
On conjunctive query answering inEL

Riccardo Rosati

Dipartimento di Informatica e Sistemistica
Universit̀a di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

rosati@dis.uniroma1.it

1 Introduction

In this paper we study conjunctive query answering in the description logics of theEL
family [2, 3, 7, 6, 5], in particular we consider the DLsEL, ELH, EL+, andEL++. The
EL family has been recently defined in order to identify DLs both having interesting
expressive abilities and allowing for tractable reasoning. While the standard reasoning
tasks (like concept subsumption and instance checking) have been analyzed in the past
for such logics, almost no result is known about answering conjunctive queries in the
logics of theEL family, with the exception of the lower complexity bounds which are
immediate consequence of the results in [8] (and of the characterization of instance
checking in [7, 3]).

More specifically, we present the following results:

1. we define a query-rewriting-based technique for answering unions of conjunctive
queries inEL. More precisely, we present an algorithm based on the idea of reduc-
ing query answering inEL to answering recursive Datalog queries. We also show
that this technique can be easily extended to deal withELH KBs;

2. based on the above technique, we prove that answering unions of conjunctive
queries inEL andELH is PTIME-complete with respect to both data complex-
ity (i.e., with respect to the size of the ABox) and knowledge base complexity (i.e.,
with respect to the size of the knowledge base) and is NP-complete with respect to
combined complexity (i.e., with respect to the size of both the knowledge base and
the query);

3. conversely, we prove that answering conjunctive queries is undecidable in both
EL+ andEL++.

As an immediate consequence of the above results, it turns out that if, besides the
standard reasoning tasks in DL, also conjunctive query answering is of interest, then
EL andELH still exhibit a nice computational behaviour, since they allow for tractable
query answering, while the two extensionsEL+ andEL++ do not show the same be-
haviour, since conjunctive query answering is undecidable in such DLs. Consequently,
EL+ andEL++ do not appear well-suited for applications requiring the full power of
conjunctive queries.

2 Preliminaries

In this section we briefly recall the logics in theEL family, in particular the DLsEL,
EL+, andEL++, and introduce query answering over knowledge bases expressed in
such description logics.

EL and its extensions.EL [2] is the DL whose abstract syntax for concept expressions
is the following:C ::= A | ∃R.C | C1 u C2 | >, whereA is a concept name,R is a
role name, and the TBox is a set of concept inclusion assertions of the formC1 v C2.
ELH [7, 6] extendsEL by also allowing in the TBox simple role inclusion assertions
of the formR1 v R2, whereR1 andR2 are role names.EL+ [5] extendsEL by also
allowing in the TBox role inclusion assertions of the formR1◦· · ·◦Rn v Rn+1, where
eachRi is a role name. Finally,EL++ [3] extendsEL+ by allowing the new concept
expressions⊥, {a} and the concrete domain constructorp(f1, . . . , fn).

As usual in DLs, a knowledge base (KB)K is a pair〈T ,A〉 where the TBox is a set
of concept inclusions and role inclusions, and the ABoxA is a set of instance assertions
of the formA(a), R(a, b) whereA is a concept name,R is a role name, anda, b are
constant (individual) names. Notice that in all the DLs considered,T may contain cyclic
concept inclusions (GCIs) (as well as cyclic role inclusions inELH, EL+ andEL++).

The semantics of concept and role constructs is well-known [5]. The semantics of a
KB is defined as usual, based on the interpretation of concept and role expressions [4].
We point out that we do not impose the unique name assumption (UNA) on constant
names: however, our results also hold under the UNA.

As shown in [3],EL+ TBoxes admit a normal form, i.e., we can assume without
loss of generality that every concept inclusion in the TBox is in one of the following
forms:A1 v A2, A1 u A2 v A3, A1 v ∃R.A2, ∃R.A1 v A2, where eachA1, A2,
A3 is either a concept name or the concept>, R is a role name, and every role inclusion
is of the formR1 v R2 or R1 ◦R2 v R3, whereR1, R2, R3 are role names.

Unions of conjunctive queries.We now briefly recall conjunctive queries and unions
of conjunctive queries. To simplify the notation in the next sections, we use a Datalog-
like notation for such queries.

A Datalog rule is an expression of the formα :– body , in which the headα is an
atom (i.e., an expression of the formp(t1, . . . , tn) in which eachti is either a constant
or a variable) andbody is a set of atoms, such that each variable occurring inα also
occurs in some atom inbody .

