
Conjunctive Query Entailment for SHOQ

Birte Glimm?, Ian Horrocks, and Ulrike Sattler

[glimm,horrocks,sattler]@cs.man.ac.uk

The University of Manchester, UK

Abstract. An important reasoning task, in addition to the standard
DL reasoning services, is conjunctive query answering. In this paper,
we present a decision procedure for conjunctive query entailment in the
expressive Description Logic SHOQ. This is, to the best of our knowl-
edge, the first decision procedure for conjunctive query entailment in a
logic that allows for nominals. We achieve this by combining the tech-
niques used in the conjunctive query entailment procedure for SHIQ

with the techniques proposed for a restricted class of conjunctive queries
in SHOQ.

1 Introduction

Existing Description Logic (DL) reasoners1 provide automated reasoning sup-
port for checking concepts for satisfiability and subsumption, and also for an-
swering queries that retrieve known instances of concepts and roles. There are,
however, still many open questions regarding the development of algorithms
that decide conjunctive query (CQ) entailment in expressive Description Log-
ics. For example, proposed techniques for deciding CQ entailment in expressive
DLs mostly require that all roles that occur in the query are simple, i.e., nei-
ther transitive nor have transitive subroles. Furthermore, none of the existing
conjunctive query answering techniques [10, 8, 2, 7, 9] is able to handle nominals.
In this paper, we address both these issues and present a decision procedure for
entailment of arbitrary CQs in the very expressive DL SHOQ, i.e., we allow
for both non-simple roles in the query and nominals. We also do not impose
any restrictions on the structure of the queries as it is the case for a previously
proposed query entailment technique for SHOQ [5].

Our algorithm combines ideas from the CQ entailment decision procedure
for SHIQ [3, 4] with the technique for deciding entailment of a restricted class
of CQs in SHOQ [5] (i.e., the algorithm does not accept arbitrary CQs as input,
but only queries of a particular shape). We first rewrite a query into a set of
queries that have a kind of forest shape. By applying the rolling-up or tuple-graph
technique [2, 10], we build concepts that capture the rewritten queries. We then
show that we can use the obtained concepts to reduce the task of deciding query
entailment to the task of testing the consistency of extended knowledge bases.

? This work was supported by an EPSRC studentship.
1 For example, FaCT++ http://owl.man.ac.uk/factplusplus, KAON2 http://

kaon2.semanticweb.org, Pellet http://pellet.owldl.com, or Racer Pro http:

//www.racer-systems.com

2 Preliminaries

We assume readers to be familiar with the syntax and semantics of the DL
SHOQ (for details see [1]). Since, in the presence of nominals, the ABox can be
internalised, we assume that a SHOQ knowledge base K is a pair (T ,R) over a
signature S = (NC , NR), where T is a TBox, R is a role hierarchy, and NC and
NR are countable, infinite, and pairwise disjoint sets of concept names and role
names respectively. We assume that the set NC contains a subset NI of nominal
names and the set NR contains a subset NtR of transitive role names. We say
that a role name r is simple if there is no s ∈ NtR such that s v*Rr, where v*R

is the reflexive transitive closure of v over R.

Definition 1. Let S = (NC , NR) be a signature and NV a countably infinite
set of variable names disjoint from NC and NR. Let C be a SHOQ-concept over
S, r ∈ NR a role name, and x, y ∈ NV . An atom is an expression C(x) or
r(x, y), and we refer to these types of atoms as concept atoms and role atoms
respectively. A Boolean conjunctive query q is a non-empty set of atoms. We
use Vars(q) to denote the set of all variables occurring in q and](q) for the
cardinality of q. A sub-query of q is simply a subset of q (including q itself).

Let I = (∆I ,·I) be an interpretation. For a total function π: Vars(q) → ∆I,
we write

– I |=π C(x) if π(x) ∈ CI ;
– I |=π r(x, y) if (π(x), π(y)) ∈ rI .

