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Abstract. We present a non-standard interpretation for concept expressions in
ALCQ that defines approximate notions of subsumption based on approximat-
ing a subset of the concept and role names. We present the non-standard seman-
tics, and the corresponding notion of approximate subsumption, discuss its for-
mal properties and show that is can be computed by syntactic manipulations of
concept expressions.

1 Introduction

Description Logics are becoming more and more popular as a formalism for repre-
senting and reasoning about conceptual knowledge in different areas such as databases
and semantic web technologies. In particular, subsumption reasoning for expressive
ontologies has been used to compute matches between conceptual descriptions in the
context of different real world tasks including information integration, product and ser-
vice matching and data retrieval. In practical situations, however, it often turns out that
logical reasoning is inadequate in many cases, because it does not leave any room for
partial matches.

Recently, there are some efforts that try to address this problem by combining de-
scription logics with numerical techniques for uncertain reasoning in OWL, in particular
with techniques for probabilistic [1] and fuzzy reasoning [2]. These approaches are able
to compute partial matches by assigning an assessment of the degree of matching to the
subsumption relation. This degree of matching normally is a real number or an interval
between zero and one and therefore allows some ordering of the solutions. Although, in
principle this is a solution to the problem of computing the best partial match but defin-
ing an interpreting numerical assessments of uncertainty is a difficult problem. Further,
the reduction to a single numerical assessment of the mismatch does not allow different
users to discriminate between different kinds of mismatches.

In this paper, we propose a notion of approximate subsumption that supports the
computation of partial matches between complex concept expressions without relying
on a single number to represent the degree of mismatch. Instead, the approach describes
the degree of matching in terms of a subset of the aspects of the request that are met by
the solution. This approach allows the user to decide whether to accept a partial match
based on whether important aspects are missed or not. In order to implement this ap-
proach we borrow from the area of approximate deduction. In particular, we extend the
notion of S-Interpretations of propositional logic proposed in [3] to description logics



and use the result notion of a non-standard interpretation of concept expressions to de-
fine an approximate subsumption operator that computes subsumption with respect to a
particular subset of the vocabulary used.

2 Approximation based on Sub-Vocabularies

In propositional logic, the vocabulary of a formula consists of a set of propositional
letters. A formula consists of a Boolean expression over these letters. A classical inter-
pretation I assigns to each letter either the value true or false. The semantics of negation
now implies that a letter and its negation cannot have the same truth value, in particular,
for all propositional letters p one of the following :

I(p ∧ ¬p) = false

I(p ∨ ¬p) = true (1)

Checking satisfiability of a formula relies on showing that there is no assignment of
truth values that satisfies this condition and makes the whole formula true. A possible
way for approximating satisfiability testing for propositional logic is now to restrict the
condition above to a subset of the propositional letters. This subset is denoted as S and
the corresponding interpretation is called an S-interpretation of the formula [3].

Depending on how the letters not in S are treated, an S-Interpretation is sound or
complete with respect to the classical interpretation. One kind of non-standard interpre-
tation called S-3 Interpretation assigns both, a letter and its negation to true.

I(p ∧ ¬p) = true, p 6∈ S (2)

When applying this interpretation to the satisfiability problem, we observe that formu-
las that were unsatisfiable before now become satisfiable. This means that the resulting
calculus is sound, but incomplete, because some results that could be proven using the
principle of proof by refutation can not be proven any more, because the conjunction of
the knowledge base with the negation of the result to be proven becomes satisfiable un-
der the new interpretation. The counterpart of S-3 interpretation are S-1 Interpretations
that assign false to both a letters and their negation if the letters are not in the set S.

I(p ∨ ¬p) = false, p 6∈ S (3)

Following the same argument as above, S-1 Interpretations define a complete but un-
sound calculus for propositional logic. In both cases, the advantage of the approach is
that we can decide which parts of the problem to approximate by selecting an appropri-
ate set of letters S. Therefore the approach provides a potential solution to the problem
of partial matching described above.

The idea of our approach is now to apply the underlying idea of S-Interpretations
to the Description Logic ALCQ which covers most of the expressive power of OWL
in order to support approximate subsumption reasoning where parts of the vocabulary
are interpreted in the classical way and other parts are approximated. In fact, Cadoli
and Schaerf do propose an extension of S-Interpretations to Description logics, but
they define S not in terms of a subset of the vocabulary, but in terms of the structure
of the concept expression [4]. In [5] it has been shown that this way of applying S-
Interpretations to description logics does not produce satisfying results on real data.
In this paper, we therefore propose an alternative way of defining S-Interpretations for
description logics which is closer to the notion of S-Interpretations in propositional
logic. The idea is to interpret description logics as an extension of propositional logic,



where class names correspond to propositional letters1. As for propositional logic, we
select a subset of the class names that is interpreted in the classical way and approximate
class names not in this set. In particular, a classical interpretation (∆I , I) of class names
requires that a concept name and its negation form a disjoint partition of the domain:

C
I ∩ (¬C)I = ∅

C
I ∪ (¬C)I = ∆

I (4)

We can now define approximations for description logics by relaxing these require-
ments for a subset of the concept names. The corresponding S-3 and S-1 Interpretations
are very similar to the ones for propositional logic. In particular, for S-3 Interpretations
we have.