A conjunctive query (CQ) over a DL-KBK is a Datalog rule using a special pred-
icate namepq (i.e., pq does not belong to the set of concept and role names occurring
in K) in the head of the rule, and whose body is a set of atoms whose predicates are
concept and role names occurring inK (notice that the predicatepq cannot occur in the
body of the rule). The arity ofq is defined as the arity ofpq. A Boolean CQ is a CQ
whose arity is zero. For a CQq, we denote bybody(q) the body of the Datalog rule
corresponding toq. A union of conjunctive queries (UCQ)Q overK is a set of CQs of
the same arity which use the same predicatepQ in the head of every rule.

For ease of exposition, and without loss of generality, from now on we only con-
sider Boolean queries, and thequery entailmentproblem. It is well-known thatquery
answeringof an arbitrary (non-Boolean) query can be reduced to query entailment.

The semantics of (Boolean) UCQs over DL-KBs is the usual one (see, e.g., [8]).
In the following, we study complexity of query entailment over DL-KBs. In partic-

ular, we considerdata complexity, i.e., the complexity with respect to the size of the
ABox, KB complexity, i.e., the complexity with respect to the size of both the ABox
and the TBox, andcombined complexity, i.e., the complexity with respect to the size of
both the KB and the query.

3 Answering unions of conjunctive queries inEL and ELH
We now present an algorithm for answering unions of conjunctive queries posed to
EL-KBs. We start by introducing the auxiliary proceduresUnify, Roll-up, Normalize,
Rename, Rules, and0-Rules.

The procedureUnify. Given a UCQQ, Unify(Q) returns a UCQ obtained by adding
to Q all the possible unifications of terms for every conjunctive queryq in Q.

The procedureRoll-up. Given a UCQQ′, Roll-up(Q′) returns a rewriting of the query
Q′ obtained by expressing subtrees in the query throughEL concept expressions. For-
mally, we defineRoll-up(Q′) =

⋃
q∈Q′ Roll-up(q) whereRoll-up(q) returns the CQ

obtained from the CQq by exhaustively applying the following rewriting rules to the
atoms inbody(q):

1. if variabley only occurs in a binary atom of the formR(t, y), then replaceR(t, y)
with the unary atom∃R.>(t)

2. if variabley only occurs in unary atoms of the formC1(y), . . . , Cn(y), then replace
the above atoms with the 0-ary atom(C1 u . . . u Cn)0;

3. if variabley only occurs in unary atoms of the formC1(y), . . . , Cn(y) and in a
single binary atomR(t, y), then replace all the above atoms in whichy occurs with
the unary atom(∃R.C1 u . . . u Cn)(t);

4. if y is a variable which only occurs in an atom of the formR(y, z) wherez is a
variable different fromy, and there is another atom of the formR(t, z) in body(q),
then deleteR(y, z).

Notice that the query returned byRoll-up is not exactly a UCQ according to the
definition given in Section 2, since arbitrary concept expressionsC may occur as (both
unary and 0-ary) predicate symbols in the body of the CQs of the returned query. So we
call such a query anextendedUCQ.

The procedure Normalize. Given an EL TBox T and an extended UCQQ′,
Normalize(T , Q′) returns anEL TBox T ′ in normal form which: (i) is a conserva-
tive extension ofT ; (ii) defines all concept expressions occurring inQ′ andT ′; (iii) is
closed with respect to the entailed concept inclusions. More precisely,T ′ is such that:

– for every concept expressionC such thatT ′ contains a concept inclusion of the
form C v D or D v C, there exists a concept nameC ′ such thatT ′ |= C ′ ≡ C;

– for every concept expressionC such thatQ′ contains either a unary atom of the
form C(t) or a 0-ary atom of the form(C)0, there exists a concept nameC ′ such
thatT ′ |= C ′ ≡ C.