If I |=π at for all atoms at ∈ q, we write I |=π q. We say that I satisfies q and
write I |= q if there exists a mapping π such that I |=π q. We call such a π a
match for q in I. For a SHOQ knowledge base K, we say that K entails q and
write K |= q if I |= K implies I |= q.

The query entailment problem is defined as follows: given a knowledge base
K and a query q, decide whether K |= q. Please note that we do not allow
for constants (individual names) in the query. In the presence of nominals this
is clearly without loss of generality. Query entailment is the decision problem
corresponding to query answering, which is a computation problem. For query
answering, let the variables of a conjunctive query be typed: each variable can
either be existentially quantified (also called non-distinguished) or free (also
called distinguished or answer variables). Let q be a query in n variables (i.e.,
](Vars(q)) = n), of which v1, . . . , vm (m 6 n) are answer variables, K a SHOQ
knowledge base, and nom(K) the set of nominals that occur in K. The answers
of K to q are those m-tuples (o1, . . . , om) ∈ nom(K) such that, for all models I
of K, I |=π q for some π that satisfies π(vi) ∈ {oi

I} for all i with 1 6 i 6 m.
It is not hard to see that the answers of K to q can be computed by testing, for
each (o1, . . . , om) ∈ nom(K)m, whether the query q′ obtained from q by adding,
for each vi with 1 ≤ i ≤ m, an atom ({oi})(vi), is entailed by K.2 The answer

2 Please note that, in the presence of constants, it is more common to replace the
distinguished variables v1, . . . , vm with the constants o1, . . . , om instead of adding
constant atoms.

to q is then the set of all m-tuples (o1, . . . , om) for which K |= q[v1,...,vm/o1,...,om].
Let k =](nom(K)) be the number of nominals used in the K. Since K is finite,
clearly k is finite. Hence, deciding which tuples belong to the set of answers can
be checked with at most km entailment tests. This is clearly not very efficient, but
optimisations can be used, e.g., to identify a (hopefully small) set of candidate
tuples.

In the remainder of this paper, we concentrate on query entailment. In the
following, we use K for a SHOQ knowledge base and q for a Boolean CQ over
a common signature S. We use nom(K) for the set of nominals that occur in K
and we assume that nom(K) is non-empty without further notice. This is w.l.o.g.
since otherwise we can always add an axiom {o} v > to the TBox for a new
nominal o ∈ NI .

As for the CQ entailment algorithm for SHIQ, we first show that we can
restrict our attention to the canonical models of K. Canonical models have a
kind of forest shape, i.e., the elements in the model can be seen as a collection
of trees such that each nominal builds the root of a tree. Additionally, there can
be arbitrary relational structures between the nominals and relations between
an element from within a tree back to some nominal. In order to emphasise
the forest shape of the canonical models, we also define forest bases, where we
omit the shortcuts induced by transitive roles. The role of canonical models
in our decision procedure is roughly speaking the following: for deciding query
entailment, we first rewrite a given query into a set of forest-shaped queries
such that the rewritten queries can be expressed as concepts. We use the forest
structure of the canonical models in order to show that the disjunction of the
obtained concepts is indeed enough for deciding query entailment.

Definition 2. A tree T is a prefix-closed subset of IN∗. For w, w′ ∈ T , we call w′

a successor of w if w′ = w · c for some c ∈ IN, where “·” denotes concatenation.
The empty word ε is the root of the tree. Given a set of roots R = {r1, . . . , rn}, a
forest F w.r.t. R is a subset of R× IN∗ such that, for each ri ∈ R, f(ri) = (ri, ε)
and the set {w | (ri, w) ∈ F} is a tree.

A forest base for K is an interpretation J = (∆J ,·J) that interprets transi-
tive roles in an unrestricted (i.e., not necessarily transitive) way and, addition-
ally, satisfies the following conditions:

T1 ∆J is a forest w.r.t. nom(K), and
T2 if ((o, w), (o′, w′)) ∈ rJ , then either w′ = ε or o = o′ and w′ is a successor

of w.