C
I ∩ (¬C)I = ∆

I
, C 6∈ S (5)

This means that both, C and ¬C are mapped to ∆I by the interpretation. As a con-
sequence, the concept name C cannot cause a clash in a tableaux proof and therefore,
constraints that force a certain value to be of type C will be ignored in a subsumption
proof. The resulting subsumption operator is sound, but incomplete. For S-1 Interpreta-
tions, we have

C
I ∪ (¬C)I = ∅, C 6∈ S (6)

which means that both C and ¬C are mapped to the empty set. In a tableaux proof,
all attempts to construct a model that involves a variable of type C will fail. The cor-
responding subsumption operator is complete, but unsound with respect to classical
subsumption.

While approximation based on concept names is a straightforward application of
the notion of S-1 and S-3 interpretations, things become more complicated if we want
to extend the approach to relation names. In Description Logics relations are used to
formulate constraints that apply to all members of a certain class. The most general
formulation of these constraints is in terms of qualified number restrictions. Qualified
number restrictions have the following form (≤ n r.C) or (≥ n r.C) where n is a
positive natural number (including zero ), r is the name of a binary relation and C is
a concept expression. In a tableaux these qualified number restrictions are a second
potential source of inconsistency besides the negation operator. In particular, we have

(≤ n r.C)I ∩ (≥ m r.C)I = ∅ for all n < m

on the other hand, we have

(≤ nr.C)I ∪ (≥ mr.C)I = ∆
I for all n ≥ m

We can use this analogy to extend the notion of S-1 and S-3 interpretations to qualified
number restrictions in the following way. For S-3 Interpretations we define that

(≤ n r.C)I ∪ (≥ m r.C)I = ∆
I for all r 6∈ S (7)

In particular, we weaken the condition for the expression to become the universal con-
cept by making it independent of the values for m and n. Further, we claim that the
conjunction of qualified number expressions can never be the empty concept, i.e.

(≤ n r.C)I ∩ (≥ m r.C)I 6= ∅ for all r 6∈ S (8)

1 In fact, a description logic that just contains the Boolean operators is equivalent to proposi-
tional logic.



This leaves us with a weaker interpretation, because inconsistencies arising from the
relations not in the set S cannot be detected. For S-1 interpretations, we make analogous
claim by demanding that the union of two qualified number restrictions can never be
the universal concept

(≤ n r.C)I ∪ (≥ m r.C)I 6= ∆
I for all r 6∈ S (9)

Further, we strengthen the interpretation by claiming that the intersection of the two
qualified number restrictions on the same relation and concept is always inconsistent

(≤ n r.C)I ∩ (≥ m r.C)I = ∅ for all r 6∈ S (10)

This gives us a stronger version of the semantics, because any two assertions using this
relation in combination with the same concept expression C leads to an inconsistency2.
The result is a complete but unsound subsumption operator. This unsound approxi-
mation operator is exactly what we need for specifying the notion of a partial match,
because it forces a match on the constraints involving class names from S and treats
constraints involving classes not in S as optional. Using subsumption operators with
different sets S, we can focus on different aspects of the matching task and also rank
results based on the number of requirements met. In the following, we will therefore
concentrate on complete, but unsound approximations of subsumption reasoning for
concept expressions based on the idea described above. In particular, we will formally
specify non-standard interpretations and define a family of approximate subsumption
operators that can be used to compute partial matches.

3 Non-Standard Semantics

In the following, we introduce a non-standard interpretation for concept expressions in
the logic ALCQ. A limited vocabulary is a subset S ⊆ V of the concept and relation
names occurring in a concept expression. Our aim is to define approximate reasoning
in Description Logics based on such a subset of the vocabulary. For this purpose, we
define an upper and a lower approximation of an interpretation I with respect to a set
S referred to as I+

S and I−S respectively. We call I+
S an upper approximation and I−S a

lower approximation of I with respect to S.

