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Abstract. We present a query answering technique based on notions
and results from modal Correspondence Theory. It allows us to answer a
wide family of conjunctive queries by polynomial reduction to knowledge
base satisfiability problem. An advantage of this technique lies in its
uniformity: it does not depend on a Description Logic (DL), so that
extending a DL does not invalidate the algorithm. Thus, the problem of
answering queries in this family is decidable in any decidable DL. The
construction also leads to an idea of extending the modal language with
so called variable modalities, whose syntax and semantics is introduced
in the paper. On the one hand, this yields a broader family of queries
that can be answered with the same technique. On the other hand, modal
logic with variable modalities is interesting per se, and we formulate some
natural (open) questions about this logic.

1 Introduction

Developing languages and algorithms for reasoning with ontologies is a crucial
aspect of the Semantic Web activity. Among reasoning tasks, querying is a fun-
damental mechanism for extracting information from a KB. Two most important
reasoning services involving queries are query answering and query containment
(also called subsumption); they are mutually reducible (and we focus on query
answering here). While the complexity of DLs is now well understood [1, 11],
the decidability and complexity issues for query answering in expressive DLs
have only recently got partial or complete solutions (see [5, 8] and references
therein). For the expressive DLs that underpin the state-of-the-art web ontology
languages OWL DL and OWL 1.1, even the decidability of query answering is
not established yet.

Usually, query answering techniques are developed for a specific DL, and the
more expressive is a DL, the more complex becomes the query answering algo-
rithm. In this paper, we address the problem from a different perspective: we
develop a uniform technique for answering a certain family of queries, which
means that the algorithm is independent of a DL in which a KB is formulated.
Therefore, extending the expressivity of a DL does not hurt the algorithm (in
contrast to other approaches where, e.g., introducing transitive roles can invali-
date the algorithm, cf. [5, 8]). The basic and most prominent uniform algorithm



for query answering is so called rolling-up technique (see, e.g., [5]) applicable
to the family of tree-like queries whose root is the only distinguished variable.
Given such a query q(x), the algorithm transforms it into an equivalent concept
C, i.e., in any model, the extensions of C and q(x) coincide. Hence, to answer
the query q(x) is the same as to retrieve all instances of the concept C (and
the latter task is reducible to KB unsatisfiability). The starting point for us is
an observation that, in general, the equivalence of a concept to a query is suf-
ficient, but not necessary for them to have the same answers. It turns out that
the proper relation between C and q(x) that guarantees them to have the same
answers is closely related (or, as we conjecture, even equivalent) to the relation
of local correspondence known from modal Correspondence Theory [2, 6, 9].

To illustrate how this works, consider a cyclic query q(x) ← xRx; it is not
equivalent to any ALC concept, as follows from the tree model property, so
rolling-up is not applicable. Now recall that reflexivity xRx is expressible by
(i.e., locally corresponds on Kripke frames to) a modal formula p→ ♦p, where
p is a propositional variable (its interpretation on a Kripke frame is universally
quantified). Then we introduce a fresh concept name P (i.e., whose interpretation
is not constrained by a KB) and translate this modal formula into a DL concept
¬P t ∃R.P , which, as we prove, always has the same answers as our query q(x).

In general, given a query q(x) from a family specified below, we invoke an
algorithm from Correspondence Theory [6] to build a modal formula ϕ that
locally corresponds to q(x); then we translate ϕ into a concept (usually, in the
same DL as the query) by introducing a fresh concept name for each variable
in ϕ; the resulting concept, as we show, has exactly the same answers as the
original query q(x) over any KB in any DL. The details of this technique are
described in Sect. 2. A natural question arises: what if we additionally allow to
use fresh role names? In terms of modal logic, this means that a formula ϕ will
contain what we call variable modalities. We introduce syntax and semantics for
such a modal language in Sect. 3 and generalise the query answering technique
to this setting, which results in a wider family of queries that can be answered
within this approach. Finally, in Sect. 4 we conclude with formulating some open
problems concerning our query answering technique, as well as definability and
first-order correspondence for the modal logic with variable modalities.

2 Queries answered by concepts

Since our results are applicable to any DL (extending ALC), we do not need
to describe expressive DLs, and we only briefly recall the definition of ALC and
ALCI and fix some notation. The vocabulary consists of finite sets of concept
names CN, role names RN, and individual names (or constants) IN. Concepts of
ALC are defined by the following syntax:

C ::= ⊥ | A | ¬C | C uD | ∀R.C, where A ∈ CN, R ∈ RN.

