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Abstract. Fuzzy Description Logics (f-DLs) have been proposed as for-
malisms capable of capturing and reasoning about imprecise and vague
knowledge. The last years, research in Description Logics, and also in f-
DLs, is largely focused on the development of languages where complexity
of query answering is as efficient as query answering in data bases. One
such example is the DL-Lite language and its fuzzy extension f-DL-Lite.
In the current paper we present various a variety of query languages by
which we can query a fuzzy DL-Lite knowledge base. Then, we present
a prototype implementation for querying f-DL-Lite ontologies.

1 Introduction

Recently there have been quite a few work on DL-based fuzzy ontology lan-
guages [11, 9, 10, 8, 12], which have been proposed as formalisms capable of cap-
turing and reasoning about imprecise and vague knowledge. In particular, Strac-
cia [12] extended the DL-Lite ontology language [2], which enables highly efficient
query answering procedures, to fuzzy DL-Lite. He showed that conjunctive query
answering in f-DL-Lite is quite similar to query answering in crisp DL-Lite, al-
though some technical details like top-k answering and a modification on the
knowledge base consistency algorithm of crisp DL-Lite need to be considered.

In this paper, we propose two novel query languages, which provide one with
different ways on querying fuzzy DL-Lite ontologies. More precisely, we allow
the users to specify threshold queries and general fuzzy queries. Comparing with
Straccia’s query language, the threshold query language is flexible as it allows
one to specify a threshold for each query atom (such as “tell me e-shops that
are popular [with degrees at least 0.8] and sell good books [with degrees at least
0.9]”), while the general fuzzy query language is a general form of Straccia’s
query language. Furthermore, we present algorithms for answering these queries
and report implementations as well as preliminary but encouraging evaluation
based on the ONTOSEARCH2, which is a query engine for both DL-Lite and
fuzzy DL-Lite.

(∗) This extended abstract is accompanied with an online technical report
(http://www.ontosearch.org/TR/f-DL-Lite.pdf), which contains more details in-
cluding algorithms and the proofs.



2 f-DL-Lite

In the current section we will briefly introduce the fuzzy DL-Lite (which we call
f-DL-Lite) language [12], which extends DL-Lite core with fuzzy assertions of the
forms B(a) ≥ n, R(a, b) ≥ n, where B is basic class, R is a property, a and b are
individuals and n is a real number in the range [0, 1]. We assume that the reader
is familiar with DL-Lite; in a different case [1, 2] are the standard sources. We
only remind the form of conjunctive queries which we will use in the following.
A conjunctive query (CQ) q is of the form

q(X)← ∃Y .conj(X, Y ) (1)

where q(X) is called the head, conj(X, Y ) is called the body, X are called the
distinguished variables, Y are existentially quantified variables called the non-
distinguished variables, and conj(X, Y ) is a conjunction of atoms of the form
A(v), R(v1, v2), where A, R are respectively named classes and named properties,
v, v1 and v2 are individual variables in X and Y or individual names in O. The
semantics of f-DL-Lite ontologies is defined in terms of fuzzy interpretations
[11]. A fuzzy interpretation is a pair I = (∆I , ·I) where the domain ∆I is a
non-empty set of objects and ·I is a fuzzy interpretation function, which maps:

– an individual a to an element of aI ∈ ∆I ,
– a named class A to a membership function AI : ∆I → [0, 1], and
– a named property R to a membership function RI : ∆I ×∆I → [0, 1].

Using the fuzzy set theoretic operations [6], fuzzy interpretations can be extended
to interpret f-DL-Lite class and property descriptions. Following Straccia [12],
we use the Lukasiewicz negation, c(a)=1-a and the Gödel t-norm for interpreting
conjunctions, t(a, b) = min(a, b). The semantics of f-DL-Lite class and property
descriptions, and f-DL-Lite axioms are depicted in Table 1. Given the above
semantics, it is obvious that crisp assertions B(a), R(a, b) are special forms of
fuzzy assertions where n = 1.

Syntax Semantics

∃R (∃R)I(o1) = sup
o2∈∆I

{RI(o1, o2)}

¬B (¬B)I(o) = 1−BI(o)
C1 u C2 (C1 u C2)

I(o) = t(CI
1 (o), CI

2 (o))

R− (R−)I(o2, o1) = RI(o1, o2)

B v C ∀o ∈ ∆I , BI(o) ≤ CI(o)
Func(R) ∀o1 ∈ ∆I , ]{o2 | RI(o1, o2) > 0} = 1
B(a) ≥ n BI(aI) ≥ n

R(a, b) ≥ n RI(aI , bI) ≥ n

Table 1. Semantics of f-DL-Lite class and property descriptions, and f-DL-Lite axioms



3 Querying f-DL-Lite Ontologies

In this section, we introduce two query languages for f-DL-Lite ontologies. The
first language extends conjunctive queries with thresholds for atoms in queries.
This is motivated by the extension of the instance checking problem which con-
siders a single fuzzy assertion. The second language is a general fuzzy query
language, which is a general form of query languages, such as the fuzzy thresh-
old query language and the query language proposed in [12].

