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Abstract. In this paper, we propose an approach to translating any ALC ontol-
ogy (possible inconsistent) into a logically consistent set of disjunctive datalog
rules. We achieve this in two steps: First we give a simple way to make anyALC
based ontology 4-valued satisfiable, and then we study a sound and complete
paraconsistent ordered-resolution decision procedure for our 4-valuedALC. Our
approach can be viewed as a paraconsistent version of KAON2 algorithm.

1 Introduction

The study of inconsistency handling in description logics can be divided into two funda-
mentally different approaches. The first is based on the assumption that inconsistencies
indicate erroneous data which is to be repaired in order to obtain a consistent knowl-
edge base [1]. The other approach yields to the insight that inconsistencies are a natural
phenomenon in realistic data which are to be handled by a logic, such as paraconsistent
logics which tolerates it [2–6]. Comprised with the former, the latter acknowledges and
distinguishes the different epistemic statuses between ”the assertion is true” and ”the
assertion is true with conflict”. In this paper, following [6], we study an approach to
reasoning with an inconsistent ALC ontology, which belongs to the second.

Considering applications of DLs, the reasoning algorithm is as important as the
semantics definition. Compared to the algorithm implemented in [6] by employing a
polynomial transformation algorithm which still may be time consuming for large on-
tologies, the process described in this paper which translate an ontology directly into
a satisfiable set of rules saves the preprocessing time. Compared to the algorithm pro-
posed in [4] which is a sequence calculus based procedure, our algorithm can benefit
directly from the technical details of the KAON2 implementation. Compared to the
work given in [3] where a tractable subsumption is discussed, our approach spells out
for both subsumption and instant checking reasoning tasks.

There exist two fundamentally reasoning algorithms which have been implemented
in DLs reasoners. The first historic approach is based on tableaux algorithms [7]. The
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second approach is based on basic superposition (ordered resolution for ALC) real-
ized by KAON2 reasoner [8]. Our algorithm is based on an adaptation of the algorithm
underlying KAON2 for dealing with ALC4, a paraconsistent ALC. Theoretically, we
design a paraconsistent ordered-resolution for ALC4 which is different from other al-
gorithms in [3, 4] and which provides a way to extend KAON2 algorithm to reason with
inconsistent ontologies. Due to space limitations, proofs are omitted. They can be found
in a technical report under http://www.aifb.uni-karlsruhe.de/WBS/phi/pub/parowltr.pdf.

The paper is structured as follows. In Section 2, we review briefly the syntax and se-
mantics of the paraconsistent description logic defined in our pervious work [6], where
more technical details and intuitions can be found. Section 3 gives the paraconsistent
resolution decision procedure and Section 4 studies how a set of consistent disjunctive
datalog rules can be obtained from a four-valued ALC ontology. Finally we conclude
this paper in Section 5.

2 The Four-valued Description Logic ALC4

2.1 Syntax and Semantics

Syntactically, ALC4 hardly differs from ALC. Complex concepts and assertions are
defined in exactly the same way. However, we allow three kinds of class inclusions,
corresponding to the three implication connectives in four-valued logic case. They are
called material inclusion axiom, internal inclusion axiom, and strong inclusion axiom,
denoted as C 7→ D, C @ D, and C → D, respectively.

Semantically, four-valued interpretations map individuals to elements of the domain
of the interpretation, as usual. For concepts, however, to allow for reasoning with in-
consistencies, a four-valued interpretation over domain ∆I assigns to each concept C a
pair 〈P, N〉 of (not necessarily disjoint) subsets of ∆I . Intuitively, P is the set of ele-
ments known to belong to the extension of C, while N is the set of elements known to
be not contained in the extension of C. P and N are not necessarily disjoint and mutual
complemental with respect to the domain.