Other connectives are taken as customary abbreviations, e.g., C → D stands for
¬(C u ¬D). In ALCI, inverse roles R− can additionally be used in place of R.



A terminology (or a TBox) T is a finite set of axioms of the form C v D,
where C,D are arbitrary concepts. An ABox A is a finite set of assertions of
the form a:C and aRb, where a, b ∈ IN, C is a concept and R a role. Finally, a
knowledge base KB = 〈T ,A〉 consists of a TBox T and an ABox A.

Definition 1. (Semantics) An interpretation I = (∆I , ·I) consists of non-
empty domain ∆I and an interpretation function ·I that maps:

– each constant a ∈ IN to an element aI ∈ ∆I ,
– each concept name C ∈ CN to a subset CI ⊆ ∆I ,
– each role name R ∈ RN to a binary relation RI ⊆ ∆I ×∆I ;

and is extended to concepts, roles, axioms and assertions as follows:

⊥I = ∅ (R−)I = {〈e, d〉 | 〈d, e〉 ∈ RI} I |= C v D iff CI ⊆ DI

(¬C)I = ∆I \ CI (∀R.C)I = { e ∈ ∆I | d ∈ CI I |= a: C iff aI ∈ CI

(CuD)I = CI ∩DI for all d such that 〈e, d〉 ∈ RI} I |= aRb iff 〈aI, bI〉 ∈ RI

Here I |= Φ stands for ‘I satisfies Φ’. An interpretation is called a model of a
KB if it satisfies all its TBox axioms and ABox assertions. A knowledge base
KB entails Φ (notation: KB |= Φ) if I |= Φ, for all models I of KB.

Definition 2. (Queries) A conjunctive query is an expression of the form

q(~x) ← ∃~y
(
t1(~x, ~y) ∧ . . . ∧ tn(~x, ~y)

)
,

where ~x, ~y are tuples of (distinguished , resp., non-distinguished) variables, and
each atom ti(~x, ~y) is of the form u:C (concept atom) or uRv (role atom), where
C is a concept, R a role, and u, v are either variables from ~x, ~y or constants.1

A query without concept atoms is called relational. Queries with 0 and 1 dis-
tinguished variables are called boolean and unary resp. Given an interpretation
I = 〈∆, ·I〉, a query q of arity m is interpreted as follows:

qI := { ~e ∈ ∆m | I |= ∃~y
(
t1(~e, ~y) ∧ . . . ∧ tn(~e, ~y)

)
}.

The answer set of a query q(~x) w.r.t. a knowledge base KB is defined as the set
of tuples of constants ~a that satisfy the query q in all models of KB:

ansKB(q) := { ~a ∈ IN | KB |= q(~a) }.

The following is the main notion of our paper (in fact, it can be formulated
for an arbitrary first-order formula q in the appropriate language, cf. Example 2).

Definition 3. A unary query q(x) is answered by a concept C (written as
q(x) ≈ C) if, for any KB and any a ∈ IN, we have: KB |= q(a) ⇔ KB |= a:C;
in other words, if the queries q(x) and x:C always have the same answer set.2

A boolean query q is answered by a concept C (notation: q ≈ C) if, for any
KB, the equivalence holds: KB |= q ⇔ KB |= a:C, where a is a fresh constant.
1 In what follows, w.l.o.g. we consider queries without constants, since constants can

be eliminated at the price of introducing nominals: xRa is equivalent to xRz ∧ z: {a}.
2 Strictly speaking, we should define: q(x) ≈ C over a DL L iff q(x) and x: C have

the same answers for any KB formulated in L. However, we shall not complicate the
matters, since in all our results whenever q ≈ C holds, it hold in fact for any DL L.



Our task is to determine what kind of queries can be answered by concepts
and when these concepts can be found efficiently (and preferably in the same
language as the query). For this aim, we will use results from a branch of modal
logic called the Correspondence Theory. Briefly, this theory is devoted to ques-
tions whether a modally definable class of frames is also first-order definable, and
if so, whether the corresponding first-order formula can be found efficiently (and
similarly in the other direction). The background information on that theory
can be found in [2, Chap. 3]; here we will recall its basic notions.