3.1 Two New Query Languages

Threshold Queries As noted in [1] in DL-Lite the instance checking problem is a
special case of conjunctive queries. Since f-DL-Lite extends DL-Lite with fuzzy
assertions, it would be natural for a query language to allow users to specify fuzzy
assertions for atoms in queries. Thus, we define conjunctive threshold queries
(CTQ) which extend atoms A(v), R(v1, v2) in conjunctive queries of the form
(1) into the following forms A(v) ≥ t1, R(v1, v2) ≥ t2, where t1, t2 ∈ (0, 1] are
thresholds.

Example 1. We can query models who are tall with a degree no less than 0.7
and light with a degree no less than 0.8 with the following conjunctive threshold
query:

q(v)← Model(v) ≥ 1,Tall(v) ≥ 0.7, Light(v) ≥ 0.8.

It is obvious that threshold queries are more flexible than queries of the form (1)
in that users can specify different thresholds for different atoms in their queries.

Formally, given an f-DL-Lite ontology O, a conjunctive threshold query qT

and an evaluation [X 7→ S], we say O entails qT (denoted as O |=T qT ) if every
interpretation I of O satisfies the following condition: for each atom A(v) ≥
t1 (R(v1, v2) ≥ t2) of qT , we have AI(v)X 7→S ≥ t1 (resp. RI(v1, v2)X 7→S ≥ t2).
In this case, S is called a solution of qT . A disjunctive threshold query (DTQ)
is a set of conjunctive threshold queries sharing the same head.

General Fuzzy Queries Since f-DL-Lite associates assertions with degrees of
truth, another useful feature for its query language is to associate degrees of truth
with answers in answer sets of queries over f-DL-Lite ontologies. In threshold
queries, an evaluation [X 7→ S] either satisfies the query entailment or not;
hence, answers of such queries are crisp. In this subsection, we introduce general
fuzzy queries which allow fuzzy answers. Syntactically, general fuzzy conjunctive
queries (GFCQ) extend the atoms A(v), R(v1, v2) of conjunctive queries of the
form (1) into ones with the following form A(v) : k1, R(v1, v2) : k2, where k1, k2 ∈
(0, 1] are degrees. These syntactic extensions are similar with the ones proposed
for fuzzy-SWRL in [8]. Thus, the existential quantifier is interpreted as sup, while
we leave the semantics of the conjunction (G) and that of the degree-associated
atoms (a) open. To simplify the presentation of the semantics, we use a unified
representation atomi(v̄) for atoms in general fuzzy conjunctive queries.



Given an f-DL-Lite ontology O, an interpretation I of O, a general fuzzy con-
junctive query qF and an evaluation [X 7→ S], the degree of truth of qF under
I is d = sup

S′∈∆I×...×∆I
{Gn

i=1 a(ki, atomI
i (v̄)[X 7→S,Y 7→S′])}, where ki ( 1 ≤ i ≤ n)

and atomi are as mentioned above, G is the semantic function for conjunc-
tions and a is the semantic function for degree-associated atoms. S : d is called
a candidate solution of qF . When d > 0, S : d is called a solution of qF .
Furthermore, the semantic functions should satisfy the following condition: If
atomI

i (v̄)[X 7→S,Y 7→S′] = 0 for all possible S′, d = 0.
A general fuzzy disjunctive query (GFDQ) is a set of general fuzzy conjunc-

tive queries sharing the same head. The disjunction is interpreted as the s-norm
(u) of disjuncts. In what follows, we give some example of the semantic functions
for conjunctions and degree-associated atoms.

1. Fuzzy threshold queries: If we use t-norms (t) as the semantic function for
conjunctions and R-implications (ωt) as the semantic function for degree-
associated atoms, we get fuzzy threshold queries, in which the degree of
truth of qF under I is d = sup

S′∈∆I×...×∆I
{tni=1 ωt(ki, atomI

i (v̄)[X 7→S,Y 7→S′])}.

Given some S′, if for all atoms we have atomI
i (v̄)[X 7→S,Y 7→S′] ≥ ki, since

ωt(x, y) = 1 when y ≥ x [6], we have d = 1; this corresponds to threshold
queries introduced earlier.

2. Straccia’s query language [12]: It is a special case of fuzzy threshold query
language, where all ki = 1. Since ωt(1, y) = y [6], the degree of truth of qF

under I is d = sup
S′∈∆I×...×∆I

{tni=1 atomI
i (v̄)[X 7→S,Y 7→S′]}.

