
EXPTIME Tableaux for ALC Using Sound
Global Caching

Rajeev Goré1 and Linh Anh Nguyen2

1 The Australian National University
Canberra ACT 0200, Australia

2 Institute of Informatics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland

Rajeev.Gore@anu.edu.au nguyen@mimuw.edu.pl

Abstract. We show that global caching can be used with propagation
of both satisfiability and unsatisfiability in a sound manner to give an
EXPTIME algorithm for checking satisfiability w.r.t. a TBox in the ba-
sic description logic ALC. Our algorithm is based on a simple traditional
tableau calculus which builds an and-or graph where no two nodes of the
graph contain the same formula set. When a duplicate node is about to
be created, we use the pre-existing node as a proxy, even if the proxy is
from a different branch of the tableau, thereby building global caching
into the algorithm from the start. Doing so is important since it al-
lows us to reason explicitly about the correctness of global caching. We
then show that propagating both satisfiability and unsatisfiability via
the and-or structure of the graph remains sound. In the longer paper,
by combining global caching, propagation and cutoffs, our framework re-
duces the search space more significantly than the framework of [1]. Also,
the freedom to use arbitrary search heuristics significantly increases its
application potential.
A longer version with all optimisations is currently under review for a
journal. An extension for SHI will appear in TABLEAUX 2007.

Keywords: sound caching, decision procedures, optimal complexity.

1 Motivation, Notation and Semantics of ALC

We show that there is a simple way to use global caching and propagation to
achieve an EXPTIME decision procedure for ALC. Our algorithm is based on
a simple traditional tableau calculus. It builds an and-or graph, where an or-
node reflects the application of an “or” branching rule as in a tableau, while
an and-node reflects the choice of a tableau rule and possibly many different
applications of that rule to a given node of a tableau. We build caching into the
construction of the and-or graph by ensuring that no two nodes of the graph have
the same content. The status of a non-end-node is computed from the status of
its successors using its kind (and-node/or-node) and treating satisfiability w.r.t.
the TBox (i.e. sat) as true and unsatisfiability w.r.t. the TBox (i.e. unsat) as

false. When a node gets status sat or unsat, the status is propagated to its
predecessors in a way appropriate to the graph’s and-or structure. With global
caching and the assumption that EXPTIME 6= PSPACE, depth-first search has
no advantages over other search strategies for our framework. That is, the naive
version of our EXPTIME algorithm can accept any systematic search strategy.

By combining global caching, propagation and cutoffs, our framework signif-
icantly reduces the search space when compared with the framework of Donini
and Massacci [1]. Furthermore, the freedom to use arbitrary search heuristics
significantly increases the application potential of our framework.

We use A for atomic concepts, use C and D for arbitrary concepts, and use R
for a role name. Concepts in ALC are formed using the following BNF grammar:

C,D ::= > | ⊥ | A | ¬C | C uD | C tD | C v D | C .= D | ∀R.C | ∃R.C

An interpretation I = 〈∆I , ·I〉 consists of a non-empty set ∆I , the domain
of I, and a function ·I , the interpretation function of I, that maps every atomic
concept to a subset of ∆I and every role name to a subset of ∆I × ∆I . The
interpretation function is extended to complex concepts as usual.

An interpretation I satisfies a concept C if CI 6= ∅, and validates a concept
C if CI = ∆I . Clearly, I validates a concept C iff it does not satisfy ¬C.

A TBox (of global axioms/assumptions) Γ is a finite set of concepts: tradi-
tionally, a TBox is defined to be a finite set of terminological axioms of the form
C

.= D, where C and D are concepts, but the two definitions are equivalent.
An interpretation I is a model of Γ if I validates all concepts in Γ . We also use
X, Y to denote finite sets of concepts. We say that I satisfies X if there exists
d ∈ ∆I such that d ∈ CI for all C ∈ X. Note: satisfaction is defined “locally”,
and I satisfies X does not mean that I is a model of X.

We say that Γ entails C, and write Γ |= C, if every model of Γ validates C.
We say that C is satisfiable w.r.t. Γ if some model of Γ satisfies {C}. Similarly,
X is satisfiable w.r.t. (a TBox of global axioms/assumptions) Γ if there exists a
model of Γ that satisfies X. Observe that Γ |= C iff ¬C is unsatisfiable w.r.t. Γ .