– T ′ is closed with respect to the entailment of simple concept inclusions, i.e., for
every pair of distinct concept namesA1, A2 occurring inT ′, if T ′ |= A1 v A2

thenA1 v A2 ∈ T ′.
From the existence of a linear normalization procedure forEL KBs and from the results
on entailment of concept inclusions inEL shown in [7], it follows that it is possible to
compute a TBoxT ′ satisfying the above conditions in polynomial time with respect to
the size ofT andQ′.
The procedureRename. Given an extended UCQQ′ and a normalizedEL TBox T ′,
Rename(Q′, T ′) returns the UCQ obtained fromQ′ by replacing each complex concept

expressionC (i.e., such thatC is not a concept name) occurring inQ′ with the corre-
sponding concept nameC ′ in T ′ (i.e., the concept nameC ′ such thatT ′ |= C ′ ≡ C).
Since the presence of complex concept expressions is eliminated from the query re-
turned byRename(Q′, T ′), such a query corresponds to a set of ordinary Datalog rules.
The procedureRules. Given a normalizedEL TBox T ′, Rules(T ′) returns the set of
Datalog rules corresponding toT ′. More precisely,Rules(T ′) is the following set of
Datalog rules:

– the ruleA2(x) :– A1(x) for each concept inclusionA1 v A2 in T ′, whereA1, A2

are concept names;
– the ruleA3(x) :– A1(x), A2(x) for eachA1 u A2 v A3 in T ′, whereA1, A2, A3

are concept names;
– the ruleA2(x) :– R(x, y), A1(y) for each∃R.A1 v A2 in T ′, whereA1, A2 are

concept names.

Notice that concept inclusions of the formA1 v ∃R.A2 are not actually considered in
the computation ofRules(T ′).
The procedure0-Rules. Finally, to correctly handle 0-ary atoms in the query, we have
to define entailment of inclusions between 0-ary predicates with respect to the TBox
T ′. In particular, for every pair of concept namesA1, A2 occurring inT ′, we want to
decide whether the first-order existential sentence∃x.A1(x) → ∃y.A2(y) is satisfied
by every model ofT ′. Actually, entailment of such sentences can be decided in a way
very similar to entailment of concept inclusions. More precisely, we define inductively
the following relatioǹ ∃

T ′ between concept names occurring inT ′:
– A `∃T ′ A for every concept nameA occurring inT ′;
– if A1 `∃T ′ A2 andA2 v A3 ∈ T ′ thenA1 `∃T ′ A3;
– if A1 `∃T ′ A2 andA2 v ∃R.A3 ∈ T ′, thenA1 `∃T ′ A3.

Based on the fact thatT ′ is closed with respect to entailment of inclusions between
atomic concepts, it can be shown that, for every pair of concept namesA1, A2 occurring
in T ′, the sentence∃x.A1(x) → ∃y.A2(y) is satisfied by every model ofT ′ iff A1 `∃T ′
A2.

Then, based on the relatioǹ∃T ′ , we define the procedure0-Rules(T ′), which returns
the following set of Datalog rules:

– A0
2 :– A0

1 for each pair of concept namesA1, A2 such thatA1 `∃T ′ A2;
– A0 :– A(x) for each concept nameA.

The algorithm computeRewriting. We are now ready to define the algorithm
computeRewriting which, given anEL TBox T and a Boolean UCQQ, computes a
Datalog programP by making use of the procedures previously defined.

Algorithm computeRewriting(Q, T)
Input: Boolean union of conjunctive queriesQ, EL TBox T
Output: Datalog programP

Q′ := Unify(Q);
Q′ := Roll-up(Q′);
T ′ := Normalize(T , Q′);
Q′ := Rename(Q′, T ′);
P := Q′ ∪ Rules(T ′) ∪ 0-Rules(T ′);
return P

The algorithm computeQueryEntailment. The Datalog programP computed by
computeRewriting(Q, T) can be used to decide entailment of the queryQ with respect
to everyEL-KB, as shown by the algorithmcomputeQueryEntailment(Q,K) defined
below. In the following,>(A) denotes the set of facts{>(a) | a is a constant occurring
in A}, while MM(P) denotes the minimal model of a Datalog programP.

Algorithm computeQueryEntailment(Q,K)
Input: Boolean UCQQ (with head predicatepQ), EL-KB K = 〈T ,A〉
Output: true if K |= Q, false otherwise
P := computeRewriting(Q, T);
if MM(P ∪ A ∪>(A)) |= pQ

then return true else return false

In practice, the above algorithm simply evaluates the Datalog programP over the
ABox A (remember thatA is a set of ground atoms, henceP ∪ A is a Datalog pro-
gram) in order to decide whetherQ is entailed byK. The addition of the facts>(A) is
necessary in order to correctly handle the presence of the concept> in the query (more
precisely, in the evaluation of the Datalog program we consider> as a concept name,
i.e., an EDB predicate).

