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Abstract. Various problems arising in the context of example-driven
approaches to query discovery have turned out to be intimately related
to basic structural properties of the homomorphism lattice of finite struc-
tures, such as density, or the existence of duals. In this keynote, I will
review some such connections, and highlight some relevant recent results.

1 The Homomorphism Lattice

Let us consider the partial order (Str,≤hom), where Str is the set of all finite
structures over some schema S, and ≤hom denotes the existence of a homomor-
phism (that is, A ≤hom B holds if there is a homomorphism from A to B, i.e., a
function from the domain of A to the domain of B that preserves structure). For
the purpose of this exposition, we will assume that S is a fixed, finite schema,
consisting of relation symbols and constant symbols. We will write A <hom B if
A ≤hom B and B 6≤hom A, and we will say that A and B are homomorphically
equivalent if A ≤hom B and B ≤hom A.

This partial order (Str,≤hom) turns out to have a rich structure and has been
the subject of extensive study. For a wonderful textbook on this topic (focusing
on the case of directed graphs, where the schema S consists of a single binary
relation and no constant symbols), see [7]. We review here a few relevant results.
To start with, we have the following well known fact:

Proposition 1. The partial order (Str,≤hom) is a lattice in the following sense:

1. For every finite set of structures A, we can construct (in exponential time)
a structure

⊗
A, such that,

⊗
A ≤hom A for every A ∈ A, and such that

for every structure B, if B ≤hom A for every A ∈ A then B ≤hom

⊗
A.

2. For every finite set of structures A, we can construct (in polynomial time) a
structure

⊕
A, such that A ≤hom

⊕
A for every A ∈ A, and such that, for

every structure B, if A ≤hom B for every A ∈ A then
⊕
A ≤hom B.

The “meet” operation
⊗
A, here is simply the direct product, and the “join”

operation
⊕
A, in the case without constant symbols, is simply the disjoint

union (the definition of
⊕
A for structures with constant symbols is a little
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Fig. 1. A frontier in the homomorphism lattice.

more involved, we omit the details here, cf. [11]). We will refer to this lattice as
the Homomorphism Lattice.

One computational problem in this context that will be relevant below is the
product homomorphism problem: given a finite set of structuresA and a structure
B, the task is to decide whether

⊗
A ≤hom B (or, equivalently, whether C ≤hom

A for all A ∈ A implies C ≤hom B). Since the structure
⊗
A itself can be

constructed in singly exponential time, the product homomorphism problem
can be solved in NExpTime. A matching lower bound was established in [14,
10].

Theorem 1 ([14, 10]). The product homomorphism problem is NExpTime-
complete (provided that S contains a relation of arity at least 2).

One interesting direction in the study of the homomorphism lattice pertains
to density. It is known that the homomorphism lattice is not a dense lattice.
That is, there exist structures B <hom A for which there is no structure C with
B <hom C <hom A. Such pairs (B,A) are also known as gap pairs [7]. On the
other hand, there also exist structures A such that for every B <hom A, there is
structure C with B <hom C <hom A (an example of the latter kind, in the case
without constant symbols, and with a binary relation R, is the single-element
structure consisting of the fact R(a, a)). Intuitively, we can therefore say that
parts of the homomorphism lattice are locally dense, whereas other parts are
not. Closely related to this is the concept of a frontier.

Definition 1. A frontier for a structure A is a finite collection of structures F
such that

1. F <hom A for all F ∈ F
2. For all structures C, if C <hom A, then C ≤hom F for some F ∈ F .



In other words, a frontier for A is a finite set of structures that separates
A from those structures that are homomorphically strictly smaller than A, as
depicted in Figure 1.

As it turns out, there is simple necessary and sufficient condition for the
existence of a frontier. To define this condition, we must consider the incidence
graph of a structure A, by which we mean the bipartite multi-graph whose
vertices are the elements of the domain of A and the facts of A, and such that
an element and a fact are connected by an edge if the element occurs in the fact.
If an element occurs multiple times in the same fact, each occurrence generates
an edge (hence, this is a multi-graph).