Formulas of the (multi-)modal language with nmodalities �i and a countable
set of propositional variables pi are defined by the following syntax:

ϕ ::= ⊥ | pi | ϕ→ ψ | �iϕ.

As K. Schild observed in [10], this language is a notational variant of ALC with n
role names Ri.3 Exploiting this fact, whenever ϕ is a modal formula, we denote
by Cϕ the concept obtained from ϕ by replacing �i with ∀Ri and pi with fresh
concept names Pi (it is convenient to reserve a countable set of fresh concept
names, i.e., that will not occur in any KB or query).

Definition 4 (Kripke semantics). A frame F = 〈∆, r1, . . . , rn〉 consists of a
non-empty set ∆ and n binary relations ri on ∆. A model M = 〈F, ν〉 (based
on F ) consists of a frame F and a valuation of variables pν

i ⊆ ∆. The notion
“a formula ϕ is true at a point e ∈ ∆ in a model M” (notation: M, e |= ϕ) is
defined inductively: M, e 6|= ⊥; M, e |= pi iff e ∈ pν

i ; M, e |= ϕ→ ψ iff M, e 6|= ϕ
or M, e |= ψ; M, e |= �iϕ iff M,d |= ϕ for all d ∈ ∆ such that 〈e, d〉 ∈ ri. A for-
mula ϕ is valid (at a point e) in a frame F (notation: F, e  ϕ or F  ϕ resp.)
if it is true (at this point) in all models based on F .

Definition 5 (Correspondence). Let ϕ be a modal formula, α(x) and β first-
order formulae in the vocabulary {R1, . . . , Rn,=} with one and no free vari-
ables, resp. We say that α(x) locally corresponds to ϕ (notation: α(x) ! ϕ) if
F |= α(e) ⇔ F, e  ϕ, for any frame F and any its point e. Similarly, β globally
corresponds to ϕ (notation: β ! ϕ) if F |= β ⇔ F  ϕ, for any frame F .

For example, a formula p → ♦p corresponds (both locally and globally) to
reflexivity, whereas �(�p→ p)→ �p is valid in a frame F iff F is transitive and
has no infinite ascending chains, which is a (monadic) second-order property.

We are ready to establish a relationship between the correspondence relation
(q ! ϕ) and query answering (q ≈ Cϕ). We conjecture that they are equivalent;
however, we have succeeded to prove only one implication and partially the
converse one. For proofs, see a paper [13] and a recent technical report [12].

Theorem 6 (Reduction). Let q(x) be a unary relational4 query, ϕ a modal
formula. If q(x) locally corresponds to ϕ, then the query q(x) is answered by the
ALC-concept Cϕ. In symbols: q(x) ! ϕ =⇒ q(x) ≈ Cϕ.

Similarly for boolean queries and global correspondence: if q!ϕ then q ≈ Cϕ.
3 Note that the words ‘correspondence theory’ in the title of his paper refer to this

observation only and have nothing to do with modal Correspondence Theory.
4 Queries that additionally involve concept atoms y: C are covered by Theorem 10.



Lemma 7 (Partial converse). (1) Suppose that a unary relational query q(x)
is answered by a concept Cϕ, i.e., q(x) ≈ Cϕ, for some modal formula ϕ. Then:

a) F |= q(e) ⇒ F, e  ϕ, for any frame F and any its point e;
b) F |= q(e)⇐ F, e  ϕ, for any finitely branching5 frame F and any point e.

(2) The same holds for boolean queries and global validity (F  ϕ), but only for
‘finite’ instead of ‘finitely branching’ frames in (b).

It is undecidable to determine whether a given FO formula corresponds to
some modal formula [3]. There were few attempts to find FO fragments for which
the problem is decidable.6 We apply (and extend) those results and identify
several families of queries for which the answering concept can be built efficiently.
The family K below stems from so called Kracht’s fragment [6]; the family Z
contains queries beyond that fragment. Queries from both K and Z are answered
by ALC-concepts. By “forgetting” the direction of edges7 in queries, we obtain a
family E of queries that are answered by ALCI-concepts. The formal description
of these families of relational queries (and their non-relational analogues), the
corresponding algorithm and the proofs can be found in [13].