An interpretation I is canonical for K, if there exists a forest base J for K such
that I is identical to J except that, for all non-simple roles r, we have

rI = rJ ∪
⋃

s v*R
r, s∈NtR

(sJ)+

In this case, we say that J is a forest base for I and, if I |= K, we say that I
is a canonical model for K.

Lemma 1. K 6|= q iff there is some canonical model I of K such that I 6|= q.

Proof Sketch: The if direction is trivial. For the only if direction, the proof is
similar to the one for SHIQ. Let I be such that I |= K and I 6|= q. Intuitively,
we first unravel I into a model I ′ of K and then construct a forest base from
the unravelled model. Finally, we obtain a canonical model from the forest base
by transitively closing all roles r ∈ NtR. Since in the unravelling process we
only “break” cycles, the query is still not satisfied in the constructed canonical
model.

3 Reducing Query Entailment to Concept Unsatisfiability

In this section, we introduce the basic ideas that have been used in the develop-
ment of algorithms for CQ entailment. In the following section, we show more
formally how the techniques presented here can be combined in order to obtain
a decision procedure for SHOQ.

The initial ideas used in this paper were first introduced by Calvanese et
al. [2] for deciding CQ containment and hence CQ entailment for DLRreg . The
authors show how a query q can be expressed as a concept Cq, such that q is
entailed by a knowledge base iff adding > v ¬Cq makes the KB inconsistent.
In order to obtain the concept Cq, the query q is represented as a directed,
labelled graph. This graph, called a tuple graph or a query graph, is traversed
in a depth-first manner and, during the traversal, nodes and edges are replaced
with appropriate concept expressions, leading to the concept Cq after completing
the traversal.

The nodes in a query graph correspond to the variables in the query and are
labelled with the concepts that occur in the corresponding concept atoms. The
edges correspond to the role atoms in q and are labelled accordingly. E.g., let q1 =
{C(x), s(x, y), D(y)} and q2 = {C(x), r(x, y), r(x, y′), s(y, z), s(y′, z), D(z)}. The
query graphs for q1 and q2 are depicted in Figure 1 and Figure 2 respectively.
We call q2 a cyclic query since its underlying undirected query graph is cyclic.
For acyclic queries such as q1, we can build the concept that represents q1 as
follows: start at x and traverse the graph to y. Since y is a leaf node, remove y

and its incoming edge and conjoin ∃s.D to the label C of x, resulting in Cu∃s.D

for Cq1
. A given KB K entails q1 iff K∪{> v ¬Cq1

} is inconsistent. Please note
that in the absence of inverse roles in the logic, this process requires that the
query graph has the form of a directed tree.

This reduction is not directly extendable to cyclic queries since, due to the
tree model property of most DLs, a concept cannot capture cyclic relationships.
For simpler logics, only ABox assertions can enforce cyclic relational structures
in every model. One could argue, therefore, that we can replace variables in a
cycle with individual names from the ABox. By identifying variables with each
other, however, some cyclic queries become acyclic. For example, identifying y

and y′ in q2 leads to an acyclic query that can be expressed as C u ∃r.(∃s.D).
Hence, K |= q2 if K ∪ {> v ¬(C u ∃r.(∃s.D))} is inconsistent.

y:Dx:C

s

Fig. 1: The (acyclic) query
graph for q1.

y′

r
x:C z:D

s

s
y

r

Fig. 2: A query graph for the
cyclic query q2.

Last year, we presented a decision procedure for entailment of a restricted
class of CQs in SHOQ [5]. Due to the absence of inverse roles in SHOQ, the
algorithm handles only queries where the tree parts of the query form a di-
rected tree and all cyclic subgraphs build a directed cycle. For example, the
query {r(x, y), r(z, y)} is not accepted as an input for the algorithm. The tech-
nique introduces, however, ideas for dealing with cycles that can arise when
nominals and non-simple roles are present in the knowledge base. For exam-
ple, Figure 3 represents a model for the knowledge base K containing the ax-
iom {o} v ¬C u ¬D u ∃s.(C u ∃r.(D u ∃s.{o})) with s ∈ NtR. The query
q3 = {C(x), D(y), r(x, y), s(y, x)} (see Figure 4) would clearly be satisfied in each
model of K, although in the relevant matches neither x nor y can be mapped
to the nominal oI and without using the nominal o in the query concept, we
cannot enforce the coreference for closing the cycle.