Definition 2. A structure is acyclic if the incidence graph is acyclic, and a
structure is c-acyclic if every cycle of the incidence graph passes through at least
one element that is named by a constant symbol.

Note that if the schema S does not contain constant symbols, c-acyclicity is
the same as acyclicity.

Theorem 2 ([11]). Every c-acyclic structure has a frontier. Moreover, given a
c-acyclic structure, a frontier can be constructed in polynomial time. Conversely,
if a structure A has a frontier, then A is homomorphically equivalent to a c-
acyclic structure.

It also follows from this result that we can test whether a given set of struc-
tures is a frontier. In fact, this problem is NP-complete.

Theorem 3. The following problem is NP-complete: given a structure A and a
finite set of structures F , is F a frontier for A?

Proof (sketch). For the upper bound, we use the fact that, if A is homorphically
equivalent to a c-acyclic structure A′, then such A′ exists as a substructure of A
(we omit the details, but this follows directly from the fact that c-acyclicity is
preserved under passage from a structure to its core). Therefore, the problem can
be solved in non-deterministic polynomial time as follows: first we guess a sub-
structure A′ and we verify that A′ is c-acyclic and homomorphically equivalent to
A. Note that the existence of such A′ is a necessary precondition for B1, . . . , Bn

to be a frontier of A. Next, we apply Theorem 2 to construct a frontier F ′ for A′

(and hence for A). Finally, we verify that each F ∈ F homomorphically maps
to some F ′ ∈ F ′ and vice versa. It is not hard to see that this non-deterministic
algorithm has an accepting run if and only if F is a frontier for A.

For the lower bound, we reduce from graph 3-colorability. Let A be the
structure, over a 3-element domain, that consists of the facts R(a, b) for all pairs
a, b with a 6= b. In addition, each of the three elements is named by a constant
symbol. Since A is c-acyclic, by Theorem 2, it has a frontier F . Now, given any
graph G (viewed as a relational structure with binary relation R and without
constant symbols), we have that G is 3-colorable if and only if F is a frontier
for the disjoint union of A with G. To see that this is the case, note that if G is
3-colorable, then the disjoint union of A with G is homomorphically equivalent



to A itself, whereas if G is not 3-colorable, then the disjoint union of A with G
is strictly greater than A in the homomorphism order. ut

Another, closely related topic in the study of the homomorphism lattice is
that of dualities. A pair of structures (A,B) are said to be a duality pair if
{C | A 6≤hom C} = {C | C ≤hom B}. Intuitively, this means that the entire
class of structures can be partitioned into two disjoint sets: those structures into
which A homomorphically maps, and those structures that homomorphically
map into B. More generally a pair of finite sets of structures (A,D) is said to
be a generalized homomorphism duality if {C | A 6≤hom C for all A ∈ A} = {C |
C ≤hom B for some B ∈ B}. A famous infinitary example of a homomorphism
duality is the following: a graph G is 2-colorable (equivalently, has a homomor-
phism into the 2-element clique) if and only if G does not contain a cycle of
odd length (equivalently, does not not have a homomorphism from a structure
consisting of a cycle of odd length).

As was shown in [8], generalized homomorphism dualities and frontiers are
intimately related, and one can be constructed from the other. In particular, a
finite set of structures A is the left-hand side of a generalized homomorphism
duality if and only if (modulo homomorphic equivalence) A consists of c-acyclic
structures [6, 1].

2 Example-Driven Query Discovery

Suppose one wishes to construct a query Q on the basis of a set of data examples.
For the sake of concreteness, assume that the query Q we wish to construct is
a k-ary conjunctive query (k ≥ 0) over a schema S. For the purpose of our
complexity analysis, we will treat the schema and the arity as fixed. Each given
data example will be a triple (I,a, s), where I is a database instance (over the
schema S), a is a k-tuple of values from the active domain of I, and s ∈ {+,−}
indicates whether the data example is a positive example or a negative example.
We say that a query Q fits such a data example (I,a, s) if a ∈ Q(I) (for the case
where s = +), or a 6∈ Q(I) (for the case where s = −).

