
A Proof Theory for DL-Lite?

Diego Calvanese, Evgeny Kharlamov, Werner Nutt

Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
{calvanese,kharlamov,nutt}@inf.unibz.it

Abstract. In this work we propose an alternative approach to inference in DL-
Lite, based on a reduction to reasoning in an extension of function-free Horn
Logic (EHL). We develop a calculus for EHL and prove its soundness and com-
pleteness. We also show how to achieve decidability by means of a specific strat-
egy, and how alternative strategies can lead to improved results in specific cases.
On the one hand, we propose a strategy that mimics the query-answering tech-
nique based on first computing a query rewriting and then evaluating it. On the
other hand, we propose strategies that allow one to anticipate the grounding of
atoms, and that might lead to better performance in the case where the size of the
TBox is not dominated by the size of the data.

1 Introduction

The description logics (DLs) of the DL-Lite family [1, 2] have been proposed recently
as DLs providing a good compromise between expressive power and computational
complexity of inference. Indeed, DL-Lite and its variants are able to capture the funda-
mental features of conceptual modeling formalisms, while still keeping the basic rea-
soning polynomial in the size of the whole DL knowledge base (KB), and LOGSPACE
in the size of the data. Notably, such reasoning services include answering conjunc-
tive queries (CQs) formulated over a KB. Moreover, techniques have been developed
to perform query answering by leveraging database technology: the ABox is actually
stored in a relational database (DB), and (after suitable pre-processing) the query is
answered by exploiting the relational DB engine. This approach ensures scalability of
query answering over DL KBs to billions of data items. More precisely, the approach
for query answering proposed in [1] is actually divided in three phases: (1) Consistency
of the knowledge base w.r.t. functionality and (pre-processed) disjointness assertions in
the TBox is verified by posing appropriate queries to the DB (i.e., the ABox) only (and
independently on the actual query); (2) The user query is rewritten into a new query
using the inclusion assertions in the TBox; (3) The rewritten query is shipped to the
DB, and the returned tuples constitute the answer returned to the user.

In this work, we still rely on Phase (1), but take a closer look at Phases (2) and (3),
and at the underlying formal properties of DL-Lite. Specifically, we exploit the simi-
larity of TBox inclusion assertions and of ABox membership assertions to clauses in
an extension of function-free Horn Logic (which we call EHL), in which existentially

? Research supported by the EU FET project TONES (Thinking ONtologiES, contract FP6-
7603), and by the PRIN 2006 project NGS (New Generation Search), funded by MIUR.

quantified variables may appear in the clauses. We develop a sound and complete cal-
culus for EHL that bears similarity to resolution [3], but is equipped with a specific
rule to handle existentially quantified variables. In three cases, we show how to obtain
complete algorithms for query answering by imposing control strategies on the calcu-
lus. The general algorithm ensures termination by using loop detection, exploiting the
fact that the number of non-isomorphic clauses that can be generated from a query goal
using the knowledge base is bounded. A second control strategy mimics the perfect re-
formulation algorithm in [4], by strictly separating the derivation steps that correspond
to operations in Phases (2) and (3). Finally, the third algorithm prunes the search space
in a way that is analogous to SLD-resolution in Logic Programming. Moreover, the
third algorithm prunes the space by detecting failure derivations in advance.

We obtained the results for DL-LiteF only. However, similar results can be obtained
for other DLs in the DL-Lite family, such as DL-LiteR [2].

2 DL-LiteF

Syntax, Semantics of DL-LiteF and Queries. Let AC = {A1, . . . , A|AC|} be a set of
atomic concepts, AR = {R1, . . . , R|AR|} a set of atomic roles, and Const a countable
set of constants. We inductively define DL-LiteF concepts in the following way: basic
concept B −→ A | ∃R | ∃R−, (general) concept C −→ B | ¬B | C1 u C2, where
A ∈ AC, R ∈ AR. With R− we denote the inverse of the role R. In the following, A
denotes an atomic concept, B a basic concept, C a concept, and R an atomic role.