{o,¬C,¬D} {C} {D}

s

rs
s

Fig. 3: The dashed line indicates the rela-
tionship added due to s being transitive.
Therefore, there is a cycle not directly con-
taining the nominal o.

rx:C y:D

s

Fig. 4: The query graph
for q3.

In canonical models for a SHOQ knowledge base, such a directed cycle among
non-nominals can only occur due to a transitive role that provides a shortcut for
“skipping” the nominal. Hence, a nominal is always at least indirectly involved,
e.g., o in the current example. The proposed algorithm allows, therefore, the
replacement of the role atom s(y, x) with two role atoms s(y, v), s(v, x) for a
new variable v. We can then guess that v corresponds to the nominal o and
express the query as a concept in which we use {o} to close the cycle.

In the decision procedure for CQ entailment in SHIQ [3, 4], the rewriting
steps also allow for eliminating shortcuts induced by transitive roles that do not
involve nominals (ABox individuals in the case of SHIQ). Let K4 = (T ,R,A)

be a SHIQ knowledge base with T = ∅,R = {r v t},A = {(∃s.∃r.∃r.∃r.>)(a)},
and t ∈ NtR (see Figure 5). The cyclic query q4 = {r(x1, x2), r(x2, x3), r(x3, x4),
t(x1, x4)} (see Figure 6) is clearly entailed by K4.

s r, t r, t

{a}

t t

t

r, t

Fig. 5: A representation of a canonical model I for K4. Transitive “shortcuts”
are again indicated by dashed lines.

r r r

t

Fig. 6: The query graph for the query q4.

In order to obtain a tree-shaped query that matches in such a canonical
model, the rewriting steps for SHIQ allow, for each role atom s(x, x′) in a
query such that there is a role s′ ∈ NtR with s′ v*Rs, to replace s(x, x′) with up
to](q) role atoms s′(x1, x2), . . . , s

′(x`−1, x`) such that x1 = x and x` = x′. In the
above example, we can replace t(x1, x4) with t(x1, x2), t(x2, x3), t(x3, x4) and ob-
tain the query q′4 = {r(x1, x2), r(x2, x3), r(x3, x4), t(x1, x2), t(x2, x3), t(x3, x4)}.
Using role conjunctions, we can now build the query concept Cq′

4
= ∃(rut).(∃(ru

t).(∃(r u t).>)). We can now use the concept Cq′

4
as described above and reduce

the query entailment problem for a SHIQ knowledge base to a knowledge base
consistency problem for SHIQu, i.e., SHIQ with role conjunctions.

Usually, there is not just one query concept for a given query. In the rewrit-
ing process, we build query concepts for all tree-shaped queries obtained by
identifying variables and by replacing role atoms as described above. We then
check whether K entails the disjunction of the obtained concepts, which can be
reduced to checking the consistency of K extended with all axioms > v ¬Cq

such that Cq is one of the obtained query concepts.
We now define the different rewriting steps more formally and show how the

different rewriting steps can be combined into a decision procedure for general
CQs in SHOQ.

4 Conjunctive Query Entailment for SHOQ

For deciding whether a given Boolean CQ is entailed by a SHOQ knowledge
base, we transform the query in a four stage process into a set of SHOQu

concepts, i.e., SHOQ with role conjunctions. We can then reduce the task of
deciding CQ entailment to the task of deciding SHOQu knowledge base consis-
tency.