One natural high-level approach for constructing Q might be as in the fol-
lowing flow chart:
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Following this approach, three computational tasks naturally arise. The first
task is, given an input set of data examples, to decide whether there exists a
fitting query, and, if so, produce one. This has also been described a reverse-
engineering problem [3]: from observed behavior of the query, we must recon-
struct a query with that behavior. It turns out that, in the case of conjunctive
queries, the existence of a query that fits a given set of data examples, is com-
putationally equivalent to the product homomorphism problem that we encoun-
tered in the previous section. Indeed (skipping over some minor details related
to safety and active domain semantics), we can view a data example for a k-
ary query as a structure with k constant symbols, and we can identify a k-ary
conjunctive query itself also with a structure with k constant symbols. By the
Chandra-Merlin theorem [5], then, a query Q fits a positive (negative) example
E precisely if Q ≤hom E (respectively, Q 6≤hom E) where both are viewed as
structures.

Now, let E be a set of data examples, and let Q be (the canonical query
of) the direct product of all positive examples in E. It is not hard to show
that if there exists any query that fits the data examples, then Q must fit the
data examples. Moreover, it already follows from the construction that Q fits
all positive examples in E, and, in order for Q to fit the negative examples, it
must be the case that there is no homomorphism from Q to any of the negative
data examples in E. This shows that the existence of a conjunctive query fitting
a given set of data examples, reduces to (a conjunction of instances of) the
product homomorphism problem. It is not hard to establish a reduction in the
other direction as well. Moreover, in the case where a fitting conjunctive query
exists, the conjunctive query Q constructed above is guaranteed to be a greatest
fitting query for the examples, that is, Q′ ≤hom Q holds for all conjunctive
queries Q′ that fit the data examples in E. Therefore, in summary, we have:

Theorem 4 ([10]). The following problem is CoNexpTime-complete: given a
finite set E of data examples, does there exist a conjunctive query that fits E.
Moreover, if a fitting conjunctive query exists, then a greatest fitting conjunctive



query can be constructed in exponential time (where the exponent corresponds to
the number of positive examples). 1

At this point, assuming that a fitting conjunctive query does indeed exists, we
have obtained a candidate query Q, which is in fact a greatest fitting conjunctive
query. We then arrive at the next question, which is whether Q is the only query
(up to logical equivalence) that fits E. This second problem turns out, in our
specific setting, to be NP-complete. Formally, we say that the data examples in
E uniquely characterize Q if Q fits E and, furthermore, every conjunctive query
that fits E is logically equivalent to Q.

Theorem 5. The following problem is NP-complete: given a collection E of
positive and negative examples, and a greatest fitting conjunctive query Q for E,
do the data examples in E uniquely characterize Q?

Proof (sketch). Theorem 5 is proved by showing that the problem is computa-
tionally equivalent to the problem of testing whether a given set of structures is a
frontier. In one direction, we claim that the data examples in E uniquely charac-
terize Q if and only if the set F = {(N ⊗Q) | N is a negative example from E}
is a frontier for Q. Note that, here, as before, we take the liberty to skip over
minor details by conflating conjunctive queries, data examples, and structures.

First, suppose that Q is uniquely characterized by E. We must show that
F is a frontier for Q. Clearly, (N ⊗ Q) ≤hom Q. Furthermore, since Q fits the
negative example N , we have that Q 6≤hom N and therefore Q 6≤hom (N ⊗ Q).
Finally, let B <hom Q, and suppose for the sake of a contradiction that B does
not homomorphically map to any structure in F . It follows that B does not
map to any negative example N . Therefore, (the canonical query of) B fits all
examples in E and is not equivalent to Q, a contradiction. Next, suppose that
F is a frontier for Q. We must show that Q is uniquely characterized by E.
Suppose, for the sake of a contradiction, that Q′ fits all examples in E and is
not equivalent to Q. Since Q is a greatest fitting query, it must be the case that
Q′ ≤hom Q and Q 6≤hom Q′. Therefore, Q ≤hom (N ⊗ Q) for some negative
example N , and hence Q ≤hom N , a contradiction.