Formally, a four-valued interpretation is a pair I = (∆I , ·I) with ∆I as domain,
where ·I is a function assigning elements of ∆I to individuals, and subsets of (∆I)2 to
concepts, such that the conditions in Table 1 are satisfied, where functions proj+(·) and
proj−(·) are defined by proj+〈P, N〉 = P and proj−〈P, N〉 = N.

For the semantics defined above, we ensure that a number of useful equivalences
from classical DLs, such as double negation law and Demorgen Law, hold, see [6] for
details.

The semantics of the three different types of inclusion axioms is formally defined in
Table 2 (together with the semantics of concept assertions). We say that a four-valued
interpretation I satisfies a four-valued ontology O (i.e. is a model of it) iff it satisfies
each assertion and each inclusion axiom in O. An ontology O is 4-valued satisfiable
(unsatisfiable) iff there exists (does not exist) such a model.



Table 1. Semantics of ALC4 Concepts

Constructor Syntax Semantics
A AI = 〈P, N〉, where P, N ⊆ ∆I

R RI = 〈RP , RN 〉, where RP , RN ⊆ ∆I ×∆I

o oI ∈ ∆I

> 〈∆I , ∅〉
⊥ 〈∅, ∆I〉

C1 u C2 〈P1 ∩ P2, N1 ∪N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

C1 t C2 〈P1 ∪ P2, N1 ∩N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

¬C (¬C)I = 〈N, P 〉, if CI = 〈P, N〉
∃R.C 〈{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj+(CI)},

{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj−(CI)}〉
∀R.C 〈{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj+(CI)},

{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj−(CI)}〉

Table 2. Semantics of inclusion axioms in ALC4

Axiom Name Syntax Semantics
material inclusion C1 7→ C2 ∆I \ proj−(CI

1 ) ⊆ proj+(CI
2 )

internal inclusion C1 @ C2 proj+(CI
1 ) ⊆ proj+(CI

2 )
strong inclusion C1 → C2 proj+(CI

1 ) ⊆ proj+(CI
2 ) and

proj−(CI
2 ) ⊆ proj−(CI

1 )

concept assertion C(a) aI ∈ proj+(CI)
role assertion R(a, b) (aI , bI) ∈ proj+(RI)

2.2 The satisfiability of ALC4 ontologies

Note that the four-valued semantics given in previous subsection does not assure that
every ALC4 ontology has 4-valued models.1 The following example illustrates this.

Example 1 Consider T = {> @ ⊥}. Since for any four-valued interpretation I ,
>I = 〈∆I , ∅〉 and ⊥I = 〈∅,∆I〉, where ∆I 6= ∅ for DL interpretations, T has no
four-valued model according to Table 2. The conclusion remains the same if other two
kinds of inclusion are used in T .

To make every ontology 4-valued satisfiable, we introduce the following substitu-
tion (Definition 1). The underlying intuition is that⊥ ≡ Au¬A and> ≡ At¬A hold
for any concept A under the classical semantics w.r.t. any ontology.

Definition 1 Given an ontology O, the satisfiable form of O, denote SF (O), is
the ontology obtained by replacing each occurrence of ⊥ in (O) with NA u ¬NA, and
replacing each occurrence of > in (O) with NA t ¬NA, where NA is a new atomic
concept.

1 The problem also exists for the 4-valued DL defined in [4] if > and ⊥ are used arbitrarily.



Example 2 (Example 1 Continued) By Definition 1, SF (T ) = {NAt¬NA @ NAu
¬NA}. Obviously, SF (T ) has a 4-valued model I = 〈∆I , ·I〉, where NAI = 〈∆I ,∆I〉.
I is also a model of {NA t ¬NA 7→ NA u ¬NA} and {NA t ¬NA → NA u ¬NA}. That
is, a 4-valued unsatisfiable ontology becomes 4-valued satisfiable.

Following proposition says the substitution doesn’t impact the classical inconsis-
tency.

Proposition 1 For any ontology O, the following two claims hold:

(1) SF (O) is 2-valued consistent if and only if O is 2-valued consistent.
(2) SF (O) always has at least one 4-valued model.