In the first step, called collapsing, we can identify variables. In the second
step, we can replace role atoms of the form r(x, x′) for which r is non-simple with
up to](q) role atoms. This allows for explicating all shortcuts due to transitive
roles in the query. In the third step, we “guess” which variables correspond to
nominals and filter out those queries that can still not be expressed as a SHOQu

concept. Those queries are trivially false since the structure specified by the query
cannot be enforced by a SHOQ concept and hence cannot be mapped to the
canonical models of the knowledge base. Finally, we express the resulting queries
as concepts and use these concepts for deciding entailment of the original query.

Definition 3. A collapsing of q is obtained as follows:

1. Build a partition P of Vars(q),
2. choose, for each P ∈ P, one variable name x ∈ P , and
3. replace each occurrence of x′ ∈ P with x.

We use co(q) to denote the set of all queries that are a collapsing of q.
A transitivity rewriting of q is obtained by fixing a set V ⊆ NV of variables

not occurring in q such that](V) 6](Vars(q)) and by choosing, for each role
atom r(x, x′) ∈ q such that there is an s ∈ NtR with s v*Rr, to replace r(x, x′)
with 1 ≤ ` ≤](q) role atoms s(x1, x2), . . . , s(x`−1, x`), where x1 = x, x` = x′,
and x2, . . . , x` ∈ Vars(q) ∪ V . We use trK(q) to denote the set of all queries that
are a transitivity rewriting of a query qco ∈ co(q).

We assume that trK(q) contains no isomorphic queries, i.e., differences in
(newly introduced) variable names only are neglected.

We now show how we can filter out those queries that are trivially false
since they have a structure that cannot occur in canonical models. For this, we
use forest structures that are similar to canonical models. We first guess which
variables of the query correspond to nominals. Between those variables, the role
atoms of the query can induce arbitrary relational structures. All other variables
are mapped to trees such that for a role atom r(x, y) either the image of y is a
successor of the image of x in the tree or y corresponds to a nominal and r(x, y)
corresponds to an edge back to some nominal.

Definition 4. A tree mapping w.r.t. q is a total and bijective function f from
Vars(q) to a tree T such that r(x, x′) ∈ q implies that f(x′) is a successor of
f(x). A query q is tree-shaped if there exists a tree mapping w.r.t. q.

A root choice is a subset of Vars(q). A forest mapping w.r.t. q and a root
choice R is a total function f from Vars(q) to a forest F w.r.t. R such that if
r(x, x′) ∈ q, then either x′ ∈ R or there is some xr ∈ R such that f(x) = (xr, w)
and f(x′) = (xr, w · c). We say that q is forest-shaped w.r.t. R if either R = ∅
and q is tree-shaped or R 6= ∅ and there exists a forest mapping w.r.t. q and R.

We use frK(q) to denote the set of all pairs (qtr , R) such that qtr ∈ trK(q), R

is a root choice w.r.t. qtr, and qtr is forest-shaped w.r.t. R.

Similarly to forest-shaped queries, we define tree- and forest-shaped matches
on canonical models.

Definition 5. Let I = (∆I ,·I) be a canonical model for K such that I |=π q.
A match π induces a root choice R = {x | π(x) = (o, ε) for some o ∈ nom(K)}.
We call π a tree match if R = ∅ and there exists a bijective function f from
ran(π) to a tree T such that r(x, x′) ∈ q implies that f(π(x′)) is a successor
of f(π(x)). We call π a forest match if either π is a tree match or there is a
total mapping f from ran(π) to a forest F w.r.t. R such that r(x, x′) ∈ q implies
that either f(π(x′)) = (x′, ε) or there is some xr ∈ R such that f(π(x)) =
(xr , w), f(π(x′)) = (xr, w · c).

The following lemma shows that we can indeed omit queries that are not
forest-shaped w.r.t. some subset of variables R.

Lemma 2. Let I = (∆I ,·I) be a model for K.

(1) If I is canonical and I |= q, then there is a pair (qtr, R) ∈ frK(q) and a
forest match π such that I |=π qtr and R is the root choice induced by π .

(2) If (qtr , R) ∈ frK(q) and I |= qtr, then I |= q.

