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1 Introduction

Research on reasoning in description logics has traditionally focused on the standard in-
ference tasks of (un)satisfiability, subsumption, and instance checking. In recent years,
however, there has been a growing interest in so-called non-standard inference services
(cf. [1]) which prove useful in the creation, evolution, and utilisation of description
logic knowledge bases (KBs). In this paper, we propose consequence finding as a new
non-standard reasoning task for description logics.

As its name suggests, consequence finding is concerned with the generation of a
subset of the implicit consequences of a KB. This topic has been extensively studied in
propositional logic (cf. [2]) where it has been shown to be relevant to a number of areas
of AI, among them knowledge compilation, abduction, and non-monotonic reasoning.
In the context of description logics, we view consequence finding as a tool to enable
knowledge engineers and end users alike to better understand and access the contents
of a description logic KB. We consider two possible applications:

Ontology Management The creation and maintenance of description logic KBs is a
difficult and time-consuming task. Consequence finding might prove a useful aid in
ontology design and evolution by allowing the knowledge engineer to have a better
idea of both what information is contained in the KB and how additions may affect
it. For instance, it would allow the knowledge engineer to check the relationships
holding between a set of atomic concepts, or to evaluate the impact of adding a
piece of new information to the KB.

Vague Queries An end user may not always have a specific query in mind but instead
a general idea of the information that interests her. Consequence finding could help
render DL KBs more accessible to users by allowing them to pose vague queries
about the contents of the KB. Possible queries might be “Give me all the facts
concerning penguins” or “Tell me what is known about Bob’s students”.

Consequence finding in DLs could take one of many forms depending on the nature
of the input (concept, ABox, TBox, KB) and the type of consequences desired (con-
cepts, assertions, axioms). In this paper, we investigate consequence finding for concept
expressions in the standard description logicALC. This seemed a suitable starting point
for our investigation as concept expressions are more basic than assertions and axioms,
and ALC is a well-known and reasonably expressive description logic.

Our paper is organized as follows. In Section 2, we generalize the propositional
notion of prime implicates to ALC concepts in order to provide a formal definition



of the notion of a relevant consequence. More refined variants of prime implicates are
then introduced to allow for more directed consequence finding, and the properties of
these different forms of prime implicates are studied. In Section 3, we give sound and
complete algorithms for computing prime implicates of concepts. In Section 4, we pro-
vide some first results concerning the complexity of prime implicate recognition. We
conclude the paper with a discussion of future work.

2 ALC Prime Implicates

One of the first questions that presents itself when we talk about consequence finding
is which consequences to generate? We obviously cannot generate all of the conse-
quences, because even the simplest propositional formula has infinitely many conse-
quences. Even if we restrict ourselves to one consequence per equivalence class, we
still produce a lot of clearly irrelevant or redundant consequences. Since one of the aims
of consequence finding is to make the contents of the KB more accessible to users, we
clearly need a way of focusing in on the relevant subset of consequences.

In propositional logic, the solution lies in considering only the strongest clausal
consequences of a formula, which are known as its prime implicates. By focusing on
clauses, we avoid redundancies, and by only considering the logically strongest conse-
quences, we eliminate weaker, irrelevant consequences. As every formula can be rewrit-
ten as a conjunction of clauses, and every clausal consequence of a formula is entailed
by some prime implicate of the formula, prime implicates provide a complete picture
of a formula’s consequences.

In order to generalize the notion of prime implicates to ALC concepts, we need to
come up with a suitable definition ofALC clausal concepts. In [3], a number of different
potential definitions are compared, and two are singled out as being most suitable for
the purposes of consequence finding.

The first definition is inspired by the notion of modal atom proposed in [4]. It defines
literal concepts as the concepts in NNF that cannot be decomposed propositionally:

Definition 1. Literal concepts, clausal concepts, and cubal concepts are defined as
follows (where A is an atomic concept and R an atomic role):

L ::= > |⊥ |A | ¬A | ∀R.F | ∃R.F
Cl ::= L |Cl t Cl
Cb ::= L |Cb u Cb
F ::= > |⊥ |A | ¬A |F u F |F t F | ∀R.F | ∃R.F

The second definition defines literal concepts as those concepts in NNF that cannot be
decomposed modally, resulting in a more restrictive clausal form.