A DL-LiteF knowledge base (KB) K is constituted by a TBox (denoted as T) and
an ABox (denoted as A). Each DL-Lite TBox consists of inclusion assertions of the
form B v C and functionality assertions of the form (funct R) or (funct R−). An
ABox consists of membership assertions of the form A(a), R(a, b), where and a, b are
constants. Note that negation can occur only on the right side of inclusion assertions,
and that an inclusion assertion B v C1 u C2 can be rewritten as a pair of inclusion
assertions B v C1 and B v C2. Therefore, in the following, we will assume w.l.o.g.,
that conjunction does not occur in the TBox, and we denote with Pos(K) the set of all
inclusion assertions in K without negation on the right hand side.

The semantics of DL-LiteF is defined in the usual way for DLs, by resorting to in-
terpretations I = (∆, ·I) over a fixed infinite countable domain ∆. We just remark that
(funct R) is interpreted as functionality of role R. We assume that there is a bijection
between Const and ∆ (i.e., we have standard names). Hence, we do not distinguish
between the alphabet of constants Const and the domain ∆. We define models for
assertions and KBs in the usual way and say that a KB is satisfiable if it has a model.

We use the following rule based notation for defining conjunctive queries (CQs):

q(x)← ∃y body(x; y),

where ∃y body(x; y) (also denoted as body(q)) is a formula of the form ∃yR1(t1, t′1)∧
· · ·∧Rn(tn, t′n)∧A1(t′′1)∧· · ·∧Ak(t′′k), where allRi are binary andAi unary predicate
symbols, all ti are either variables or constants and each variable that occurs in the
conjunction is from x or y. The vectors x and y are called the distinguished and non-
distinguished variables of q, respectively. If x is empty, we call the query boolean. We
denote as True the boolean query with no atoms in its body.

We denote the set of all constants that occur in K as adom(K). We say that q is
a query over a KB K if all the predicate symbols occurring in body(q) also occur in
K and the constants are from adom(K). For a given KB K, model I of K and query
q(x) ← ∃y body(x; y) over K, the set q(I) of answers of q over I is defined as:
q(I) = {γx | I |= ∃y body(γx; γy), γ : Var → ∆}.

The definition above says how to answer a query over a given model of a KB. Now
we define how to answer a query over a KB itself. For this purpose we use the so-called
certain answers semantics, i.e., for a given query q and a KB K, the set q(K) of certain
answers (or the answer set) of q over K is defined as

q(K) = {c | c ∈ adom(K)|c| and c ∈ q(I), for every model I of K}.

Reasoning. Here we define query answering and discuss ways to perform it.
Conjunctive query (CQ) answering for a CQ q and a KB K = 〈T ,A〉 is the task of

finding q(K). One can easily see that CQ answering is equivalent to finding all tuples c
of constants from adom(K) such that the entailment K |= ∃y body(c; y) holds. It turns
out (see the separation theorem in [4]) that K |= ∃y body(c; y) holds if and only if K is
satisfiable and A ∪ Pos(K) |= ∃y body(c; y) holds. In order to check satisfiability of
K it is enough to verify that the minimal model of A (the intersection of all models of
A) satisfies all functional assertions of K and all negative inclusion assertions entailed
by K [4].

In order to decideA∪Pos(K) |= ∃y body(c; y), one needs to check that all models
of the premises satisfy the conclusion. It turns out there may be infinitely many (pos-
sibly infinite) “different” models of K [5]. Hence, at a first glance, it is not clear at all
whether query answering is decidable.

It turns out [5] that any satisfiable DL-LiteF KB meets the so-called universal model
property. That is, there exists a model UI (called a universal model) of K that can be
homomorphically embedded in any another model of K. Due to this fact, the entail-
ment checking for A ∪ Pos(K) |= ∃y body(c; y) is equivalent to model checking for
UI |= ∃y body(c; y). For instance, a chase [6] of the minimal model ofAwith Pos(K)
“produces” a universal model of K (denoted as chase(K)). The constructive nature of
chase(K) allows one to model check chase(K) |= ∃y body(c; y) in finite time, even if
chase(K) is infinite [1]. In [1] an algorithm is presented (called perfect reformulation)
to decide whether chase(K) |= ∃y body(c; y) holds.