The proof is very similar to the proofs for SHIQ [3, 4]. Intuitively, we use
the canonical model I to guide the rewriting process in the proof of part (1) of
Lemma 2. Part (2) of Lemma 2 mainly follows from the fact that we only use
non-simple roles in the transitivity rewritings.

We now build a query that consists of only concept atoms for each (qtr , R) ∈
frK(q) by replacing the variables from R with nominals from nom(K) and apply-
ing the rolling-up technique.

Definition 6. Let (qtr, R) ∈ frK(q). A grounding for qtr w.r.t. R is a total
function τ : R → nom(K). Let f be a forest mapping w.r.t. q and R. We build
con(qtr , R, τ) as follows:

1. For each r(x, xr) ∈ qtr with xr ∈ R, replace r(x, xr) with (∃r.{τ(xr)})(x).
2. For each xr ∈ R add a concept atom ({τ(xr)})(xr) to qtr.
3. We now inductively assign to each x ∈ Vars(qtr) a concept con(x) as follows:

– if there is no role atom r(x, x′) ∈ qtr, then con(x) :=
d

C(x)∈qtr
C,

– if there are role atoms r(x, x1), . . . , r(x, xk) ∈ qtr, then

con(x) :=
d

C(x)∈qtr
C u

d
16i6k ∃

(d
r(x,xi)∈qtr

r
)

.con(xi).

4. Finally, con(qtr, R, τ) = {(con(x))(x) | x ∈ Vars(qtr) and there is no role
atom r(x′, x) ∈ qtr}.

We use conK(q) for the set {con(qtr, R, τ) | (qtr, R) ∈ frK(q) and τ is a grounding
w.r.t. R}.

Please note that after the first step, the resulting query consists of a set
of unconnected components such that each component is a tree-shaped query
with a distinguished root variable that has no incoming edges. In step 4, we
collect all query concepts for these root variables in the set con(qtr, R, τ). Hence
con(qtr , R, τ) is a conjunctive query of the form {C1(x1), . . . , Cn(xn)} with xi 6=
xj for 1 ≤ i < j ≤ n and each Ci is a SHOQu-concept.

Lemma 3. Let I be a model of K.

(1) If I is canonical and I |= q, then there is some con(qtr, R, τ) ∈ conK(q) such
that I |= con(qtr , R, τ).

(2) If I |= con(qtr, R, τ) for some con(qtr , R, τ) ∈ conK(q), then I |= q.

Informally, the use of nominals in the constructed concepts still enforces the
same structures that are required by the query.

We now show that the union of the queries in conK(q) can be used to decide
entailment of q. Since we now use unions of conjunctive queries, we introduce
their semantics more formally:

Definition 7. A union of Boolean conjunctive queries is a formula q1∨ . . .∨qn,
where each disjunct qi is a Boolean conjunctive query. A knowledge base K entails
a union of Boolean conjunctive queries q1∨ . . .∨qn, written as K |= q1∨ . . .∨qn,
if, for each interpretation I such that I |= K, there is some i with 1 ≤ i ≤ n

such that I |= qi.

W.l.o.g. we assume that the variable names in each disjunct are different
from the variable names in the other disjuncts. This can always be achieved by
naming variables apart.

Putting everything together, we get the following theorem, which shows that
the queries in conK(q) are indeed enough to decide whether K |= q.

Theorem 1. Let {q1, . . . , q`} = conK(q). Then K |= q iff K |= q1 ∨ . . . ∨ q`.

