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Abstract. Distributed Description Logics (DDLs) is a KR formalism
that enables reasoning with multiple ontologies interconnected by direc-
tional semantic mapping (bridge rules). DDLs capture the idea of im-
porting and reusing concepts between ontologies and thus combine well
with intuitions behind Semantic Web.
We modify the original semantics of DDLs in order to cope with a model-
ing discrepancy that has been pointed out in the literature. We do so by
introducing a new kind of bridge rules, which we call conjunctive. Using
conjunctive bridge-rules instead of the normal ones solves the problem.
All the basic properties that have been established for DDLs hold also for
the adjusted framework. We also provide a transformational semantics
for conjunctive bridge rules, and thus, at least theoretically, a decision
procedure for the new semantics.

1 Introduction

Distributed description logic (DDL) is a KR formalism introduced by Borgida,
Serafini and Tamilin in [1,2,3], intended especially to enable reasoning between
multiple ontologies connected by directional semantic mapping (bridge rules),
built upon the formal, logical and well established framework of Description
Logics (DLs). DDLs capture the idea of importing and reusing concepts between
several ontologies. This idea combines well with the basic assumption of Seman-
tic Web that no central ontology but rather many ontologies with redundant
knowledge will exist [4].

It has been noted in [5] that DDLs and the derived framework of C-OWL
[6] suffer from several drawbacks. Among these is the unintuitive behaviour in a
modeling scenario outlined therein. We analyse this problem and cope with it by
introducing a new kind of bridge rules with modified semantics. We then evaluate
the new semantics with respect to the desiderata that have been postulated for
DDLs. We also provide a transformational semantics for conjunctive bridge rules,
and thus, at least theoretically, a decision procedure for the new semantics.

2 Distributed Description Logics

As introduced in [1,2,3], a DDL knowledge base consists of a distributed TBox
T – a set of local TBoxes {Ti}i∈I , and a set of bridge rules B =

⋃
i,j∈I,i 6=j Bij



between these local TBoxes, for some non-empty index-set I. Each of the local
TBoxes Ti is a collection of axioms called general concept inclusions (GCIs) in
its own local DL Li of the form: i : C v D. It is assumed that each Li is a sub-
language of SHIQ [7]. Each Bij is a set of directed bridge rules from Ti to Tj .
Intuitively, these are meant to “import” information from Ti to Tj , and therefore
Bij and Bji are possibly, and expectedly, distinct. Bridge rules of Bij are of
two forms, into-bridge rules and onto-bridge rules (in the respective order):

i :A v→ j :G , i : B
w→ j : H .

Given a TBox T , a hole is an interpretation Iε = 〈∅, ·ε〉 with empty do-
main. Holes are used for fighting propagation of inconsistency. We use the
most recent definition for holes, introduced in [3]. A distributed interpretation
I = 〈{Ii}i∈I , {rij}i∈I,i 6=j〉 of a distributed TBox T consists of a set of local
interpretations {Ii}i∈I such that for each i ∈ I either Ii = (∆Ii , ·Ii) is an inter-
pretation of local TBox Ti or Ii = Iε is a hole, and a set of domain relations rij

between these domains – each rij is a subset of ∆Ii ×∆Ij . We denote by rij(d)
the set {d′ | 〈d, d′〉 ∈ rij} and by rij(D) the set

⋃
d∈D rij(d).

Definition 1. For every i and j, a distributed interpretation I satisfies the el-
ements of a distributed TBox T (denoted by I |=ε ·) according to the following
clauses:

1. I |=ε i : C v D if Ii |= C v D.
2. I |=ε Ti if I |=ε i : C v D for each C v D ∈ Ti.

3. I |=ε i :C v→ j :G if rij

(
CIi

)
⊆ GIj .

4. I |=ε i : C
w→ j : G if rij

(
CIi

)
⊇ GIj .

5. I |=ε B if I satisfies all bridge rules in B.
6. I |=ε T if I |=ε B and I |=ε Ti for each i.

If I |=ε T then we say that I is a (distributed) model of T. Finally, given
C and D of some local TBox Ti of T, C is subsumed by D in T (denoted by
T |=ε i : C v D) whenever, for every distributed interpretation I, I |=ε T
implies I |=ε i : C v D.

3 The Problem

In [5] it is pointed out that certain properties of subsumption relations are not
modeled properly by DDL. This problem is demonstrated by the following ex-
ample that we borrow from [5].

Example 1 ([5]). Consider the ontology O:

NonFlying ≡ ¬Flying , Penguin v Bird ,

Bird v Flying , Penguin v NonFlying .