Definition 1 (Lower Approximation). A lower approximation of an interpretation I
with respect to S is a non standard interpretation (∆I , I−S ) such that:

A
I−

S =


AI A ∈ S
∅ otherwise

(11)

(¬C)
I−

S = ∆
I − C

I+
S (12)

(C uD)
I−

S = C
I−

S ∩D
I−

S (13)

(C tD)
I−

S = C
I−

S ∪D
I−

S (14)

(≥ n r.C)
I−

S =

8><>: {x|#{y.(x, y) ∈ rI ∧ y ∈ C
I−

S } ≥ n} r ∈ S

{x|#{y.(x, y) ∈ rI ∧ y ∈ C
I−

S } ≥ ∞} otherwise

(15)

(≤ n r.C)
I−

S =

8><>: {x|#{y|(x, y) ∈ rI ∧ y ∈ C
I+

S } ≤ n} r ∈ S

{x|#{y|(x, y) ∈ rI ∧ y ∈ C
I+

S } ≤ 0} otherwise

(16)

2 As we will see later, it is sufficient if the two restrictions use concept expressions that are
logically equivalent



where (∆I , I+
S ) is an upper approximation as defined in definition 2

Definition 2 (Upper Approximation). An upper approximation of an interpretation I
with respect to S is a non standard interpretation (∆I , I+

S ) such that:

A
I+

S =

(
AI A ∈ S

∆I otherwise
(17)

(¬C)
I+

S = ∆
I − C

I−
S (18)

(C uD)
I+

S = C
I+

S ∩D
I+

S (19)

(C tD)
I+

S = C
I+

S ∪D
I+

S (20)

(≥ n r.C)
I+

S =

8><>: {x|#{y.(x, y) ∈ rI ∧ y ∈ C
I+

S } ≥ n} r ∈ S

{x|#{y.(x, y) ∈ rI ∧ y ∈ C
I+

S } > 0} otherwise

(21)

(≤ n r.C)
I+

S =

8><>: {x|#{y|(x, y) ∈ rI ∧ y ∈ C
I−

S } ≤ n} r ∈ S

{x|#{y|(x, y) ∈ rI ∧ y ∈ C
I−

S } < ∞} otherwise

(22)

where (∆I , I−S ) is a lower approximation as defined in definition 1

A nice property of this definition is that it ensures the existence of a negation normal
form that can be computed using the same transformation rules as usually.

Corollary 1 (Negation Normal Form). For every concept expression C there is an ex-
pression nnf(C) in negation normal form such that nnf(C)I

−
S = CI−S and nnf(C)I

+
S =

CI+
S

Another useful property of the non standard interpretation is that it makes concept
expressions strictly more general for upper and strictly more specific for lower approx-
imations. This property which we call monotonicity is important in order to be able to
guarantee formal properties of approximation methods defined based on this interpreta-
tion. Therefore the following theorem describes a central property of approximation in
description logics.

Lemma 1 (Monotonicity). Given a non-standard interpretation as defined above, the
following equation holds for all concept expressions C:

C
I−

S ⊆ C
I ⊆ C

I+
S (23)

We can generalize the theorem by observing that the standard interpretation is an
extreme case of the non-standard interpretation with S = V . In particular, the gen-
eral version of monotonicity says that for upper approximations removing names from
the set S will make concepts expressions strictly more general. Conversely, for lower
approximations concept expressions become less general when we remove concept or
relation names from the set S. The corresponding general property is defined in the
following theorem:

Lemma 2 (Generalized Monotonicity). Given a non-standard interpretation as de-
fined above and two sub-vocabularies S1 and S2 with S1 ⊆ S2, the following equations
hold for all concept expressions C:

C
I−

S1 ⊇ C
I−

S2 C
I+

S1 ⊆ C
I+

S2 (24)



The generalized monotonicity property is interesting, because it allows us to succes-
sively compute more precise upper and lower approximations of a concept by adding
names to the set S. This is convenient in cases where users provide a preference order
over the vocabulary indicating the relative importance of different aspects of a concept.
In this case, use the preference relation provided by the user to determine a sequence of
approximations to be used in the matching process.

4 An Approximate Subsumption Operator
Up to now, we have only considered interpretations as such. As our aim is to develop
approximate notions of subsumption as a basis for approximate matching, we now have
to define the notion of approximate subsumption based on the non-standard interpreta-
tion defined above. It turns out, that this can be done in a straightforward way using the
standard definition of the subsumption operator as:

∀I : I |= C v D ⇔ (C u ¬D)I = ∅

The idea is now to use this definition and replace the standard interpretation I by a
the lower approximation I−S with respect to a certain sub-vocabulary S. Based on the
choice of S, this defines different subsumption operators with certain formal properties
that will be discussed in the following.