Note that claim 2 in proposition 1 doesn’t hold for 2-valued semantics, so we cannot
expect to make an inconsistent ontology 2-valued satisfiable in the same way. Because
of this proposition, we assume that all ontologies discussed in the rest have 4-valued
models.

3 Resolution-based Reasoning with ALC4

In this section, we basically follow [8, Chapter 4] to study a paraconsistent resolution
for ALC4, and indeed we have to assume that the reader is familiar with the KAON2-
approach because of space restrictions.

We first note that resolution relies heavily on the tertium non datur, and thus does
not lend itself easily to a paraconsistent setting. In particular, resolution cannot be based
on the negation present in paraconsistent logics, as in this case A∨B and ¬A∨C does
not imply B ∨ C. We thus start by introducing a second kind of negation, called total
negation, written ∼. To avoid confusion, we will refer to ¬ as paraconsist negation.
Notice that we do not extend our four-valued DLs to have the total negation as a concept
constructor. We rather use it only to provide a resolution-based decision procedure for
four-valued DLs.

Definition 2 Total negation ∼ on {〈P, N〉 | P, N ⊆ ∆} is defined by ∼〈P, N〉 =
〈∆ \ P, ∆ \N〉.
The intuition behind total negation is to reverse both the information of being true and
of being false. By Definition 2, the double negation elimination law and Demogen Laws
also hold for total negation ∼.

An important reason to propose the total negation is that it provides a way to reduce
4-valued entailment relation |=4 to 4-valued satisfiability, because for any ontology
O and an axiom α, O |=4 α if and only if O ∪ {∼α} is 4-unsatisfiable. Moreover,
total negation can be used to obtain a representation of internal inclusion in terms of
clauses, where equisatisfiability retains, because (C @ D)I ∈ {t, >̈} if and only if
(∀x.(∼C tD)(x))I ∈ {t, >̈}. By these two points, we have following theorem shows
that 4-entailment can be converted into 4-unsatisfiability.

Theorem 2 Let O be a four-valued ALC4 ontology, C, D be concepts, I be an
interpretation and ι be a new individual not occurring in O. Then the following hold.



1. O |=4 C(a) if and only if O ∪ {∼C(a)} is four-valued unsatisfiable.
2. O |=4 C 7→ D, O |=4 C @ D, O |=4 C → D if and only if O ∪ {∼(¬C tD)(ι)},

O ∪ {(C u ∼D)(ι)}, and O ∪ {(C u ∼D)(ι), (¬D u ∼¬C)(ι)} are four-valued
unsatisfiable, respectively.

3.1 Translating ALC4 into Clauses
To introduce clausal forms for ALC4 expressions, we first define an extended negation
normal form for ALC4 called quasi-NNF. We are inspired by [9].

Definition 3 A concept C is a quasi-atom, if it is an atomic concept, or in form ¬A
where A is an atomic concept. C is a quasi-literal, if it is a quasi-atomic concept, or
in form ∼L where L is a quasi-atomic concept. C is in quasi-NNF, if ∼ occurs only in
front of quasi-literals and ¬ does not occur in front of ∼.

To give an example, let A,B, and C be atomic concepts. Then (A∨∼¬B)t∀R.(∼C)
is in quasi-NNF. Based on the properties of∼, it is easy to check that allALC4 concepts
can be transformed into equivalent expressions in quasi-NNF.

We next translate the concepts into predicate logic. This is done by the standard
translation as e.g. spelled out in [8] in terms of the function πy – we just have to provide
for the total negation. We make one exception, namely for universal restriction, where
we set πy(∀R.C, x) = ∀y.(∼R(x, y) t C(y)). The obtained predicate logic formulae
(with total negation) can now be translated into clauses in the standard way, i.e. by
first casting them into Skolem form [10], which are adjusted for total negation in the
straightforward way. To avoid the exponential blowup and to preserve the structure of
formulae, we also can apply the structural transformation [11] to ALC4 as used in [8].
To do this, we define the paraconsistent Definitorial Form PDef(·) of ALC4 concepts
as follows. Note that total negation should be used.