Corollary 8. There exist a (polynomial) algorithm that takes a unary relational
conjunctive query q(x) from the following families K, Z, and E and returns a
concept in ALC (for q ∈ K ∪ Z) or ALCI (for q ∈ E) that answers this query.
Furthermore: K 6⊆ Z, Z 6⊆ K, and (K ∪ Z) ⊂ E. So, for any DL L, the problem
of answering queries within these families has the same complexity as L itself.

Family K: take an oriented tree with the root x, and add any number of
oriented chains linking x with other nodes (in any direction).

Family Z: take an “anti-tree” (i.e., an oriented tree with edges directed from
leaves to the root); merge all its leaves and denote the resulting node by x.

Family E: the graph of a query is connected and has no cycles that consist
of non-distinguished variables only (i.e., any cycle contains the node x).

Example 1. The queries q1(x) ← xRy ∧ xSy and q2(x) ← xRy ∧ ySx are
answered by the concepts ∀R.Y → ∃S.Y and X → ∃R.∃S.X resp. The following
two queries witness that the families K and Z are incomparable w.r.t. inclusion:

Query in K \ Z: q3(x) ← xRv ∧ vSy ∧ vQz ∧ xRy ∧ xRz
Concept: ∀R.(Y u Z)→ ∃R.(∃S.Y u ∃Q.Z)
Query in Z \K: q4(x) ← xRy ∧ xSy ∧ yPv ∧ xRz ∧ xSz ∧ zQv
Concept: ∀R.(Y u Z)→ ∃S.

(
(Y u ∃P.V ) t (Z u ∃Q.¬V )

)
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5 I.e., any point of the frame has a finite number of successors.
6 And much more results in the “modal to first-order” direction; see [4] for an overview.
7 It is convenient to represent a relational query as an oriented graph, whose nodes

are distinguished (•) and non-distinguished (◦) variables and edges are role atoms.



Example 2. Boolean (not necesserily conjunctive) queries can be answered sim-
ilarly; namely, we can check for modally definable properties of roles [2, Ch. 3].
For instance, whether a role R is reflexive, transitive, dense, eucleadean, conflu-
ent etc. in a KB can be checked, by Theorem 6, using the DL-translations of the
modal formulae p→ ♦p, ♦p→ ♦♦p, ♦♦p→ ♦p, ♦p→ �♦p, ♦�p→ �♦p resp.

3 Modal logic with variable modalities

The results obtained above inspire to introduce a natural extension of modal
logic, which is interesting per se and in addition yields to a wider family of
queries that can be answered with the same technique. Recall that in order to
answer, e.g., a query q(x)← xRx, we introduced a fresh concept name P and
then proved that q(x) has the same answers as the concept ¬P t ∃R.P . It is
not hard to see that, without fresh concept names, only tree-like queries can
be answered (and this will coincide with the rolling-up technique). So it were
fresh concept names that enabled us to answer cyclic queries. Now, can we gain
even more if we allow to use fresh role names? As we show below, the answer
is Yes (but additional queries are usually not conjunctive, but rather first-order
formulae of other kinds).

Recall that in the definition of the validity of a modal formula in a frame, we
quantify over interpretations of propositional variables (i.e., unary predicates),
but interpretation of modalities (i.e., binary predicates) is fixed. In other words,
the standard modal logic is a logic of constant modalities and propositional
variables. Therefore it is natural to consider a notion of validity, in which the
rôle of unary and binary predicates is symmetric. So, we extend modal logic with
variable modalities and propositional constants.

The vocabulary of the mixed modal logic consists ofm propositional constants
A1, . . . , Am, n constant modalities �1, . . . ,�n, and countable sets of proposi-
tional variables pi and variable modalities �i. The syntax for formulae is:

ϕ ::= ⊥ | pi | Ai | ϕ→ ψ | �iϕ | �iϕ

Definition 9 (Semantics). A frame F = 〈∆, ~α,~r 〉 consists of a non-empty
set ∆, a list ~α of m unary predicates αi ⊆ ∆, and a list ~r of n binary rela-
tions ri ⊆ ∆×∆. A model M = 〈F,~π,~s 〉 consists of a frame F and countable
sequences of unary predicates πi ⊆ ∆ and binary relations si ⊆ ∆×∆.