Perfect reformulation allows one even more, while deciding whether chase(K) |=
∃x.y body(x; y) holds, it returns all the vectors c from the answer set q(K). The algo-
rithm works in two stages as follows: (1) it rewrites a CQ ∃y body(x; y) to a set S of
CQs using assertions from Pos(K) and (2) it evaluates S overA stored as an RDB. The
evaluation returns precisely q(K).

In this work we propose an orthogonal (proof theoretical) approach for deciding
the entailment A ∪ Pos(K) |= ∃y body(c; y), based on a deductive system (calculus).
Moreover, while verifying the entailment K |= ∃x.y body(x; y), the calculus allows
one to construct deductions that return precisely q(K). We will show later that the per-
fect reformulation algorithm can be obtained from the calculus by putting a specific
control strategy over it.

3 DL-LiteF vs Extended Horn Logic

The idea to make a deductive system for CQ answering has arisen from the observation
that DL-LiteF in fact is a syntactic variation of a fragment of slightly extended Horn
Clause Logic, such that existentially quantified variables are allowed to occur in positive
literals of Horn clauses (heads of horn rules). Using this observation we adopted the
resolution calculus in order to deal with the extension to Horn Logic. In this section we
present the extension of Horn Logic and the calculus.

Extended Horn Logic. In Extended Horn Logic (EHL) formulas (called e-clauses) are
of the form

∀x ∃y (L1(x,y) ∨ · · · ∨ Lm(x,y)),

where each Li is a literal overAC∪AR, the vectors x and y contain all variables occur-
ring in L1, . . . , Lm, and at most one literal is positive. As usual we use the terms goal
and fact to refer to e-clauses with no positive literal and no negative literal, respectively.

In [7], natural translations πy and π respectively from SHIQ concepts and asser-
tions to FOL were presented. In fact π maps positive inclusion and membership asser-
tions of DL-Lite to EHL. We extend π to conjunctive queries and present both πy and π
in the following table. The variable y in πy(B, x) indicates that an implicit existential
variable in the the DL expression B will be explicitly denoted as y in the FOL version.

πy(A, x) = A(x) πy(∃R, x) = ∃yR(x, y)
πy(∃R−, x) = ∃yR(y, x)

π(A(a)) = A(a) π(B v B′) = πy(B′, x) ∨ ¬πz(B, x)
π(R(a, b)) = R(a, b) π(∃y body(x; y)) = ¬body(x; y)

where A ∈ AC; R ∈ AR; a, b are constants; B, B′ are basic concepts;
We call CQ goal a goal corresponding to a CQ. We say that x is the vector of distin-

guished variables of a CQ goal Γ if Γ = π(∃y body(x; y)). Note, that CQ goals do not
contain existential variables and e-clauses that correspond to membership assertions are
facts.

The following are examples of applying πy and π: π(A v ∃R) = πy(∃R, x) ∨
¬πz(A, x) = ∃yR(x, y)∨¬A(x), and π(∃R− v ∃R′) = πy(∃R′, x)∨¬πz(∃R−, x) =
∃yR′(x, y) ∨ ¬∃zR(z, x), and π(True) = ⊥.

Calculus for Extended Horn Logic. Our calculus consists of three rules. Rules should
be read from top to bottom. We assume that the order of literals in the goals is irrelevant.

1. Factorization Rule:
fr:

Γ ∨ L1 ∨ L2

Γθ ∨ L1θ
[θ]

where the literals L1 and L2 are unifiable, and θ is an mgu that is the identity on
distinguished variables. If L1 = L2, then θ = id.

2. ∃-resolution rule:

erl :
Γ ∨ ¬πx(B, t) πv(B, y) ∨ ¬πz(B′, y)

Γ ∨ ¬πw(B′, t)
[id]

where x is a non-distinguished variable that occurs only once in Γ ∨¬πx(B, t) and
w is a fresh variable.