Note: We now assume that concepts are in negation normal form, where .=
and v are translated away and ¬ occurs only directly before atomic concepts.

2 A Tableau Calculus for ALC

We consider tableaux with a fixed TBox of global axioms/assumptions Γ . The
numerator of each tableau rule contains one or more distinguished concepts
called the principal concepts. We write X;Y for X ∪ Y , and X;C for X ∪ {C}.
The calculus CALC for ALC consists of the tableau rules below:

(⊥)
X ; A ; ¬A

⊥
(u)

X ; C uD

X ; C ; D
(t)

X ; C tD

X ; C | X ; D

(∃R) Γ :
X ; ∃R.C

{D : ∀R.D ∈ X} ; C ; Γ

The rules (⊥), (u), and (t) are static rules, while (∃R) is a transitional rule.
A CALC-tableau (tableau, for short) w.r.t. a TBox Γ for a finite set X of

concepts is a tree with root (Γ ;X) whose nodes carry finite sets of concepts
obtained from their parent nodes by instantiating a CALC-tableau rule with the
proviso that: if a child s carries a set Y and no rule is applicable to Y or Y has
already appeared on the branch from the root to s then s is an end node.

A branch in a tableau is closed if its end node carries only ⊥. A tableau is
closed if every one of its branches is closed. A tableau is open if it is not closed.

A finite set X of concepts is consistent w.r.t. a TBox Γ if every tableau w.r.t.
Γ for X is open. If some tableau w.r.t. Γ for X is closed then X is inconsistent
w.r.t. Γ . Calculus CALC is sound if for all finite sets Γ and X of concepts, X
is satisfiable w.r.t. Γ implies X is consistent w.r.t. Γ . It is complete if for all
finite sets Γ and X of concepts, X is consistent w.r.t. Γ implies X is satisfiable
w.r.t. Γ . A tableau rule is sound if, whenever the numerator is ALC-satisfiable
w.r.t. the TBox then one of the denominators is ALC-satisfiable w.r.t. the TBox.

Lemma 1. The calculus CALC is sound because all rules of CALC are sound.

Observe that every concept appearing in a tableau w.r.t. Γ for X is a sub-
formula of Γ ∪X ∪ {⊥}. Thus CALC thus has the analytic subformula property.

3 Completeness

A model graph is a tuple 〈∆, τ, C, E〉, where: ∆ is a finite set; τ is a distinguished
element of ∆; C is a function that maps each element of ∆ to a set of concepts;
and E is a function that maps each role name to a binary relation on ∆.

A model graph 〈∆, τ, C, E〉 is saturated if every x ∈ ∆ satisfies:

1. if C uD ∈ C(x) then {C,D} ⊆ C(x)
2. if C tD ∈ C(x) then C ∈ C(x) or D ∈ C(x)
3. if ∀R.C ∈ C(x) and E(R)(x, y) holds then C ∈ C(y)
4. if ∃R.C ∈ C(x) then there exists y ∈ ∆ with E(R)(x, y) and C ∈ C(y).

A saturated model graph 〈∆, τ, C, E〉 is consistent if no x ∈ ∆ has a C(x)
containing ⊥ or containing a pair A, ¬A for some atomic concept A.

Given a model graph M = 〈∆, τ, C, E〉, the interpretation corresponding to M
is the interpretation I = 〈∆, ·I〉 where AI = {x ∈ ∆ | A ∈ C(x)} for every
atomic concept A and RI = E(R) for every role name R.

Lemma 2. By induction on the structure of C we can show that if I is the
interpretation corresponding to a consistent saturated model graph 〈∆, τ, C, E〉,
then for every x ∈ ∆ and C ∈ C(x) we have x ∈ CI .

Given finite sets X and Γ of concepts, where X is consistent w.r.t. Γ , we
construct a model of Γ that satisfies X by constructing a consistent saturated
model graph 〈∆, τ, C, E〉 with X ⊆ C(τ) and Γ ⊆ C(x) for every x ∈ ∆.

Algorithm 1
Input: a TBox Γ and a finite set X of concepts, where X is consistent w.r.t. Γ .
Output: a model graph M = 〈∆, τ, C, E〉.

1. For an arbitrary node name τ , let ∆ := {τ}, and E(R) := ∅ for every role name R.
Let C(τ) be a saturation of Γ ∪X and mark τ as unexpanded.