To prove the NP lower bound, we provide an even simpler reduction in the
opposite direction. Let A be any structure and F a finite set of structures such
that each structure in F is homomorphically below A. Then F is a frontier for
A if and only if A is uniquely characterized by the set E that consists of A itself
as a positive example, and the structures in F as negative examples. ut

At this point, we know whether the examples in E uniquely characterize Q.
If the answer is Yes, then we can safely conclude that Q is the query we were
after. Otherwise, we arrive at the last of our three problems, namely, eliciting
further examples with the aim of identifying our target query with certainty.

1 The result as stated in [10] is for LAV schema mappings. However, the fitting problem
for LAV schema mappings is easily seen to be equivalent to the fitting problem for
conjunctive queries.



Here, we enter into the territory of computational learning theory. Without
going into details, the first question that arises is whether, by eliciting further
examples, we can even hope to arrive at a situation in which we can identify our
target conjunctive query with certainty. This question is, of course, equivalent
to the question whether the target conjunctive query is uniquely characterizable
by finitely many examples. It turns out that the answer is Yes precisely if the
target query has a finite frontier [11]. By Theorem 2, this holds precisely if the
target query is (homomorphically equivalent to) a c-acyclic conjunctive query. If
the target query is not homomorphically equivalent to a c-acyclic query, then,
no matter how many additional data examples we elicit, we will never arrive at
a situation in which our set of data examples uniquely characterizes the target
query. Remarkably, it turns out that if the target query is c-acyclic, then there
exists an efficient exact learning algorithm (in the formal sense of Angluin’s
model of interactive exact learnability [2]), that will identify the target query
after asking polynomially many questions, where each question asks whether
a given data example is positive or negative for the target query. Following
standard terminology from computational learning theory, such questions are
called “membership queries”, and the formal statement of the result is as follows:

Theorem 6 ([11]). The class of c-acyclic conjunctive queries is efficiently ex-
actly learnable with membership queries.

3 Concluding Remarks

This short paper was written with the aim of highlighting some interesting topics
and their connections to the structure of the homomorphism lattice. It is by no
means a comprehensive survey of work that has been done in this area. In fact,
there is considerable literature on example-driven discovery of database queries,
description logic ontologies, and schema mappings, as discussed in the related
work sections of the papers cited here. See also [9] for a recent survey of different
approaches towards learning description logic ontologies.

Since we focused on the case of conjunctive queries in this exposition, one
might ask what changes when considering unions of conjunctive queries. As it
turns out, in this context there is a close correspondence between unions of
conjunctive queries and GAV schema mappings. Without going into details, this
is because a GAV schema mapping can be equivalently viewed as a mapping that
assigns to each target relation a union of conjunctive queries over the source
schema. Unique characterizations for GAV schema mappings were extensively
studied in [1], and some of the results in [1] can be rephrased in terms of unions of
conjunctive queries. In particular, in the same way that unique characterizations
for conjunctive queries correspond to frontiers in the homomorphism lattice, it
follows from results in [1] that unique characterizations for unions of conjunctive
queries correspond to generalized homomorphism dualities. Exact learnability
(as well as PAC learnability) for GAV schema mappings was studied in [12, 13],
and again, the results can be rephrased in terms of unions of conjunctive queries.



We close by briefly mentioning two other interesting problems with close con-
nections with the structure of the homomorphism lattice. The first is instance-
level query definability, which refers to definability of relations inside a given
database instance. More specifically, the CQ-definability problem, consists in de-
ciding, given a database instance I and a relation S over the active domain of
I, whether there is a conjunctive query Q such that Q(I) = S. It turns out that
this problem is again computationally equivalent to the product homomorphism
problem (cf. [10]). Finally, let us mention one more definability problem of sorts,
that arises in the context of ontology-based data access. This is the problem
where we are given a ontology-based query (specified with the help of an on-
tology, and using certain-answer semantics), and we wish to decide whether it
is equivalent to an ordinary first-order query (without reference to the ontol-
ogy). As it turns out, for common ontology languages such as ALC, this decision
problem reduces to the question whether a given finite set of structures has a
generalized homomorphism duality. See [4] for more details.
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