PDef(C) =
{ {C} if C is a literal concept,
{∼Q t C|p} ∪ PDef(C[Q]|p) if p is eligible for replacement in C.

where C|p to be the position p in concept C, as defined in [10, 8].

Proposition 3 For an ALC4 concept C in quasi-NNF, {> @ C} is four-valued
satisfiable iff {> @ PDef(Di) | Di ∈ PDef(C)} is.

Following the above transformations step by step, any ALC4 concept can be trans-
lated into a set of first order predicate logic clauses (with total negation) in polynomial
size of the original concepts. We denote by Cls(C) the set of clauses which is obtained
by the just mentioned transformation of C. These clauses are predicate logic formulae
(with total negation). We give an example.

Example 3 The concept ¬(∼A u ∃R.(∀S.C)) is translated as follows.

¬(∼A u ∃R.(∀S.C))
in quasi-NNF: ∼¬A t ∀R.(∃S.¬C)

in PDef: {∼¬A t ∀R.Q,∼Q t ∃S.¬C}
in predicate logic: {∼¬A(x) ∨ ∼R(x, y) ∨Q(y),∼Q(x) ∨ S(x, f(x)),

∼Q(x) ∨ ¬C(f(x))}



Based on the transformation described above, we finally can translate an ALC4
ontology O into a set of predicate logic clauses (with total negation) Ξ(O) which is the
smallest set satisfying the following conditions:

– For each ABox axiom α in ABox, Cls(α) ⊆ Ξ(O)
– For each axiom C 7→ D, each axiom C @ D, and each axiom C → D in TBox,

Cls(¬C tD) ⊆ Ξ(O), Cls(∼C tD) ⊆ Ξ(O), and Cls(∼C tD,∼¬D t¬C) ⊆
Ξ(O), respectively.

Theorem 4 Let O be an ALC4 ontology. O is 4-valued satisfiable iff Ξ(O) is 4-
valued satisfiable.

3.2 Ordered Resolution with Selection Function O4DL for ALC4

Given any fixed orderingÂ on ground quasi-atoms which is total and well-founded, we
can obtain an ordering on sets of clauses in standard way as stated in [8]. By a slight
abuse of notation, we use Â also for ÂL and ÂC where the meaning is clear from the
context. For example, if ¬A Â A Â B Â ¬B Â D, then [∼]¬A Â [∼]A Â [∼]B Â
[∼]¬[∼]B Â [∼]D and ∼A ∨ ¬B ≺ ¬A ∨B ≺ ∼¬A ∨D.

By a selection function we mean a mapping S that assigns to each clause C a (possi-
bly empty) multiset S(C) of literals with the prefix ∼ in C. For example, both {∼¬A}
and {∼¬A,∼D} can be selected in clause ∼¬A ∨ ∼D ∨B ∨ ¬C.

An ordered resolution step with selection function can now be described by the
Inference Rule and Factorization Rule as follows, respectively:

C ∨A D ∨ ∼B

Cσ ∨Dσ
and

C ∨A ∨B

(C ∨A)σ
,

where

– σ = MGU(A,B) is the most general unifier of the quasi-atoms A,B, and C, D
are quasi-clauses.

– Aσ is strictly maximal in Cσ ∨Aσ, and no literal is selected in Cσ ∨Aσ;
– ∼Bσ is either selected in Dσ∨∼Bσ, or it is maximal in Dσ∨∼Bσ and no literal

is selected in Dσ ∨ ∼Bσ.

Theorem 5 (Soundness and Completeness of O4DL) Let N be an ALC4 knowl-
edge base. Then Ξ(N) `O4DL

¤ iff N is four-valued unsatisfiable.

Although the inference rules are different from those of ALC, we find that similar way
of the selection of the literal ordering and selection function still provide us a decision
procedure for ALC4.