Definition 2. Literal, clausal, and cubal concepts are defined as follows:
L ::= > |⊥ |A | ¬A | ∀R.Cl | ∃R.Cb
Cl ::= L |Cl t Cl
Cb ::= L |Cb u Cb

Both definitions yield the standard notion of literals, clauses, and cubes when restricted
to the propositional fragment of ALC. They can also be shown to satisfy a number of
properties of the propositional definition:



Proposition 1. For both Definition 1 and Definition 2, we have:

1. Clausal and cubal concepts are simply unions and intersections of literal concepts.
2. The negation of a literal concept is equivalent to a literal concept. Negations of

clausal (resp. cubal) concepts are equivalent to cubal (resp. clausal) concepts.
3. Every concept C is equivalent to a finite intersection of clausal concepts D =
D1 u ... uDn such that (a) D has the same depth as C, and (b) the size of D is at
most singly exponential in the size of C. Likewise every concept is equivalent to a
finite union of cubal concepts.

Definition 1 has the advantage of yielding a more compact representation while Defi-
nition 2 provides a more fine-grained decomposition of concepts. To simplify the pre-
sentation, we will henceforth consider only the second definition, but all of our results
hold equally well with respect to the first definition.

Now that we have selected a definition of clausal concepts, we can define prime
implicates in exactly the same manner as in propositional logic:1

Definition 3. A clausal concept Cl is an implicate of a concept C if and only if |= C v
Cl. A clausal concept Cl is a prime implicate of C if and only if:

1. Cl is an implicate of C
2. If Cl′ is an implicate of C such that |= Cl′ v Cl, then |= Cl v Cl′

This definition gives the standard notion of prime implicates, in which all of the
clausal consequences of a concept are considered, but for many applications, only some
of the consequences are of interest. This motivates the introduction of more refined
notions of prime implicates in which additional restrictions are placed on implicates. In
this paper, we consider the following three refined versions of prime implicates:

C-prime implicates: the C-prime implicates of a concept D are defined as the most
specific clausal concepts which subsume C uD but do not subsume C

only-L-prime implicates: the only-L-prime implicates of a concept D are the most
specific clausal concepts which both subsume D and contain only those atomic
concepts and roles in L

about-L-prime implicates: the about-L-prime implicates of a concept D are the most
specific clausal concepts which subsume D and which contain non-trivially all
symbols in L (i.e. such that all equivalent concepts contain all symbols in L)

We have chosen to study these particular variants because they seem interesting from an
applications point of view. Once appropriately extended to TBox axioms, C-prime im-
plicates could be used by the knowledge engineer to see how a new axiom will affect the
ontology O under construction (“What are all of the O-prime implicates of axiom?”),
whereas only-L-prime implicates could allow him to explore the relationships between
a set S of atomic concepts (“What are all of the S-prime implicates of O?”). Finally,
about-L-prime implicates can be used to generate all the consequences on a particular
topic of interest and are thus very useful for vague querying. It is this type of prime
implicate which would enable the user to find all the information concerning penguins.

1 The dual notion of prime implicants can also be straightforwardly defined, but here we consider
only prime implicates as they are the most relevant to purposes of the current paper.



Example 1. Consider the following concept expression Q:

A u (B t C) u ∃R.> u ∀R.(B u (A t C)) u ∀R.(B tD)

The prime implicates of Q are A, B t C, ∃R.(B u A) t ∃R.(B u C), ∀R.B, and
∀R.(A tC). There is just one only-{A}-prime implicates of Q, the atomic concept A.
There are three about-{A}-prime implicates of Q: A, ∃R.(B uA) t ∃R.(B u C), and
∀R.(A t C). The Q-prime implicates of ∀R.¬C are ∀R.¬C, ∀R.A, and ∃R.A uB.