Definition 3 (Approximate Subsumption). Let S ⊆ V be a subset of the concept
names and (∆I , I−S ) a lower approximation, then the corresponding approximate sub-
sumption relation v

S
is defined as follows

∀I : I |= (C v
S

D) ⇔def (C u ¬D)
I−

S = ∅ (25)

We say that C is subsumed by D with respect to sub-vocabulary S.

The monotonicity of the non-standard interpretation has an impact on the formal
properties of the approximate subsumption operator. In particular, we can establish a
relation between the subset of the vocabulary considered and the strength of the sub-
sumption operator. The more concepts we exclude from the set S the weaker the sub-
sumption operator as well as the matches we can compute get. This implies that if we
can prove subsumption with respect to a particular set S the subsumption relation also
holds for all subsets of S. Conversely, if we fail to prove subsumption with respect to a
set S, we can be sure that the subsumption relation does also not hold with respect to
any superset of S. These properties are stated formally in the following theorem.

Theorem 1 (Properties of Approximate Subsumption). Let f be a lower approxima-
tion, then the following equation holds:

0@C v
S2

D

1A ⇒

0@C v
S1

D

1A for S1 ⊆ S2 (26)

0@C 6v
S1

D

1A ⇒

0@C 6v
S2

D

1A for S1 ⊆ S2 (27)

These properties allow us to develop approximation strategies by successively se-
lecting smaller subsets of concepts to be considered for matching and trying to compute
the corresponding subsumption relation until we succeed.



5 Computing Approximate Subsumption

A nice feature of our approach is that it can actually be implemented by simply per-
forming syntactic modifications on concept expressions. In particular, in order to check
whether a statement C v

S
D holds, we take the expression (C u ¬D) and transform it

into a concept expression that simulates the non-standard interpretation. For the lower
approximation, the corresponding transformation (.)− is defined as follows

(A)− → ⊥ if A ∈ S

(¬A)− → ⊥ if A ∈ S

(¬C)− → ¬(C)+

(C uD)− → (C)− u (C)−

(C tD)− → (C)− t (C)−

(≤ n r.C)− → (≤ 0 r.(C)+) if r ∈ S

(≤ n r.C)− → (≤ n r.(C)+) if r 6∈ S

(≥ n r.C)− → (≥ max r.(C)−) if r ∈ S

(≥ n r.C)− → (≥ n r.(C)−) if r 6∈ S

Here max is an integer number that is larger than any other number occurring in any
qualified number restriction in the concept expression. This is sufficient to model the
interpretation that requires less than an infinite number of r-successors. Analogously, we
define a transformation function (.)+ that creates a concept expression that simulates
the upper approximation of a concept expression. This transformation is defined as
follows:

(A)+ → > if A ∈ S

(¬A)+ → > if A ∈ S

(¬C)+ → ¬(C)−

(C uD)+ → (C)+ u (C)+

(C tD)+ → (C)+ t (C)+

(≤ n r.C)+ → (≤ max − 1 r.(C)−) if r ∈ S

(≤ n r.C)+ → (≤ n r.(C)−) if r 6∈ S

(≥ n r.C)+ → (≥ 1 r.(C)+) if r ∈ S

(≥ n r.C)+ → (≥ n r.(C)+) if r 6∈ S

We again use the number max for modeling an infinite number of r-successors. Further,
we have to use the condition ≥ 1 instead of < 0 which is equivalent. It can be shown
that these rewriting rules provide a way for computing approximate subsumption as
stated by the following theorem.

Theorem 2 (Syntactic approximation I). Let C and D be concept expressions in
ALCQ, then I |= C v

S
D if and only if (C u ¬D)− is unsatisfiable.

It turns out that the equivalence of a concept expression and its normal form and
the symmetry of upper and lower approximation with respect to negation can be used to
define an alternative way of computing approximate subsumption based on the syntactic
manipulations shown above



Theorem 3 (Syntactic approximation II). Let C and D be concept expressions in
ALCQ, then I |= C v

S
D if and only if I |= (C)− v (D)+

This means that we have two rather straightforward ways of computing approximate
subsumption using standard DL reasoners.

6 Discussion

We presented an approach for computing approximate subsumption between concept
expressions in ALCQ based on a subset of the vocabulary used in the expressions. The
approach solves some of the problems of classical reasoning in description logics, in
particular, the inability to accept imperfect matches between concepts without having
to leave the realms of formal logic. As a side-effect, the subset of the vocabulary also
provides us with a qualitative characterization of the mismatch between the expressions,
which is clearly an advantage over numerical approaches for dealing with imperfect
matches. An approach for partial matching in description logics that is more similar
to ours is reported in [6]. This approach, however, cannot deal with disjunction and
qualified number restrictions.
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