And the distributed counterpart of O, divided into two ontologies O1 (on the
left) and O2 (on the right):

NonFlying1 ≡ ¬Flying1 , 1 : Bird1
w→ 2 : Penguin2 ,

Bird1 v Flying1 . 1 : NonFlying1
w→ 2 : Penguin2 .

As it is argued in [5], while the concept Penguin of O is not satisfiable, the
corresponding concept Penguin2 of O2 is. The problem is that, in a perfectly sane
interpretation, each instance x ∈ Penguin2

I2 , is assigned to two distinct elements
of ∆I1 , say y1 and y2, by r, one instance of Bird1 and the other one of NonFlying1.
Note that this is possible even if Bird1

I1 and NonFlying1
I1 are disjoint as required

by ontology O1. We agree with [5] that it is intuitive to expect that bridge rules
retain certain properties that GCIs have. So, we would expect Penguin2 to be
unsatisfiable, as we made it a “subconcept of two imported concepts” Bird1 and
NonFlying1 which in their original ontology O1 are disjoint.

Let us generalize the problem illustrated by Example 1 a bit further. We
have two local TBoxes in T, say Ti and Tj , and we have two onto-bridge rules

from i to j, i : C
w→ j : G ∈ B and i : D

w→ j : H ∈ B. The problem is that the
inclusion (G uH)Ij ⊆ rij

(
(C uD)Ii

)
does not necessarily hold in every model

of T, as we would have expected. The source of our intuition here is indeed the
fact that the respective inclusion (G uH)I ⊆ (C uD)I holds in every model I
in the case when C, D, G and H are all local concepts of some T and instead of
the bridge rules we have two GCIs G v C ∈ T and H v D ∈ T . We push our
generalization even further and expect the respective to hold in case if n > 0
onto-bridge rules are involved. Please note that this issue does not arise in case
of into-bridge rules (see Theorem 3 below).

To justify this generalization, we offer Example 2 in which two distinct pairs
of concepts are bridged by two onto-bridge rules.

Example 2. Consider two ontologies O1 and O2 with the following GCIs (and
also possibly some other):

1 : Tokaji1 u Selection1 v DessertWine1 , 2 : SixPuttony2 v Tokaji2 u Selection2 .

In order to import knowledge from O1 to O2 we add the following bridge rules:

1 : Tokaji1
w→ 2 : Tokaji2 , 1 :DessertWine1

v→ 2 :SweetWine2 ,

1 : Selection1
w→ 2 : Selection2 .

We argue, that intuitively SixPuttony v SweetWine should hold in O2. This is not
the case however, since (Tokaji2 u Selection2)

I2 ⊆ r12

(
(Tokaji1 u Selection1)

I1
)

does not necessarily hold in every distributed model, as discussed above.

In the following, we introduce an alternative kind of onto-bridge rules with
slightly modified semantics. We then show that this semantics follows the intu-
itions outlined above (Theorem 2 below).



4 Conjunctive Bridge Rules

We address the problem outlined above by introducing new form of onto-bridge
rules. We call these new bridge rules conjunctive and the original form normal.
We introduce the following syntax for them:

i : D
w
� j : H .

In the following, we use i : D
w
 j : H to denote onto-bridge rules that are

possibly of both kinds, either conjunctive or normal.

Definition 2. The semantics of conjunctive onto-bridge rules is established by
adding the following clause to Definition 1:

7. I |=ε i : C
w
� j : G if for each i : D

w
� j : H ∈ B, rij

(
CIi ∩DIi

)
⊇

GIj ∩HIj .

Our choice of adding new kind of onto-bridge rules instead of simply replacing
the old semantics is to underline the fact that both kinds can co-exist and be
used according to the modeling scenario and the intentions of the ontology editor.
Also, it is not yet clear, how the usage of conjunctive bridge rules affects the
computational complexity of the framework. It surely introduces a significant
number of additional conditions to verify. Hence it might be desirable to be
allowed to choose the exact form of a bridge rule according to the modeling
scenario.

5 Properties of Conjunctive Bridge Rules

We first show that conjunctive bridge rules are somewhat strictly stronger, in a
sense, than normal bridge rules. That is, all the semantic implications caused by
normal bridge rules are also in effect if conjunctive bridge rules are used instead.
With conjunctive bridge rules, we have some more implications in addition.

Theorem 1. Given a distributed TBox T with a set of bridge rules B and some

local TBoxes Ti and Tj such that i 6= j and i : C
w
� j : G ∈ B, for each

distributed interpretation I such that I |=ε T it holds that rij

(
CIi

)
⊇ GIj .