Please note that each disjunct qi is a set of concept atoms of the form
{Ci

1(x
i
1), . . . , C

i
ni

(xi
ni

)}, i.e., each qi contains ni unconnected components. In the
following, we assume for convenience that conjunctive queries are written as a
conjunction of atoms instead of in the set notation, e.g., we now write each of the
disjuncts {Ci

1(x
i
1), . . . , C

i
ni

(xi
ni

)} as Ci
1(x

i
1)∧ . . .∧Ci

ni
(xi

ni
). By transforming the

disjunction of queries in conK(q) into conjunctive normal form (cf. [10, 7.3.2]), we
can reduce the problem of deciding whether K |= q1∨ . . .∨q` to deciding whether
K entails each union of connected conjunctive queries {at1} ∨ . . . ∨ {at`} such
that ati a concept atom from qi. Let conK(q) = {q1, . . . , q`}. We use cnf(conK(q))
for the conjunctive normal form of q1 ∨ . . . ∨ q`. We now show how we can de-
cide entailment of unions of conjunctive queries, where each conjunct consists of
one concept atom only. This suffices to decide conjunctive query entailment for
SHOQ.

Definition 8. Let K = (T , R) be a SHOQ knowledge base, q a Boolean con-
junctive query, and {C1(x1) ∨ . . . ∨ C`(x`)} a conjunct from cnf(conK(q)). An
extended knowledge base w.r.t. K and q is a pair (T ∪ Tq,R)) such that Tq

contains an axiom > v ¬Ci for each i with 1 ≤ i ≤ `.

We can now use the extended knowledge bases in order to decide conjunctive
query entailment as follows:

Theorem 2. K |= q iff each extended knowledge base Kq w.r.t. K and q is
inconsistent.

Please note that the extended knowledge bases are in SHOQu. It is, however,
not hard to see how the Tableaux algorithm for SHOQ [6] can be extended to
handle such extended KBs, which then provides a decision procedure for CQ
entailment in SHOQ.

5 Conclusions

In the previous section, we have presented a decision procedure for CQ entail-
ment in SHOQ. This is, to the best of our knowledge, the first CQ entailment
decision procedure that can handle nominals. In addition, we allow for non-
simple roles in the query as well, which is a feature that is known to be tricky.
Since the set of rewritten queries can potentially be large, the algorithm is more
suitable for showing decidability of the problem rather than building the foun-
dation of implementable algorithms. By analysing the role hierarchy one can,
however, avoid several rewritings. Going back to the example knowledge base
K4 and query q4 (see Figure 5 and 6) in Section 3, it is not hard to see that
with the given role hierarchy the atom t(x1, x4) is redundant. Every match for
the remaining role atoms implies the existence of a suitable t-edge. Since after
removing this redundant role atom the query is acyclic, no rewriting is necessary
in order to decide entailment. It will be part of our future work to investigate
whether such an analysis of query and role hierarchy can be used instead of
the transitivity rewriting step. Furthermore, we will try to find tight complexity
bounds for the conjunctive query entailment problem in SHOQ and we will try
to show decidability of conjunctive query entailment in SHOIQ.

References

1. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook. Cambridge Uni-
versity Press, 2003.

2. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decid-
ability of query containment under constraints. In Proc. of PODS 1998, 1998.

3. Birte Glimm, Ian Horrock, Carsten Lutz, and Uli Sattler. Conjunctive query an-
swering in the description logic SHIQ. In Proc. of IJCAI 2007, 2007.

4. Birte Glimm, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. Conjunctive query
answering for the description logic SHIQ. Technical report, The University of
Manchester, 2007. http://www.cs.man.ac.uk/~glimmbx/download/GHLS07b.pdf.

5. Birte Glimm, Ian Horrocks, and Ulrike Sattler. Conjunctive query answering for
description logics with transitive roles. In Proc. DL 2006, 2006.

6. Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ description
logic. In Proc. of IJCAI 2001, 2001.

7. Ullrich Hustadt, Boris Motik, and Ulrike Sattler. A decomposition rule for decision
procedures by resolution-based calculi. In Proc. of LPAR 2004, 2004.

8. Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation language
combining horn rules and description logics. In Proc. of ECAI 1996, 1996.

9. Maria M. Ortiz, Diego Calvanese, and Thomas Eiter. Characterizing data com-
plexity for conjunctive query answering in expressive description logics. In Proc.

of AAAI 2006, 2006.
10. Sergio Tessaris. Questions and answers: reasoning and querying in Description

Logic. PhD thesis, University of Manchester, 2001.