Correctness.We now show correctness of the algorithmcomputeQueryEntailment.

Theorem 1. LetK = 〈T ,A〉 be anEL-KB and letQ be a UCQ. Then,K |= Q iff
computeQueryEntailment(Q,K) returnstrue.

Proof (sketch). The proof of soundness of the technique is immediate. The proof of
completeness is based on the construction of a canonical model for a normalizedEL-
KB K through the definition of thechaseof K. The chase ofK (denoted bychase(K))
is a function which returns a generally infinite ABox and is inductively defined starting
from the initial ABoxA and adding facts toA based on the followingchase rules:

– chase-rule-1: if A(a) ∈ chase(K) andA v B ∈ T andB(a) 6∈ chase(K) then
addB(a) to chase(K);

– chase-rule-2: if A1(a) ∈ chase(K) andA2(a) ∈ chase(K) andA1uA2 v B ∈ T
andB(a) 6∈ chase(K) thenB(a) ∈ chase(K);

– chase-rule-3: if R(a, b) ∈ chase(K) andA(a) ∈ chase(K) and∃R.A v B ∈ T
andB(a) 6∈ chase(K) thenB(a) ∈ chase(K);

– chase-rule-4: if A(a) ∈ chase(K) andA v ∃R.B ∈ T and there is nob such that
both R(a, b) ∈ chase(K) andB(b) ∈ chase(K) then addR(a, n) andB(n) to
chase(K), wheren is a constant that does not occur already inchase(K);

– chase-rule-5: if a is a constant occurring inchase(K) and>(a) 6∈ chase(K) then
add>(a) to chase(K).

The chase ofK is a generally infinite ABox which is isomorphic to acanonical model
of K, denoted byIchase(K). Such a model can be used to compute entailment of UCQs
in K, which is formally stated by the following property:

Lemma 1. For every Boolean UCQQ,K |= Q iff Ichase(K) |= Q.

Then, we use the chase to prove completeness of our algorithm. Let us consider
the first part of the algorithmcomputeRewriting, which ends with the execution of
Rename(Q′, T ′), With respect to this part of the rewriting, we prove the following:

Lemma 2. Let Q′′ be the UCQ returned by Rename(Q′, T ′) in the algorithm
computeRewriting(Q, T). If Ichase(K) |= Q′′ then there exists a CQq ∈ Q′′ and a
homomorphismH of body(q) in chase(K) such that, for every variablex occurring in
q, H(x) is a constant occurring inA.

Although the above lemma might seem rather obscure, it implies the following cru-
cial property: answering the query computed byRename(Q′, T ′) can actually be done
by first “grounding” the query (considering all the instantiations of the variables with
constants occurring inA) and then considering each atom in a separate way. So, the
above lemma shows that the first part of the rewriting reduces entailment of a UCQ to
entailment of single atoms.

Then, we consider the second part of the rewriting, i.e., the set of Datalog rules
generated byRules(T ′) and0-Rules(T ′). Here, we use the chase ofK to prove that
the Datalog programP ′ returned byRules(T ′) constitutes a correct encoding of the
entailment of unary and binary atoms (which correspond to standard instance checking
problems), in the sense that the minimal model ofP ′ ∪ A ∪ >(A) contains all ground
unary atomsA(a) such thatK |= A(a) and all ground binary atomsR(a, b) such that
K |= R(a, b); similarly, we prove that the Datalog program returned by0-Rules(T ′)
constitutes a correct encoding of the entailment of 0-ary atoms. Formally:

Lemma 3. LetK = 〈T ,A〉 be a normalizedEL-KB, letP ′ be the Datalog program
returned by Rules(T), and letα be either an atom of the formA(a) whereA is a
concept name or an atom of the formR(a, b) whereR is a role name (a, b are constants
occurring inA). If K |= A(a) thenMM(P ′ ∪ A ∪ >(A)) |= α.

Lemma 4. LetK = 〈T ,A〉 be a normalizedEL-KB, letP ′ be the Datalog program
returned by 0-Rules(T), and letA be a concept name occurring inT . If the sentence
∃x.A(x) is satisfied by every model forK, thenMM(P ′ ∪ A ∪ >(A)) |= A0.