2. While ∆ contains unexpanded elements, take one, say x, and do:
(a) For every concept ∃R.C ∈ C(x):

i. Let Y = {D | ∀R.D ∈ C(x)}∪{C}∪Γ be the result of applying rule (∃R)
to C(x), and let Z be a saturation of Y .

ii. If there exists a (proxy) y ∈ ∆ with C(y) = Z then add pair (x, y) to E(R);
iii. Else add a new element y with C(y) := Z to ∆, mark y as unexpanded,

and add the pair (x, y) to E(R).
(b) Mark x as expanded.

Fig. 1. Constructing a Model Graph

Saturation The rules (u) and (t) do not carry their principal concept into their
denominators. For these rules, let (ρ′) be the version that carries the principal
concept into each of its denominators. Each new rule is clearly sound for ALC.

For a finite set X of concepts that is consistent w.r.t. a TBox Γ , a set Y of
concepts is called a saturation of X w.r.t. Γ if Y is a maximal set consistent
w.r.t. Γ that is obtainable from X (as a leaf node in a tableau) by applications
of the rules (u′) and (t′). A set X is closed w.r.t. a tableau rule if applying that
rule to X gives back X as one of the denominators.

Lemma 3. Let X be a finite set of concepts consistent w.r.t. a TBox Γ , and Y
a saturation of X w.r.t. Γ . Then X ⊆ Y ⊆ Sf(Γ ∪X) and Y is closed w.r.t. the
rules (u′) and (t′). Furthermore, there is an effective procedure that constructs
such a set Y from Γ and X.

Constructing Model Graphs Figure 1 contains an algorithm for constructing
a model graph. Algorithm 1 assumes that X is consistent w.r.t. Γ and constructs
a model of Γ that satisfies X. Algorithm 1 terminates because each x ∈ ∆ has
a unique finite set C(x) ⊆ Sf(Γ ∪ X), so eventually Step 2(a)ii always finds a
proxy. Note that Step 2(a)ii builds caching into the algorithm.

Lemma 4. Let Γ be a TBox, X be a finite set of concepts consistent w.r.t. Γ ,
M = 〈∆, τ, C, E〉 be the model graph constructed by Algorithm 1 for Γ and X, and
I be the interpretation corresponding to M . Then I validates Γ and satisfies X.

Theorem 1. The calculus CALC is sound and complete.

4 A Simple EXPTIME Decision Procedure for ALC

In Figure 2 we present an EXPTIME decision procedure for ALC which directly
uses the tableau rules of CALC to create an and-or graph as follows.

Algorithm 2

Input: two finite sets of concepts Γ and X
Output: an and-or graph G = 〈V, E〉 with τ ∈ V as the initial node such that

τ.status = sat iff X is satisfiable w.r.t. Γ

1. create a new node τ with τ.content := Γ ∪X and τ.status := unexpanded;
let V := {τ} and E := ∅;

2. while τ.status /∈ {sat, unsat} and we can choose an unexpanded node v ∈ V do:
(a) D := ∅;
(b) if no CALC-tableau rule is applicable to v.content then v.status := sat

(c) else if (⊥) is applicable to v.content then v.status := unsat

(d) else if (u) is applicable to v.content giving denominator Y then
v.kind := and-node, D := {Y }

(e) else if (t) is applicable to v.content giving denominators Y1 and Y2 then
v.kind := or-node, D := {Y1, Y2}

(f) else
i. v.kind := and-node,
ii. for every ∃R.C ∈ v.content, apply (∃R) to v.content giving denominator

{D | ∀R.D ∈ v.content} ∪ {C} ∪ Γ and add this denominator to D;
(g) for every denominator Y ∈ D do

i. if some (proxy) w ∈ V has w.content = Y then add edge (v, w) to E
ii. else let w be a new node, set w.content := Y , w.status := unexpanded,

add w to V , and add edge (v, w) to E;
(h) if (v.kind = or-node and one of the successors of v has status sat)

or (v.kind = and-node and all the successors of v have status sat) then
v.status := sat, propagate(G, v)

(i) else if (v.kind = and-node and one of the successors of v has status unsat)
or (v.kind = or-node and all the successors of v have status unsat) then

v.status := unsat, propagate(G, v)
(j) else v.status := expanded;

3. if τ.status /∈ {sat, unsat} then
for every node v ∈ V with v.status 6= unsat, set v.status := sat;

Fig. 2. A Simple EXPTIME Decision Procedure for ALC

A node in the constructed and-or graph is a record with three attributes:

content: the set of concepts carried by the node
status: {unexpanded, expanded, sat, unsat}
kind: {and-node, or-node}

To check whether a given finite set X is satisfiable w.r.t. the given TBox Γ ,
the content of the initial node τ with status unexpanded is Γ ∪ X. The main
while-loop continues processing nodes until the status of τ is determined to be
in {sat, unsat}, or until every node is expanded, whichever happens first.

