sex or gender female.
There is nothing in Wikidata to suggest, however, that asking for instances of
female human is unreasonable.

Adding a rule of the form

instance of(human, h) ∧ sex or gender(h, female) → female human(h) (5)

results in female human having the correct instances.
Many other notable under-populated classes can be handled in the same way.

4 Related Work

We highlight relevant work from several slices of logical foundations for knowl-
edge bases,

Logical foundations for Wikidata. SQID [7] is a browser and editor for Wiki-
data, which draws inferences from a collection of MARPL rules2. Our work was
informed by SQID’s embodiment of MARPL-based reasoning, and motivated
in part by the desire to expand the expressiveness of MARPL rules, as illus-
trated by the SQID rule set to provide a more complete reasoning framework,
and to accommodate Wikidata constraints. [1] also formalizes a model of Wiki-
data based on MARS, but with a different objective: the application of “Formal
Concept Analysis to efficiently identify comprehensible implications that are im-
plicitly present in the data”. [1] is thus nicely complementary with [8] and with
our work, in that it provides a basis for discovering, rather than hand-authoring,
new (e)MARPL rules.

Logical foundations for annotated KBs. Annotated RDFS [12] extends RDFS
and RDFS semantics to support annotations of triples. A deductive system is
provided, and extensions to the SPARQL query language that enable querying
of annotated graphs. While this approach could provide a useful target formal-
ism for Wikidata’s RDF dumps, we instead represent Wikidata’s data model as
directly as possible, and thus we deliberately avoid the use of the RDF dumps
and the complexities that arise from adopting RDF as the modeling framework.

Adding attributes to logics. Just as MARPL was developed to provide a (rule-
based, Datalog-like) decidable fragment of MAPL, Krötzsch, Ozaki, et al. have

2 SQID’s rule set may be viewed at https://tools.wmflabs.org/sqid/#/rules/browse.



also explored description logics as a basis for other decidable fragments of MAPL,
and have analyzed the resulting family of attributed DLs in [4,5,9]. We believe
that MARPL provides the best available starting point for modeling Wikidata,
but we also agree that this ongoing thread of research will lead to attributed
DLs with the right level of expressivity for other sorts of applications.

5 Conclusion and Future Work

We have described eMARS, eMAPL, and eMARPL (extensions of previous work
of Marx et al. [8]), which can provide a practically usable foundation for a logic
of Wikidata. These extensions are centered around the introduction of datatypes
and the specification of the behavior of qualifiers in connection with axioms. We
have outlined a reasoning framework for using these formalisms with Wikidata,
and have indicated how its use could add substantial value to Wikidata. The
adoption of this framework could support more complete, meaningful, and con-
sistent querying of Wikidata, as well as better facilities for implementing KB
completion and other reasoning capabilities.

Our plans for future work include the discussion of other areas of Wikidata
that can benefit from its use and the creation of a prototype implementation
and then a detailed design for a scalable deployment.

References
1. Hanika, T., Marx, M., Stumme, G.: Discovering implicational knowledge in Wiki-

data. In: International Conference on Formal Concept Analysis. pp. 315–323.
Springer (2019)

2. Hayes, P., Patel-Schneider, P.F.: RDF 1.1 semantics. W3C Recommendation,
http://www.w3.org/TR/rdf11-mt/ (25 February 2014)

3. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C Rec-
ommendation, http://www.w3.org/TR/shacl/ (2017)

4. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: On-
tologies for knowledge graphs. In: ISWC. pp. 418–435. Springer (2017)

5. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: Rea-
soning on knowledge graphs. In: IJCAI. pp. 5309–5313 (2018)

6. Martin, D.L., Patel-Schneider, P.F.: A logical approach to representing constraints
in Wikidata. arXiv 2008.03900 (2020)

7. Marx, M., Krötzsch, M.: SQID: Towards ontological reasoning for Wikidata. In:
International Semantic Web Conference (Posters, Demos & Industry Tracks) (2017)

8. Marx, M., Krötzsch, M., Thost, V.: Logic on MARS: Ontologies for generalised
property graphs. In: IJCAI. pp. 1188–1194 (2017)

9. Ozaki, A., Krötzsch, M., Rudolph, S.: Temporally attributed description logics.
In: Description Logic, Theory Combination, and All That, pp. 441–474. Springer
(2019)

10. Patel-Schneider, P.F., Martin, D.L.: Wikidata on MARS. arXiv 2008.06599 (2020)
11. Prud’hommeaux, E., Boneva, I., Gayo, J.E.L., Kellogg, G.: Shape expressions:

An RDF validation and transformation language. W3C Final Community Report,
http://shex.io/shex-semantics/ (October 2019)

12. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for
representing, reasoning and querying with annotated semantic web data. Journal
of Web Semantics 11, 72–95 (2012)

http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/shacl/
http://shex.io/shex-semantics/

	Wikidata on MARS(Preliminary Report)