From the above properties of the two parts of the rewriting, the thesis follows.ut
Complexity results. Based on the above algorithm, we can characterize the computa-
tional properties of entailment of UCQs inEL.

Theorem 2. Entailment of UCQs inEL is: (i) PTIME-complete with respect to data
complexity; (ii) PTIME-complete with respect to KB complexity; (iii) NP-complete with
respect to combined complexity.

Proof (sketch).PTIME-hardness with respect to data complexity has been proved in [8],
while NP-hardness with respect to combined complexity follows from NP-hardness of
simple database evaluation of a CQ [1]. Membership in PTIME with respect to KB
complexity follows from the fact that the proceduresNormalize, Rename, Rules, and
0-Rulesrun in time polynomial with respect to their input, which implies that the algo-
rithm computeRewriting runs in time polynomial with respect to the size ofT . Now,
since the Datalog programP returned bycomputeRewriting(Q, T) has size polyno-
mial with respect toT , and the number of variables used in each rule ofP does not
depend onK, it follows that the minimal model ofP ∪ A ∪ >(A) can be computed in
time polynomial in the size ofK, thus the algorithmcomputeQueryEntailment(Q,K)
also runs in time polynomial in the size ofK. Finally, membership in NP with re-
spect to combined complexity follows from the fact that all the procedures executed by

computeRewriting run in time polynomial with respect to their input, with the only ex-
ception of the procedureUnify, which runs in exponential time with respect to the size
of Q. However, if we consider a nondeterministic version of such a procedure, which
returns just one CQq′ obtained by choosing one CQq in Q and one substitution which
is applied toq, then the whole algorithmcomputeRewriting runs in time polynomial
with respect to the size of bothQ andT . Then, in a way analogous to the above proof
of PTIME-membership for KB complexity, it follows that this nondeterministic version
of the algorithmcomputeQueryEntailment(Q,K) also runs in time polynomial in the
size ofQ andK, which implies the thesis. ut

We remark that the above characterization with respect to data complexity was al-
ready stated in [12].

Extension toELH. Finally, the above technique for deciding entailment of UCQs can
be easily extended in order to deal withELH-KBs. The algorithmscomputeRewriting
and computeQueryEntailment are actually the same as before, the only differences
concern the proceduresRoll-up, Normalize, andRules. Specifically: (i) the procedure
Roll-up must take into account the presence of role assertions, since such inclusions
allow for additional eliminations of redundant binary atoms. More precisely, we add
to the previous definition ofRoll-up the following rule: ifR1 andR2 are distinct role
names,R1(t1, t2) andR2(t1, t2) occur inbody(q), andT |= R1 v R2, then delete
R2(t1, t2); (ii) the procedureNormalize(T , Q′) must be modified in order to account
for the presence of simple role inclusions in the TBox. A procedure for deciding entail-
ment of concept and role inclusions inELH TBoxes has been presented in [7]: such a
procedure shows that entailment of such inclusions can still be computed in polynomial
time; (iii) the procedureRulesalso adds a Datalog rule for each role inclusion in the
ELH TBox. More precisely, in the case of anELH TBox, the previous definition of the
set of rules returned byRules(T ′) is modified by adding the following condition: add
the ruleR2(x, y) :– R1(x, y) for each role inclusionR1 v R2 in T ′.

The above extension demonstrates that the computational characterization of entail-
ment of UCQs provided by Theorem 2 extends to the case ofELH-KB.

4 Undecidability of conjunctive query answering inEL+

We now show that the nice computational properties of answering conjunctive queries
in EL, shown in the previous section, do not extend toEL+ andEL++, since answering
conjunctive queries in such DLs is undecidable.

Theorem 3. Entailment of conjunctive queries inEL+ is undecidable.