It is not hard to see that standard prime implicates can be recovered as special cases
of C-, only-L-, and about-L-prime implicates. The following proposition further clari-
fies the relationship between standard and refined prime implicates:

Proposition 2.

1. Every C-prime implicate of a concept D is a prime implicate of C uD.
2. Every about-L-prime implicate of a concept D is a prime implicate of D.
3. An only-L-prime implicate of a concept D may not be a prime implicate of D.

To see why (3) holds, consider the concept ∃R.A which is an only-{A,R}-prime im-
plicate of ∃R.(A u (∀R.B)) but not a standard prime implicate.

We now consider some important properties of our notions of prime implicates:

Proposition 3. The set of prime implicates satisfy the following properties:

Finiteness The number of standard, C-, only-L-, and about-L-prime implicates of a
concept is finite modulo logical equivalence.

Covering Every standard, C-, only-L-, or about-L-implicate of a concept subsumes
respectively some standard, C-, only-L-, or about-L-prime implicate of the con-
cept.

Distribution The prime implicates (respectivelyC-, only-L-prime implicates) of a con-
cept C1 t ... t Cn are equivalent to the logically strongest unions of the prime
implicates (respectively C-, only-L-prime implicates) of the Ci.

Finiteness ensures that the prime implicates of a concept can be finitely represented,
which is of course essential from a computational perspective. Covering, as its name
suggests, implies that every implicate of a concept is “covered” by one of its prime im-
plicates. For the standard definition of prime implicates, Covering implies that the set of
prime implicates of a concept is equivalent to the concept itself, thus guaranteeing that
no information is lost in replacing a formula by its prime implicates. For L-concepts,
Covering implies that the set of L-prime implicates is equivalent to the uniform inter-
polant2 of the concept with respect to L. Distribution is at the heart of several prime
implicate generation algorithms in propositional logic, and we will exploit this property
in our own algorithms presented in the next section. Notice however that Distribution
does not hold for about-L-prime implicates since some disjuncts of about-L-concepts
may not contain all (or any) of the symbols in L.

2 We recall the uniform interpolant of a concept D with respect to a signature L is the most
specific concept built from L which subsumes D.



3 Prime Implicate Generation

Figure 1 presents algorithms for computing the prime implicates of a concept for the
different forms of prime implicates that we have defined. Our algorithms make use of
the following auxilliary functions:

– DNF-1 and DNF-2 which return a set of satisfiable cubal concepts (w.r.t. Definitions
1 and 2 respectively) whose union is equivalent to the input concept

– INTL which returns a finite union of cubal concepts (w.r.t. Definition 2) which is
equivalent to the uniform interpolant of the input concept w.r.t. L

We remark that we can implement these functions so that the size of the output of these
functions is at most singly exponential in the size of the input concept.

Function PI(X): generates standard prime implicates of X
Step 1: If X is unsatisfiable, return {⊥}. Otherwise, set T = DNF-1(X).
Step 2: For each T ∈ T : let LT be the set of propositional literals in T , let ER

T be the set of concepts
E such that ∃R.E is in T , and let UR

T be the intersection of concepts U such that ∀R.U is in T . Set

∆(T ) = LT ∪
[
R

({∀R.P |P ∈ PI(UR
T )} ∪ {

G
Hi∈DNF-2(EuUR

T
)

∃R.Hi|E ∈ ER
T }

Step 3: Set CANDIDATES = {
F

T∈T GT |GT ∈ ∆(T )}.
Step 4: For each Cj ∈ CANDIDATES: if |= Ck v Cj for some Ck ∈ CANDIDATES with k > j,
then delete Cj from CANDIDATES.
Step 5: Return CANDIDATES.

We now show how to modify PI to generate other types of prime implicates. For only-L-prime
implicates, we define ∆(T ) as follows where LLT = LT ∪ {>} \ {(¬)A|A 6∈ L}:

∆(T ) = LLT ∪
[

R∈L

({∀R.P |P ∈ PI(UR
T )}∪{

G
i

∃R.Hi | INTL(EuUR
T ) =

G
i

Hi and E ∈ ER
T })

For C-prime implicates, we eliminate from ∆(T ) all implicates of C, and for about-L-prime impli-
cates, we remove from CANDIDATES all concepts which are not about-L-concepts. Notice that for
C- and about-L-prime implicates, the modifications only affect the outermost call to PI; recursive
calls use the same algorithm as for standard prime implicates.