Inside the main loop, Steps (2b) to (2f) try to apply one and only one of the
tableau rules in the order (⊥), (u), (t), (∃R) to the current node v. The set D

Procedure propagate(G, v)
Parameters: an and-or graph G = 〈V, E〉 and v ∈ V with v.status ∈ {sat, unsat}
Returns: a modified and-or graph G = 〈V, E〉

1. queue := {v};
2. while queue is not empty do
3. (a) extract x from queue;

(b) for every u ∈ V with (u, x) ∈ E and u.status = expanded do

i. if (u.kind = or-node and one of the successors of u has status sat)
or (u.kind = and-node and all the successors of u have status sat) then

u.status := sat, queue := queue ∪ {u}
ii. else if (u.kind = and-node and one of the successors of u has status unsat)

or (u.kind = or-node and all the successors of u have status unsat) then
u.status := unsat, queue := queue ∪ {u};

Fig. 3. Propagating Satisfiability and Unsatisfiability Through an And-Or Graph

contains the contents of the resulting denominators of v. If the applied tableau
rule is (u) then v has one denominator in D; if the applied rule is (t) then v has
two denominators in D; otherwise, each concept ∃R.C ∈ v.content contributes
one appropriate denominator to D. At Step (2g), for every denominator in D, we
create the required successor in the graph G only if it does not yet exist in the
graph: this step merely mimics Algorithm 1 and therefore uses global caching.

In Algorithm 2, a node that contains both A and ¬A for some atomic concept
A becomes an end-node with status unsat (i.e. unsatisfiable w.r.t. Γ). A node
to which no tableau rule is applicable becomes an end-node with status sat (i.e.
satisfiable w.r.t. Γ). Both conclusions are irrevocable because each relies only
on classical propositional principles and not on modal principles. That is, we do
not need to undo either of these at any stage.

On the other hand, an application of (t) to a node v causes v to be an or-
node, while an application of (u) or (∃R) to a node v causes v to be an and-node.
Steps (2h) and (2i) try to compute the status of such a non-end-node v using
the kind (or-node/and-node) of v and the status of the successors of v, treating
unsat as irrevocably false and sat as irrevocably true.

If these steps cannot determine the status of v as sat or unsat, then its
status is set to expanded. But if these steps do determine the status of a node v
to be sat or unsat, this information is itself propagated to the predecessors of
v in the and-or graph G via the routine propagate(G, v), explained shortly.

The main loop ends when the status of the initial node τ becomes sat or
unsat or all nodes of the graph have been expanded. In the latter case, all nodes
with status 6= unsat are given status sat (effectively giving the status open to
tableau branches which loop). Again, caching is present at Step 2(g)i.

The procedure propagate used in the above algorithm is specified in Figure 3.
As parameters, it accepts an and-or graph G and a node v with (irrevocable)

status sat or unsat. The purpose is to propagate the status of v through the
and-or graph and alter G to reflect the new information.

Initially, the queue of nodes to be processed contains only v. Then while the
queue is not empty: a node x is extracted; the status of x is propagated to each
predecessor u of x; and if the status of a predecessor u becomes (irrevocably)
sat or unsat then u is inserted into the queue for further propagation.

This construction thus uses both caching and propagation techniques.

Proposition 1. Algorithm 2 runs in EXPTIME.

Proof. Let G = 〈V,E〉 be the graph constructed by Algorithm 2 for Γ and X
and n be the size of input, i.e. the sum of the lengths of the concepts of Γ ∪X.

Each v ∈ V has v.content ⊆ Sf(Γ ∪ X), hence v.content has size 2O(n).
For all v, w ∈ V , if v 6= w then v.content 6= w.content. Hence V contains 2O(n)

nodes.
Every v ∈ V is expanded (by Steps (2a)–(2j)) only once and every expansion

takes 2O(n) time units not counting the execution time of procedure propagate
since v.content contains 2O(n) concepts and we still have to search for proxies
amongst possibly 2O(n) nodes in V . When v.status becomes sat or unsat, the
procedure propagate executes 2O(n) basic steps directly involved with v, so the
total time of the executions of propagate is of rank 22.O(n). Hence Algorithm 2
runs in exponential time.