The next theorem provides a characterization of conjunctive bridge rules. It
says, that if we bridge between several pairs of concepts with conjunctive onto-

bridge rules, say i : C1

w
� j : G1, . . . , i : Cn

w
� j : Gn, then the implications

caused to the pairs of concepts pair-wise, do propagate to intersections C1u· · ·u
Cn and G1u· · ·uGn of these concepts. This does not hold for normal bridge rules
however, as demonstrated by Examples 1 and 2. It follows that indeed the choice
of conjunctive bridge rules does solve the problem outlined by the examples.



Theorem 2. Given a distributed TBox T with a set of bridge rules B and some
local TBoxes Ti and Tj such that i 6= j, if for some n > 0 the bridge rules

i : C1

w
� j : G1, . . . , i : Cn

w
� j : Gn are all part of B then for every distributed

interpretation I such that I |=ε T it holds that

rij

(
(C1 u · · · u Cn)Ii

)
⊇ (G1 u · · · uGn)Ij .

The next theorem shows that the corresponding characterization indeed holds
for normal into-bridge rules, hence there is no need to introduce conjunctive into-
bridge rules.1

Theorem 3. Given a distributed TBox T with a set of bridge rules B and some
local TBoxes Ti and Tj such that i 6= j, if for some n > 0 the bridge rules

i :C1
v→ j :G1, . . . , i :Cn

v→ j :Gn are all part of B then for every distributed
interpretation I such that I |=ε T it holds that

rij

(
(C1 u · · · u Cn)Ii

)
⊆ (G1 u · · · uGn)Ij .

6 Transformational Semantics

It follows that the problem of deciding subsumption with respect to a distributed
knowledge base that allows conjunctive bridge rules is reducible to the case with
normal bridge rules only (Theorem 4 below). As a tableaux decision procedure
is known for the latter case (see [2,3]), this result provides us with reasoning
support for DDLs with conjunctive bridge-rules. However, the transformation
leads to quadratic blowup in the number of bridge rules in the worst case, and
so the computational properties of the overall procedure may not be satisfiable.
This suggests further investigation of reasoning in presence of conjunctive bridge
rules.

Theorem 4. Given a distributed TBox T with a set of bridge rules B that con-
tains conjunctive bridge rules, let T′ and B′ be obtained in two steps:

1. adding i : C uD
w→ j : G uH to B for each pair of i : C

w
� j : G ∈ B and

i : D
w
� j : H ∈ B,

2. removing all conjunctive bridge rules from B.

Then for every i ∈ I and for every two concepts, say C and D, of Ti it holds
that T |=ε i : C v D if and only if T′ |=ε i : C v D.

Given the reduction, it is now clear that the expressive power of the frame-
work is not enhanced by addition of conjunctive bridge rules. We argue, however,
that conjunctive bridge rules still are an interesting update since using them in-
stead of normal onto-bridge rules guarantees intuitive behaviour of the semantics,
as demonstrated in Examples 1 and 2 and formally established by Theorem 2.
1 We are indebted to one of the anonymous referees for pointing this out.



7 Evaluation and Comparison

In [1,2,3] various intuitions on how the semantics of a distributed DL environ-
ment, such as DDL, should behave are presented. The original semantics of
DDLs has been evaluated with respect to these desiderata throughout [1,2,3].
We proceed with evaluating the new framework with respect to these desiderata.

First of all, monotonicity is a desired property, that is, the requirement that
bridge rules do not delete local subsumptions as postulated in [1,2].

Theorem 5 (Monotonicity). In every distributed TBox T that also allows
conjunctive bridge-rules it holds that Ti |= A v B =⇒ T |=ε i : A v B.

Another desired property is that there is no backflow of information against
the direction of bridge rules. This property (we use the version of [3]) also holds
in the presence of conjunctive bridge-rules.

Theorem 6 (Directionality). Given a distributed TBox T that allows con-
junctive bridge rules in its set of bridge rules B, if there is no directed path
of bridge rules from Ti to Tj in T, then T |=ε j : C v D if and only if
T′ |=ε j : C v D, where T′ is obtained by removing Ti from T as well as
removing all bridge-rules involving Ti from B.

Another interesting desideratum that has been postulated in [2] is that one
should be only able to add new knowledge by combination of into- and onto-
bridge rules.

Desideratum 1 (Strong directionality) If either for all k 6= i, Bki contains
no into-bridge rules or for all k 6= i, Bki contains no onto-bridge rules, then
T |=ε i : A v B implies Ti |= A v B.