Fig. 1. Algorithms for prime implicate generation.

Our algorithms all work in a similar manner. In Step 1, we check whether the input
concept X is unsatisfiable, outputting ⊥ if this is the case. For satisfiable X , we set
T equal to a set of satisfiable concepts whose union is equivalent to X . We know from
the distribution property (Proposition 3) that every prime implicate ofX is equivalent to
some union of prime implicates of the concepts in T . In Step 2, we construct a set∆(T )
of clausal concepts for each T ∈ T in such a way that every prime implicate of T is



equivalent to some element in∆(T )3. This means that in Step 3, we are guaranteed that
every prime implicate of the input concept is equivalent to some candidate prime im-
plicate in CANDIDATES. During the comparison phase in Step 4, non-prime candidates
are eliminated, and exactly one prime implicate per equivalence class is retained.

The algorithms differ in their definition of ∆(T ) in Step (2). For standard prime
implicates, we set ∆(T ) equal to the propositional literals in T (LT ) plus the strongest
∀-literal concepts implied by T (

⋃
R({∀R.P |P ∈ PI(UR

T )}) plus the strongest ∃ clausal
concepts implied by T ({

⊔
Hi∈DNF-2(EuUR

T ) ∃R.Hi|E ∈ ER
T }, i.e. the concepts ∃R.(Eu

UR
T ) put into clausal form). It can be shown that every standard prime implicate of T

must be equivalent to one of the elements in ∆(T ) (note however that some elements
in ∆(T ) may not be prime implicates). For only-L-prime implicates, we modify ∆(T )
in order to ensure that the elements of ∆(T ) contain only the symbols in L (and that
they include all only-L-prime implicates of T ). For C-prime implicates, we remove
from ∆(T ) all implicates of C. Finally, for about-L-prime implicates, we use the same
∆(T ) as for standard prime implicates, but we eliminate from CANDIDATES all clausal
concepts which are not about-L-concepts.

Proposition 4. The prime implicate generation algorithms presented in Figure 1 are
sound, complete, and always terminate.

Our algorithms correspond to the simplest possible implementation of the distribu-
tion property, and it is well-known that naive implementations of the distribution prop-
erty are computationally infeasible even for propositional logic. More efficient versions
of our algorithms can be obtained using techniques developed for propositional logic,
cf. [2]. For instance, instead of generating all of the candidate concepts and then com-
paring them, we can build them incrementally, comparing them as we go.

By performing induction on the depth of the input concept, it is possible to place an
upper bound on the size of the prime implicates generated by our algorithms:

Proposition 5. The size of the smallest representation of a standard, C-, only-L-, and
about-L-prime implicate of a concept is at most singly exponential in the size of the
concept.

The following proposition shows that this bound is optimal.

Proposition 6. The size of the smallest representation of a standard, C-, only-L-, or
about-L-prime implicate of a concept can be exponential in the size of the concept.

Proof. Consider the concept (
dn

i=1(∀R.(Ai1 t Ai2)) u ∃R.> and its prime implicate⊔
ik∈{1,2} ∃R.(A1i1 u ... uAnin

).

4 Prime Implicate Recognition

Prime implicate recognition consists in deciding whether a given concept is a prime
implicate of another. The purpose of this section is to study the complexity of this
decision problem for the different notions of prime implicates that we have introduced.

3 A worked-out example of Step 2 for standard prime implicates can be found in [3].



It is not hard to see that this decision problem must be at least as difficult as unsat-
isfiability: a concept is unsatisfiable just in the case that it has ⊥ as a prime implicate
(irrespective of the notion of prime implicate considered).

Proposition 7. Recognition of standard, C-, only-L-, and about-L-prime implicates
are all PSPACE-hard problems.