Lemma 5. It is an invariant of Algorithm 2 that for every v ∈ V :

1. if v.status = unsat then
– v.content contains both A and ¬A for some atomic concept A,
– or v.kind = and-node and there exists (v, w) ∈ E such that w 6= v and

w.status = unsat,
– or v.kind = or-node and for every (v, w) ∈ E, w.status = unsat;

2. if v.status = sat then
– no CALC-tableau rule is applicable to v.content,
– or v.kind = or-node and there exists (v, w) ∈ E with w.status = sat,
– or v.kind = and-node and for every (v, w) ∈ E, w.status = sat.

(If v.kind = or-node and (v, w) ∈ E then w 6= v since w.content 6= v.content.)

Lemma 6. Let G = 〈V,E〉 be the graph constructed by Algorithm 2 for Γ and X.
For every v ∈ V , if v.status = unsat then v.content is inconsistent w.r.t. Γ .

Proof. Using Lemma 5, we can construct a closed tableau w.r.t. Γ for v.content
by induction on the way v depends on its successors and by copying nodes to
ensure that the resulting structure is a (tree) tableau rather than a graph.

Let G = 〈V,E〉 be the graph constructed by Algorithm 2 for Γ and X.
For v ∈ V with v.status = sat, we say that v0 = v, v1, . . . , vk with k ≥ 0 is a
saturation path of v in G if for each 1 ≤ i ≤ k, we have vi.status = sat, the edge
E(vi−1, vi) was created by an application of (u) or (t), and vk.content contains
no concepts of the form C uD nor C tD. By Lemma 5, if v.status = sat then
there exists a saturation path of v in G.

Lemma 7. Let G = 〈V,E〉 be the graph constructed by Algorithm 2 for Γ and X.
For all v ∈ V , if v.status = sat then every tableau w.r.t. Γ for v.content is open.

Proof. Choose any v ∈ V with v.status = sat and let T be an arbitrary tableau
(tree) w.r.t. Γ for v.content.

We maintain a current node cn of T that will follow edges of T to pin-point
an open branch of T . Initially we set cn := v. We also keep a (finite) saturation
path σ of the form σ0, . . . , σk for some σ0 ∈ V and call σ the current saturation
path in G. At the beginning, set σ0 := v, so v is a node of both T and G and let
σ be a saturation path for σ0 in G: we know σ exists since v.status = sat.

We maintain the following invariant where cn.content is the set carried by cn:

Invariant: ∀C ∈ cn.content.∃i.0 ≤ i ≤ k, C ∈ σi.content.

Remark 1. Observe that if C ∈ σi.content for some 0 ≤ i ≤ k and C is of
the form A, ¬A, ∃R.D, or ∀R.D then C ∈ σk.content since the saturation
process does not affect concepts of these forms. By the definition of saturation
path, we know that σk.status = sat, hence the (⊥)-rule is not applicable to
σk.content. Hence, the invariant implies that cn.content does not contain a pair
A, ¬A for any atomic concept A, and thus the rule (⊥) is not applicable to cn.
Also, note that the universal quantification over C encompasses the existential
quantification over i, so each C can have a different σi in the invariant.

Clearly, the invariant holds at the beginning with i = 0 since σ0 = v = cn
is in σ. Depending upon the rule applied to cn in the tableau T , we maintain
the invariant by changing the value of the current node cn of T and possibly
also the current saturation path σ in G. By Remark 1, the branch formed by
the instances of cn is an open branch of T .

Theorem 2. Let G = 〈V,E〉 be constructed by Algorithm 2 for Γ and X, with
τ ∈ V as the initial node. Then X is satisfiable w.r.t. Γ iff τ.status = sat.

Corollary 1. Algorithm 2 is an EXPTIME decision procedure for ALC.

We have extended our method to SHI and also to regular RBoxes. It can also
be extended for checking consistency of an ABox w.r.t. a TBox in ALC.

References

1. F. Donini and F. Massacci. EXPTIME tableaux for ALC. Artificial Intelligence,
124:87–138, 2000.