3. Fuzzy aggregation queries: if we use fuzzy aggregation functions [6], such as
G(x) =

∑n
i=1 xi, for conjunctions and a(ki, y) = ki∑n

i=1 ki
∗ y as the seman-

tic function for degree-associated atoms, we get fuzzy aggregation queries, in

which the degree of truth of qF under I is d = sup
S′∈∆I×...×∆I

∑n
i=1 ki∗atomI

i (v̄)[X 7→S,Y 7→S′]∑n
i=1 ki

.

4. Fuzzy weighted queries: If we use generalised weighted t-norms as the se-
mantic function for conjunction, we get fuzzy weighted queries, in which
the degree of truth of qF under I is d = sup

S′∈∆I×...×∆I
{minn

i=1 u(k − kit(k,

atomI
i (v̄)[X 7→S,Y 7→S′]))}, where k = maxn

i=1 ki and u is a t-conorm (fuzzy
union). The main idea of this type of queries is that they provide an aggre-
gation type of operation, on the other hand an entry with a low value for a
low-weighted criterion should not be critically penalized. Moreover, lowering
the weight of a criterion in the query should not lead to a decrease of the
relevance score, which should mainly be determined by the high-weighted
criteria. For more details see [3].

3.2 Query Answering

This sub-section provides algorithms to answer the two kinds of queries (pre-
sented in the previous sub-section) over f-DL-Lite ontologies.



Algorithms for answering queries in f-DL-Lite mainly consist of four steps
(like the algorithm for crisp DL-Lite [1]): (i) normalisation of the set T of the
class axioms of O by the procedure Normalise(T ), which returns the normalised
set T ′ of class axioms; (ii) normalisation and storage of the set A of individual
axioms in O by the procedure Store(A) that normalise A and returns the re-
lational database DB(A) of A, as well as checking the consistency of O by the
procedure Consistency(O, T ′); (iii) reformulation of the input query q against
the normalised set T of the class axioms by the procedure PerfectRef(q, T ′),
which returns a set Q of (conjunctive) queries; (iv) transformation of the set Q
of (conjunctive) queries into SQL queries by the procedure SQL(Q), as well as
the evaluation of SQL(Q) by the procedure Eval(SQL(Q), DB(A)).

Answering Threshold Queries Given an f-DL-Lite ontology O, a conjunctive
threshold query qT , the procedure AnswerT(O, qT ) computes the solutions of qT

w.r.t. O, following the above steps (i) - (iv).

Algorithm A-1: AnswerT(O,
qT )

1: T = Class-Axioms(O)
2: T ′ = Normalise(T ) //normalisation of

class axioms
3: A = Individual-Axioms(O)
4: DB(A) = Store(A) //normalisation

and storage of individual axioms
5: if Consistency(O, T ′) = false then
6: return inconsistent //O is incon-

sistent
7: end if
8: return Eval(SQLT(PerfectRefT(qT ,T ′)),

DB(A))

Algorithm A-2: SQLT(Q)

1: QS := ∅
2: for every query q in Q do
3: sc:=Select-Clause(q) //construct

the select-clause of q
4: fc:=From-Clause(q) //construct the

from-clause of q
5: wc1:=WC-Binding(q) //construct

the part of the where-clause about
binding

6: wc2:=WC-Threshold(q) //construct
the part of the where-clause that re-
lates to thresholds

7: QS := QS∪Construct-SQL(sc,fc,wc1,wc2)
8: end for
9: return QS

Theorem 1. Let O be an f-DL-Lite ontology, qT a conjunctive threshold query
and S a tuple of constants. S is a solution of qT w.r.t. O iff S ∈ AnswerT(O, qT ).

See the online TR(∗) for detailed explanations of the algorithms A-1 and A-2, as
well as the proof of Theorem 1.

Answering General Fuzzy Queries Similarly, given an f-DL-Lite ontology O, a
general fuzzy conjunctive query qF , the procedure AnswerF(O, qF ) computes the
solutions of qF w.r.t. O.