3. Resolution rule:
rl :

Γ ∨ L D

Γθ
[θ]

whereD is a ground atom of the fromA(a) orR(a, b), i.e., a membership assertion,
and θ is an mgu of the literals L and ¬D.

We say that in the derivation rules fr, erl and rl, the literals L2, ¬πx(B, t) and L
are the leading ones, respectively. Since each time a derivation step is performed the
leading literal is either eliminated or substituted with another literal, we say the leading
literal is processed by the derivation rule with the e-clause on the right in the premisses
of the rule (which is assumed to be ⊥ in the case of the fr rule).

Note, that each time a derivation step is performed the leading literal is either elim-
inated or substituted with another literal. Because of this reason we say that the leading
literal is processed by the derivation rule with the e-clause that occurs on the right in
the premisses of the rule (in the case of the fr rule the e-clause is assumed to be ⊥).

As usual, we say that a goal Γ ′ is directly derived from a goal Γ and an e-clause g
by a rule r with a substitution θ, denoted as Γ `g,θ Γ ′, if r is either an fr, or an erl, or
an rl rule, Γ and g are respectively on the left and on the right in the premisses of r, Γ ′

is in the conclusion of r, and θ participates in r (it occurs in r). If a sequence Γ1 · · ·Γn
of goals is such that for each i < n the direct derivation Γi `gi,θi

Γi+1 holds, then we
say that Γn is derived from Γ1 with the substitution Θ = θ1 ◦ · · · ◦ θn−1 and the set of
e-clauses L = {g1, . . . , gn−1}, and denote it as Γ1 `∗L,Θ Γn.

We say that a query q′ is derived from a query q and a KB K with a substitution θ,
denoted as q `∗K,θ q′, if there is a derivation of a CQ goal π(q′) from π(q) with θ and
a set of e-clauses L, where each l ∈ L corresponds either to an assertion from Pos(K)
or to a membership assertion of K.

4 CQ Answering as Deduction in EHL

We motivated the e-calculus as a general instrument to answer conjunctive queries over
satisfiable DL-LiteF knowledge bases. In this section we state several formal properties
of the general calculus and of some control strategies for it. The proofs are contained in
a forthcoming technical report [8].

As a first result, we can show that the calculus can be used to verify that a boolean
CQ is entailed by a satisfiable knowledge base.

Theorem 1 (Soundness and Completeness). Let K be a satisfiable KB, and q() ←
∃y body(y) a boolean CQ over K. Then q is entailed by K, i.e., K |= ∃y body(y), if
and only if there exists a derivation from π(body(q)) to the boolean query True.

As a consequence of this theorem, we can use the calculus to verify that a tuple of
constants c is a certain answer of a CQ q(x) ← ∃y body(x; y), since c ∈ q(K) if and
only if K |= ∃y body(c; y). The next theorem shows that the calculus can be used to
generate all certain answers.

Theorem 2 (Answer Completeness). LetK be a satisfiable KB, q(x)← ∃y body(x; y)
a CQ over K, and c a vector of constants. Then c is in the answer set of q over K, that
is c ∈ q(K), if and only if there is a derivation from π(body(q)) to the boolean query
True with the substitution θ such that xθ = c.

General Algorithm. We are now in a position to formulate a non-deterministic algo-
rithm to compute the answer set q(K). For the algorithm, we specify the states of the
computation, transitions between such states, and the subset of final states.

Let x be the vector of distinguished variables of q. A granule is a pair Γ .σ, where
Γ is a CQ goal and σ is a substitution that maps the variables in x to constants or to
themselves. The states of the computation are sets of granules, denoted by the letter G.
When computing q(K), the initial state is the set {π(body(q)).id}.

Suppose a goal Γ is derived from π(body(q)) by our calculus. Then, in addition
to x, the goal Γ may contain non-distinguished variables and new variables that are
introduced by the erl -rule. We refer to both these new and non-distinguished variables
as the existential variables of Γ . We say that two granules Γ.σ and Γ ′.σ′ are similar if
σ = σ′ and if Γ and Γ ′ are identical up to renaming of their existential variables.