The notion “a formula ϕ is true at a point e ∈ ∆ in a model M” is defined
inductively: boolean cases are standard;M, e |= pi iff e ∈ πi;M, e |= Ai iff e ∈ αi;
M, e |= �iϕ iff M,d |= ϕ for all d ∈ ∆ such that 〈e, d〉 ∈ ri; and similarly for �i

and si. The notion of validity of a formula (at a point) in a frame is standard,
but note that here saying “for all models M” involves quantification over unary
binary predicates si (hence it is no longer a monadic second-order notion).

The notion of correspondence is defined as in Def. 5, but for first-order for-
mulae in the vocabulary {A1, . . . , Am, R1, . . . , Rn,=}. The mixed modal lan-
guage is much more expressive. For instance, F  �p→ �p iff r = ∆×∆; and



F |= p→ �p iff |∆| = 1; these properties are not expressible in the standard
modal language (see. [12] for more examples). It turns out that almost all the
results from the previous section can be generalised to the mixed modal logic,
with even more elegant formulations, as we do not need to rule out concept
atoms x:C from queries now. In what follows, whenever ϕ is a mixed modal
formula, by Cϕ we denote a concept obtained from ϕ by replacing �i with ∀Ri,
�i with ∀Si, and pi with Pi, where concept names Pi and role names Si are
fresh (symbols Ai are left unchanged). The following results are proved in [12].

Theorem 10 (Reduction). Let q(x) be a unary query, ϕ a mixed modal for-
mula. If q(x) locally corresponds to ϕ, then the query q(x) is answered by the
ALC-concept Cϕ. In symbols: q(x) ! ϕ =⇒ q(x) ≈ Cϕ.

Similarly for boolean queries and global correspondence: if q!ϕ then q ≈ Cϕ.

Lemma 11 (Partial converse). (1) Suppose that a unary query q(x) is an-
swered by by a concept Cϕ, i.e., q(x) ≈ Cϕ, for some mixed modal formula ϕ.
Then F |= q(e) implies F, e  ϕ, for any frame F and any its point e.

(2) The same holds for boolean queries and the global validity (F  ϕ).

Example 3 (Mary likes all cats). Suppose that a KB contains an individual
Mary, a concept Cat and a role Likes, and we want to express a boolean query
whether “Mary likes all cats”. A straightforward way to do this is to write a
concept subsumption: Cat v ∃Likes−.{Mary}, but it contains an inverse role and
a nominal, even if the language of KB does not, thus increasing the complex-
ity of reasoning [11]. This query can also be formulated using role negation:
Mary:∀¬Likes.¬Cat, again with an increase of the complexity [7]. The solution
we propose enables one to express this query in ALC. To this end, note that a
mixed modal formula �p → �(A→ p) locally corresponds to a first-order for-
mula q(x) := ∀y (A(y)→ xRy) (see [12] for a proof). Now let A stand for Cat and
R for Likes, then our query “Mary likes all cats” can be represented as q(Mary).
Finally, we apply Theorem 10 and conclude that q(Mary) holds w.r.t. KB iff
Mary is an instance (w.r.t. KB) of the following concept (where the concept
name SomeConc and the role name SomeRel are fresh):

∀Likes.SomeConc → ∀SomeRel.(Cat→ SomeConc).

4 Conclusions and open quesions

One of the achievements of this paper is the established relationship between
query answering in DL and Correspondence Theory (Theorems 6 and 10). It
allowed us to build a uniform query answering algorithm for some families of
conjunctive queries. Furthermore, a modal logic with variable modalities was
introduced; although it is quite a natural extension of the standard modal logic,
it has not been considered in the literature, to the best of our knowledge.

There is a number of natural problems left open, answers to which would
complete the whole picture. Here we mention some of them.



Q1 Do the converses of Theorems 6 and 10 hold?
Q2 Which conjunctive queries locally/globally correspond to modal formulae

(with or without �’s)? At least, are these families of queries decidable?
Q3 Which conjunctive queries can be answered by ALC-concepts (with or with-

out fresh role names)? By Theorems 6 and 10, queries from Q2 form a subset
of queries from Q3, and by Corollary 8, they contain the families K and Z.

Q4 The same questions Q2 and Q3 for the logics ALCI, ALCQ, and ALCQI.
Q5 The expressive power of the mixed modal logic: What classes of frames are

definable (i.e., an analogue of Goldblatt-Thomason theorem [2, Th. 3.19])?
Which of them are first-order definable?
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