– The literal ordering Â is defined such that R(x, f(x)) Â ∼C(x) and D(f(x)) Â
∼C(x), for all function symbols f , and predicates R, C, and D.

– The selection function selects every binary literal which is preceeded by ∼.

Theorem 6 (Decidability) For an ALC4 knowledge base KB, saturating Ξ(KB)
by O4DL decides satisfiability of KB and runs in time exponential in |KB|.



4 Translating ALC4 to satisfiable Disjunctive Datalog

We should distinguish the total negation and paraconsistent negation during the trans-
lation, while there is only one kind of negation in [8]. As the translation from ALC to
disjunctive datalog, we can perform all inferences among nonground clauses first, after
which we can simply delete all nonground clauses containing function symbols. The
remaining clause set consists of clauses without function symbols [8].

Definition 4 For an extensionally reduced ALC ontology O, the function-free ver-
sion of ontology O is defined as follows:

FF(O) = λ(Γ (OT )) ∪ Γ (OA) ∪ {HU(a) | for each individual a occurring in O}

where Γ (OT ) is the set of clauses obtained by saturating Ξ(OT ) by O4DL and then
deleting all the clauses containing functions, and Γ (OA) is the set of clauses ob-
tained by saturating Ξ(OA) by O4DL. And for a clause C, λ(C) = C ∪ {∼HU(x) |
for each unsafe variable x in C} and λ(Σ) = {λ(C) | for each clause C in Σ}.

Note that the total negation is used in the λ operator. Next, we introduce following
definition to simplify the statement of the translation process.

Definition 5 All the literals in FF(O) are in one of the following cases:

– Pure positive literal which is just an atom (i.e., without neither paraconsistent nega-
tion nor total negation in front);

– Paraconsistent negative literal which is constructed by a pure positive literal with
the paraconsistent negation occurring in its front.

– Total negative literal which is constructed by a pure positive literal or a paracon-
sistent negative literal with the total negation occurring in its front.

By this definition and Definition 3, positive quasi-literals include both pure positive lit-
erals and paraconsistent negative literals, while total negative literals are very negative
quasi-literals. To give an example, let A(x) be an atom, then it is a pure positive lit-
eral, ¬A(x) is a paraconsistent negative literal, and ∼¬A(x),∼A(x) are total negative
literals.

Definition 6 The disjunctive datalog DD4(O) corresponding to an ontology O is
defined by moving in each clause from FF(O)

– each pure positive liter into the rule head;
– each paraconsistent negative literal into the rule head as well and replacing it with

a fresh atom simultaneously;
– each total negative literal into the rule body and replacing its quasi-atom part with

a fresh atom simultaneously.

If KB is not extensionally reduced, then DD(KB) = DD(KB’), where KB’ is an exten-
sionally reduced knowledge base obtained from KB in the standard way [8].



From section 2.2, we can see that every ontology O can become 4-valued satisfiable
after appropriate rewriting. That is, by 4-valued semantics, meaningful conclusions al-
ways can be derived from even a classically inconsistent ontology. The first claim of the
following theorem shows that DD4(O) is always consistent as well such that untrivial
answers can be returned from it.

Theorem 7 Let KB be an ALC4 ontology. Then, the following claims hold:

1. DD4(Õ) is always satisfiable for any ontology O, where Õ is the ontology defined
in Definition 1.

2. O |=4 α if and only if DD4(O) |=c α, where α is of the form A(a) or R(a, b), and
A is an atomic concept.

5 Conclusions

In this paper, we work out for how to translate an ALC4 ontology to a consistent set
of disjunctive datalog rules, such that meaningful consequences can be deduced from a
possible inconsistent ontology.

Considering the algorithm described in this paper, it is rather apparent that all the
benefits from the KAON2 system – like the ability to handle large ABoxes – can also
be achieved by the paraconsisent version of KAON2. We will further study the similar
paraconsistent approach for more complex DLs in the future work.
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