In order to define the transition between states, we first need to slightly extend our
calculus so that it operates on granules. A granule Γ ′.σ′ is derived from Γ.σ if Γ ′ is
derived from Γ with θ and σ′ = σ ◦ θ. There is a transition from a state G to a state
G′ = G ∪ {G′} if G′ is not similar to any granule in G and there is a G ∈ G such that
G′ can be derived from G. In this case we say that the transition processes G. A state G
is final if no transition from G is possible.

We note that there are only finitely many different atomic concepts, atomic roles,
and constants occurring in the KB. Hence, for a given maximal length of goals and set
of distinguished variables, it is only possible to form finitely many non-similar granules.
We also note that the rules of our calculus never increase the length of a goal. Hence,
for a given granule, we can only derive finitely many non-similar granules.

The following theorem states that all certain answers of a CQ over a satisfiable KB
can be obtained by computing a final state and collecting substitutions from granules
with empty goals.

Theorem 3. Let q be a CQ with distinguished variables x over a satisfiable KB K.
Then every sequence of transitions starting from s = {π(body(q)).id} and using K
terminates. Moreover, if G is a final state reached from s, then q(K) = {σx | (⊥.σ) ∈
G}.

Perfect Reformulation Algorithm. In our framework, we can also show the soundness
and completeness of the perfect reformulation algorithm [4]. In fact, an execution of this
algorithm corresponds to a sequence of transitions where initially only such transitions
are performed that employ the factorization and the ∃-resolution rules of our calculus.
When no transitions of this kind are possible any more, then transitions corresponding
to resolution steps are performed. It follows from Theorem 1 that such a strategy leads
in fact to certain answers. To show completeness, we need an extra argument. This is
provided by the following proposition, which shows that resolution steps can always be
postponed until the end of a derivation.

Proposition 1 (Resolution Commutes). Suppose that from Γ ∨ L we can obtain Γ ′

by first applying the resolution rule to the leading literal L with substitution θ and
then another rule r to some leading literal Mθ. Then we can obtain Γ ′ as well by first
applying r to Γ ∨L with the leading literal M and substitution δ, and then to the result
the resolution rule with leading literal Lδ. That is,

Γ∨L `g,θ Γθ `g′,θ′ Γ
′ implies Γ∨L `g′,δ (Γ ′′δ∨Lδ) `g,δ′ Γ ′ and θ◦θ′ = δ◦δ′.

Live-Only Algorithm. In our calculus, it is possible to construct several different deriva-
tions from a goal Γ to another goal Γ ′ and the transition-based algorithm will in fact
compute all such derivations. Another problem is that the algorithm is unable to detect
granules that will not lead to any answer and continues to process them. To avoid such
unnecessary computations, we introduce a criterion to recognize when a granule needs
no further processing.

We say a variable x is critical for a CQ goal Γ , if x occurs more than once in Γ .
A literal L in Γ is terminal if L is unary or if it is binary and does not have a critical
variable. Intuitively, if a literal L is terminal in Γ and no rules are applicable to L, then
no rule will ever become applicable to L in any Γ ′ derived from Γ .

We say that a granule Γ.σ is exhausted in G, if Γ contains a terminal literal L such
that the following holds: if Γ ′ is obtained from Γ by applying a rule of the calculus
with leading literal L and substitution θ, then (Γ ′.σ ◦ θ) is similar to some granule in
G. Intuitively, a granule is exhausted if it contains one terminal literal that has been
completely processed. A granule is live if it is not exhausted.

The Live-Only Algorithm is a variant of the general algorithm. It is different in
that transitions cannot process arbitrary granules, but only live granules. The Live-Only
Algorithm allows for a specific control strategy, which resembles SLD-Resolution in
Logic Programming. Under SLD-Resolution, an arbitrary literal in a goal is chosen and
resolved in all possible ways. After that, the goal is discarded. In our case, if we choose
a terminal literal and process it in all possible ways, then the granule becomes exhausted
and is blocked from any further rule application. We do not discard exhausted granules
from a state because their presence is needed to detect loops.