Unfortunately, this does not hold for DDLs, with or without conjunctive bridge
rules. As a counterexample consider the distributed TBox of Example 1 and
replace all bridge-rules therein by conjunctive ones. This setting counters the
desideratum. Using the reduction of Theorem 4 one obtains an equivalent knowl-
edge base with no conjunctive bridge rules that still counters the desideratum.

Yet another interesting desideratum for DDLs is that local inconsistency that
occurs in some of the local TBoxes does not spread and pollute the whole system.
In [3] a precise characterization of how inconsistent local TBoxes affect a DDL
knowledge base is given. We confirm this property also in presence of conjunctive
bridge rules.

Theorem 7 (Local inconsistency). Given a distributed TBox T that also
allows conjunctive bridge rules, T |=ε i : C v D if and only if for any J ⊆ I not
containing i, T(εJ) |=d i : C v D, where |=d is a kind of entailment that does
not allow holes, and T(εJ) is obtained from T by removing each Tj, j ∈ J , and

adding {D v ⊥ | j : C
w
 i : D ∈ B ∧ j ∈ J} to each Ti, i ∈ I \ J .



Two desiderata of [1,2,3] show how subsumption is propagated along bridge
rules. Since only one onto-bridge rule is involved here, it follows immediately
that these desiderata also hold when a conjunctive onto-bridge rule is used.

Theorem 8 (Simple subsumption propagation). If i : C
w
 j : G ∈ B and

i :D v→ j :H ∈ B then T |=ε i : C v D =⇒ T |=ε j : G v H.

Theorem 9 (Generalized subsumption propagation). If i : C
w
 j : G ∈

B and i :Dk
v→ j :Hk ∈ B, for 1 ≤ k ≤ n then T |=ε i : C v

⊔n
k=1 Dk implies

T |=ε j : G v
⊔n

k=1 Hk.

So far we have evaluated the adjusted DDLs framework, with respect to the
desiderata postulated for DDLs in [1,2,3]. We have showed that all the desiderata
that are satisfied for the original framework also hold when conjunctive bridge
rules are present. Moreover, we introduce a variant of the Generalized subsump-
tion propagation desideratum, in which concept intersection is involved instead
of concept union. We consider this a desired property and are pleased to report
that it also holds for DDLs (with or without conjunctive bridge rules allowed).

Theorem 10 (Subsumption propagation over concept intersection). If

i : C
w
 j : G ∈ B and i :Dk

v→ j :Hk ∈ B, for 1 ≤ k ≤ n then T |=ε i : C vdn
k=1 Dk implies T |=ε j : G v

dn
k=1 Hk.

8 Related Work

Besides of DDLs of Borgida, Serafini and Tamilin [1,2,3], another major contri-
bution to distributed and modular ontologies is the approach of Cuenca Grau
et al. [8,5] where a combination of several ontologies using E-connections [9] is
proposed. In this framework, link relations – inter-ontology roles between local
ontologies – are favored instead of bridge rules. While both are related [9,10],
each maintains its own primary intuitions – in DDLs inter-ontology subsumption
is modeled directly with bridge rules, while the preference of links in the latter
framework has lead to such results as automated ontology decomposition [11].

An extension of DDLs called C-OWL has been introduced by Bouquet et al.
in [6]. Several improvements were suggested, including a richer family of bridge
rules, allowing bridging between roles, etc. Also, Ghidini and Serafini in [12,13]
enrich DDLs with heterogenous mappings, that is mappings between concepts
and roles.

9 Conclusion and Future Work

We have proposed an adjustment/extension of DDLs of [1,2,3] in order to address
an issue noted in [5]. We have introduced so called conjunctive onto-bridge rules
with modified semantics; there is no need for conjunctive into-bridge rules. Even



if the expressive power of the framework does not grow when conjunctive onto-
bridge rules are added, using them instead of normal onto-bridge rules guarantees
that the unintuitive behaviour of the semantics does not occur any more. All
desired properties that hold for DDLs, as established in [1,2,3], also hold when
conjunctive bridge rules are added. We have postulated one additional property
which holds with and without conjunctive bridge rules as well. We have also
provided a transformational semantics for conjunctive bridge rules and so, at
least theoretically, a decision procedure, given the known results for DDLs [2,3].

Other interesting issues regarding distributed ontologies that we would like
to address include evaluation of the adjusted DDL framework; and further in-
vestigation of reasoning algorithms and computational properties.
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