Proof (sketch). We reduce the emptiness problem for intersection of context-free
languages, which is known to be undecidable [9], to conjunctive query entailment
in EL+. Consider two context-free grammarsG1 = 〈NT 1,Term, S1, P1〉, G2 =
〈NT 2,Term, S2, P2〉, whereNT 1 is the alphabet of nonterminal symbols ofG1, NT 2

is the alphabet of nonterminal symbols ofG2 (which is disjoint fromNT 1), Term is
the alphabet of terminal symbols (which is the same forG1 andG2 and is disjoint from
NT 1 ∪NT 2), S1 is the axiom ofG1, S2 is the axiom ofG2, P1 is the set of production
rules ofG1 andP2 is the set of production rules ofG2. W.l.o.g., we assume that no
production rule has an empty right-hand side. Now consider theEL+ KB K = 〈T ,A〉,
which usesTerm ∪NT 1 ∪NT 2 as the set of role names plus the concept nameC. The
TBox T is composed of: (i) the role inclusion assertions encoding the production rules

in P1: e.g., ifP1 contains the production ruleX → UV W , we add toT the role inclu-
sionU ◦ V ◦W v X; (ii) the role inclusion assertions encoding the production rules
in P2; (iii) the role inclusion assertionC v ∃Ti.C for everyTi ∈ Term. Moreover, the
ABox A contains the only assertionC(a). Finally, consider the Boolean conjunctive
queryq of the formpq :– S1(a, y), S2(a, y), whereS1 is the axiom of grammarG1 and
S2 is the axiom of grammarG2.

We prove that the languageL(G1) ∩ L(G2) is non-empty iff〈T ,A〉 |= q. To this
aim, we make use of three auxiliary properties. Such properties make use of the notion
of chase of anEL+-KB, which extends in a straightforward way the chase forEL,
introduced in the proof of Theorem 1, by adding a chase rule for role inclusions.
Lemma 5. Letx andy be two terms inchase(K). There is at most one path of terminal
symbols betweenx and y in chase(K), i.e., a sequenceT1(z1, z2), . . . , Tk(zk, zk+1)
with z1 = x, zk+1 = y, and s.t. eachTi(zi, zi+1) ∈ chase(K) and eachTi ∈ Term.
Lemma 6. Letx andy be two terms inchase(K). Letπ be the path of terminal symbols
betweenx andy in chase(K). Then, for every nonterminal symbolN ∈ NT 1 (resp.,
for everyN ∈ NT 2), N(x, y) ∈ chase(K) iff N ⇒∗

G1
π (resp., iffN ⇒∗

G2
π).

Lemma 7. For every wordT1 . . . Tk in Term∗, there exists a pairx, y such that there
exists the path of terminal symbolsT1 . . . Tk betweenx andy in chase(K).

From the above properties, the thesis easily follows. ut
Obviously, the above theorem also implies undecidability of conjunctive query en-

tailment (and thus of conjunctive query answering) inEL++.
We point out that the above theorem has been independently proved by other authors

[11, 10].

Acknowledgments.This research has been partially supported by FET project TONES
(Thinking ONtologiES), funded by the EU, by project HYPER, funded by IBM through
a SUR Award grant, and by MIUR FIRB project TOCAI.IT.

References
1. S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison Wesley, 1995.
2. F. Baader. Terminological cycles in a description logic with existential restrictions. InProc.

of IJCAI 2003, pages 325–330, 2003.
3. F. Baader, S. Brandt, and C. Lutz. Pushing theEL envelope. InProc. of IJCAI 2005, pages

364–369, 2005.
4. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.The

Description Logic Handbook: Theory, Implementation and Applications, 2003.
5. F. Baader, C. Lutz, and B. Suntisrivaraporn. Efficient reasoning inEL+. In Proc. of DL 2006.

http://ceur-ws.org/Vol-189/ , 2006.
6. S. Brandt. On subsumption and instance problem in ELH w.r.t. general TBoxes. InProc. of

DL 2004. http://ceur-ws.org/Vol-104/ , 2004.
7. S. Brandt. Polynomial time reasoning in a description logic with existential restrictions, GCI

axioms, and - what else? InProc. of ECAI 2004, pages 298–302, 2004.
8. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of

query answering in description logics. InProc. of KR 2006, pages 260–270, 2006.
9. M. A. Harrison.Introduction to Formal Language Theory. Addison Wesley, 1978.

10. A. Krisnadhi and C. Lutz. Data complexity in the EL family of DLs. InProc. DL 2007.
11. M. Krötzsch and S. Rudolph. Conjunctive queries for EL with role composition. InProc.

DL 2007.
12. R. Rosati. The limits of querying ontologies. InProc. ICDT 2007, LNCS4353, pages 164–

178. Springer, 2007.