Algorithm A-3: AnswerF(O, qF , a,
G)

1: T = Class-Axioms(O)
2: T ′ = Normalise(T ) //normalisation of

class axioms
3: A = Individual-Axioms(O)
4: DB(A) = Store(A) //normalisation

and storage of individual axioms
5: if Consistency(O, T ′) = false then
6: return inconsistent //O is incon-

sistent
7: end if
8: q = Remove-Degrees(qF ) //q is trans-

formed from qF by removing the de-
grees from qF

9: return Cal(qF , EvalSQL(PerfectRef(q,
T ′)),DB(A)), a, G)

Algorithm A-4: Cal(qF , SS, a, G)

1: ANS := ∅
2: for every tuple S ∈ SS do
3: ANS := ANS∪ Cal-

Soln(qF , S, a, G) //Calculate the so-
lution S : d based on the semantic
functions a and G

4: end for
5: return ANS

Theorem 2. Let O be an f-DL-Lite ontology, qF a general fuzzy conjunctive
query and S : d a pair of a tuple of constants together with a truth degree, a a se-
mantic function for conjunctions and G a semantic function for degree-associated
atoms. S : d is a solution of qF w.r.t. O iff (S : d) ∈ AnswerF(O, qF ,a,G).

See the online TR(∗) for detailed explanations of the algorithms A-3 and A-4, as
well as the proof of Theorem 2.

4 Implementation and Evaluation

The fuzzy DL-Lite knowledge base was implemented by extending the DL-Lite
knowledge base system used in ONTOSEARCH2 [7]. In ONTOSEARCH2 we
slightly extend SPARQL to make fuzzy queries. In this section, we mainly focus
on the evaluations of the performance. Please refer to the online TR (∗) for more
details of the fuzzy extension of SPARQL.

We evaluated the performance of our system by modifying the Lehigh Uni-
versity Benchmark [5] to include fuzzy concepts, and restricted the semantic
complexity of the underlying ontology to that of DL-Lite. This allowed us to
create data sets of arbitrary size. Comparative benchmarking was performed
with ONTOSEARCH2, this is a non-fuzzy implementation of DL-Lite which
allowed us to determine the overhead of a fuzzy query compared to a normal
DL-Lite query. We added two fuzzy concepts to the ontology, “Busy” and “Fa-
mous”. The first of these was determined by the number of courses taught or
taken by a member of staff or student, the second is determined by the number of
papers published. The values are calculated using the s-shaped curve functions
kf (n) to calculate the fuzzy value for fame given n papers published, and kb(n)
to calculate the fuzzy value for busyness given n courses taken:

kf (n) = 2
1+exp(−0.1n) − 1 kb(n) = 2

1+exp(−0.4n) − 1

For GFCQs the we used a summation operation for a, a multiplication oper-
ation for G giving a semantics of weights.



To test the system we created dl-lite datasets containing 1, 10 and 50 univer-
sities, and processed these to include the fuzzy concepts described above. Two
queries were created, the first simple instance retrieval of all “Famous” members
of staff. In CTQ form this had a threshold of ≥ 0.5 in GFCQ form the query
returned all staff members in order of Fame, and in DL-Lite form, this query
simply returned all members of staff. The second query found all busy students
which were taught by famous members of staff. The CTQ returned all students
with a busyness ≥ 0.5 who were taught by staff with fame ≥ 0.5, the GFCQ
returned a list of students sorted by a weight function based on their business
and the fame of any members of staff who taught them, the DL-Lite query sim-
ply returned a list of all students who were taught by any member of staff. The
results are shown in 2.

Table 2. Results of the fuzzy Lehigh University Benchmark queries

Query T [1] (ms) T [10] (ms) T [50] (ms)

CTQ-1 179 536 1061
GFCQ-1 220 683 1887
DL-Lite-1 152 422 891
CTQ-2 532 845 2922
GFCQ-2 520 973 3654
DL-Lite-2 494 892 2523

The performance of the fuzzy reasoner is in all cases close to the performance
of the crisp case reasoner for query answering. With small data sets, it is has
almost identical performance, particularly on more complex queries. As more
data must be evaluated, the performance drops slightly.

5 Conclusion and Outlook

DL-based fuzzy ontology languages have attracted much attention the last years.
That is mainly due to the fact that compared to other fuzzy formalisms, fuzzy
ontology languages provide an expressive and yet efficient way to perform rea-
soning over a fuzzy knowledge. In this paper, we report on evaluations of efficient
conjunctive query answering over fuzzy DL-Lite ontologies.

Although there have been quite a few work on fuzzy SQL, such as [4], the
closest work to ours is Straccia’s work on f-DL-Lite [12], since DL-Lite itself
goes beyond relational databases. Our paper builds on Straccia’s work [12], to
further propose two new expressive query languages accompanied with query
answering algorithms over f-DL-Lite not proposed in [12]. The first one is a
simple generalization of the instance checking (entailment) problem for fuzzy
DLs, while the second one consists of a very expressive fuzzy query language



which goes beyond traditional conjunctive queries used in [12]. Actually this
query language can work as a framework and by giving different semantics to
its parts we can create different fuzzy query languages. Finally, our preliminary
evaluations indicate that the performance of the fuzzy query engine is at least
in many cases close to the performance of the crisp query engine.
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