In order to obtain an upper bound, we exploit Proposition 5 which tells us that there
is some polynomial p such that for every concept C the size of its prime implicates is
bounded by 2p(|C|). This leads to a simple non-deterministic procedure for determining
if a clausal concept Cl is a prime implicate of a concept C. We simply guess a clausal
concept W of size at most 2p(|C|) and check whether W is an implicate of C which is
subsumed by Cl and does not subsume Cl. If this is the case, then Cl is not a prime
implicate (we have found a more specific implicate of C), otherwise, there exists no
stronger implicate, so Cl is indeed a prime implicate.

Proposition 8. Recognition of standard, C-, only-L-, and about-L-prime implicates
are all in EXPSPACE4.

The following proposition improves on the above complexity bounds.

Proposition 9. We have the following:

1. Standard prime implicate recognition is in EXPTIME.
2. C-prime implicate recognition is in EXPTIME5.
3. about-L-prime implicates recognition is in NEXPTIME.
4. only-L-prime implicate recognition is CONEXPTIME-hard.

Proof. To demonstrate (1), we have constructed an algorithm for deciding standard
prime implicate recognition in single-exponential time. Our algorithm first checks that
the clausal concept is indeed an implicate and then verifies that each of the component
literals is as specific as possible. Refer to [3] for more details.

(2) follows directly from (1) since C-prime implicates are just standard prime im-
plicates which are not implied by C (by Proposition 2).

(3): We can check whether a concept Cl is an about-L-prime implicate of a concept
D in three steps: first, we check that the Cl contains all symbols in L (linear time),
next, we verify that Cl is indeed a standard prime implicate of D (exponential time
by (1)), and finally, we ensure that each symbol in L appears non-trivially in Cl. For
this last step, it suffices to show that for each symbol s ∈ L the uniform interpolant
UIs of Cl over Sig(Cl) \ {s} is not subsumed by Cl. This can be accomplished in
non-deterministic exponential time by guessing and verifying an open branch of the
tableaux of UIs u ¬Cl for each s.

For (4), we reduce the conservative extension decision problem forK (proven CON-
EXPTIME-complete in [5]) to the only-L-prime implicate recognition problem. We re-
call that a formula φ1 ∧ φ2 is a conservative extension of φ1 if for every formula ψ

4 While the proof given here is non-constructive, we do have constructive exponential-space
algorithms which we were unable to include for lack of space.

5 Here we assume that the concept C is considered as part of the input



with var(ψ) ⊆ var(φ1) we have φ1 ∧ φ2 |= ψ implies φ1 |= ψ. The reduction is
straightforward: φ1 ∧ φ2 is a conservative extension of a cubal formula φ1 if and only
if ∃R.f(φ1) is a var(φ1) ∪ {R}-prime implicate of ∃R.(f(φ1 ∧ φ2)), where f is the
standard mapping between K-formulae and ALC concepts. This is sufficient to show
CONEXPTIME-hardness since the conservative extension problem remains CONEXP-
TIME-hard even when φ1 is restricted to be a cubal formula.

We leave the determination of the exact complexity classes of the different prime
implicate recognition tasks as an interesting open problem.

5 Future Work

While there are several possible continuations to this work, the question that interests us
most is the appropriate extension of consequence finding to ABox assertions and TBox
axioms. This is a non-trivial task as while the definition of clausal forms of assertions
and axioms, and thus of assertion and axiom prime implicates, is rather straightforward,
we lose some of the nice properties enjoyed by concept prime implicates. In particular,
prime implicate axioms and assertions do not in general satisfy the covering property
since there may be infinite sequences of increasingly more specific assertions or ax-
ioms. This is a familiar problem as these infinite sequences are also responsible for
the inexistence of most specific concepts of ABox individuals in many common DLs
(cf. [6]) and the lack of uniform interpolation for ALC TBoxes [7]. There appear to be
two possible solutions to this problem. The simplest solution consists in bounding the
depth of the assertions/axioms to be generated. A second more elegant possibility is to
enrich the language by fixpoint constructs (cf. [8]) so that these infinite sequences of
assertions/axioms might be finitely represented.
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