The completeness of the Live-Only Algorithm (and therefore also of the SLD-like
strategy) can be shown by an induction argument using the proposition below, which
states that in a derivation a rule application to a terminal literal commutes with all
preceding derivation steps.

Proposition 2. Let L be a terminal literal of Γ ∨ L. Suppose there is a derivation of
Γ ′ from Γ ∨ L where an instantiation of L is processed at the last step. Then there is
another derivation of Γ ′ from Γ ∨ L where L is processed at the first step. That is,

Γ∨L `∗G,θ1 (Γ1∨Lθ1) `g,θ2 Γ ′ implies Γ∨L `g,δ1 Γδ1 `∗G,δ2 Γ ′ and θ1◦θ2 = δ1◦δ2

5 Related Works and Conclusions

Using resolution for query answering over DL KBs was already considered by several
authors. In [7] Hustadt at al. adopted resolution for CQ answering over SHIQ KBs

KSHIQ. They presented a way to decide whether c ∈ q(KSHIQ) holds, but they do
not propose any procedure for computing answer sets q(KSHIQ). Since, our procedure
for computing answer sets involves only positive inclusion and membership assertions,
i.e., a fragment of SHIQ, the results of our paper extend the ones in [7] for this frag-
ment. Another work on using resolution for query answering is [9], where a way is
proposed to check whether an EL KB implies a subsumption between two concepts
by posing atomic queries to the KB. This work does not consider CQs and computing
certain answers. To the best of our knowledge, our work is the first one that considers
computing answer sets for CQs over DL KBs in the framework of resolution.

We envisage that our work will facilitate the combination of DL-Lite with other
formalisms in data management tasks that are based on variants of Horn logic, such as
mappings in data integration [10] and dependencies in data exchange [11]. It remains
also to be investigated under which conditions the adoption of evaluation strategies for
the calculus that are different from the one underlying the rewriting approach, may lead
to improved performance. Specifically, such alternative strategies look promising for
those cases where the size of the TBox is not negligible w.r.t. the size of the ABox, and
the ABox may not be directly managed by a DBMS. In such cases, an approach based
on rewriting would generate very large queries to be shipped to the database, while
anticipating resolution with ground atoms may result in strong pruning.

References
1. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable

description logics for ontologies. In: Proc. of AAAI 2005. (2005) 602–607
2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of

query answering in description logics. In: Proc. of KR 2006. (2006) 260–270
3. Lloyd, J.W.: Foundations of Logic Programming (Second, Extended Edition). Springer,

Berlin, Heidelberg (1987)
4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning

and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning (2007) To appear.

5. Kharlamov, E.: Model theory and calculus for the description logic DL-Lite. Master’s
thesis, Faculty of Computer Science, Free University of Bozen-Bolzano (2006) Available at
http://www.inf.unibz.it/ kharlamov/.

6. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ. Co.
(1995)

7. Hustadt, U., Motik, B., Sattler, U.: A decomposition rule for decision procedures by
resolution-based calculi. In: Proc. of LPAR 2004. (2004) 21–35

8. Calvanese, D., Kharlamov, E., Nutt, W.: A proof theory for DL-Lite. Technical Re-
port KRDB07-6, KRDB Research Center, Faculty of Computer Science, Free University
of Bozen-Bolzano (2007)

9. Kazakov, Y.: Saturation-Based Decision Procedures for Extensions of the Guarded Frag-
ment. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany (2006) Available at
http://www.cs.man.ac.uk/ ykazakov/publications/thesis/Kazakov06Phd.pdf.

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Linking
data to ontologies: The description logic DL-LiteA. In: Proc. of OWLED 2006. (2006)

11. Kolaitis, P.G.: Schema mappings, data exchange, and metadata management. In: Proc. of
PODS 2005. (2005) 61–75

