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Abstract. Many activities related to semantically annotated resources can be en-
abled by a notion of similarity among them. We propose a method for defin-
ing a family of semi-distances over the set of individuals in a knowledge base
which can be used in these activities. In the line of works on distance-induction
on clausal spaces, the family is parameterized on a committee of concepts. Hence,
we also present a method based on the idea of simulated annealing to be used to
optimize the choice of the best concept committee.

1 Introduction

Recently, a growing interest is being committed to alternative inductive procedures ex-
tending the scope of the methods that can be applied to concept representations. Some
are based on a notion of similarity such as case-based reasoning [6], retrieval [5, 7],
inductive generalization [10] and conceptual clustering [8] or ontology matching [16].

As pointed out in a seminal paper [2] concerning similarity in Description Log-
ics (DL), most of the existing measures focus on the similarity of atomic concepts
within simple hierarchies. Besides, alternative approaches are based on related notions
of feature similarity or information content (see also [14]). All these approaches have
been specifically aimed at assessing concept similarity. In the perspective of crafting
similarity-based inductive methods for DL , the need for a definition of a semantic sim-
ilarity measure for individuals arises, that is a problem that so far received less attention
in the literature.

Recently, some dissimilarity measures for individuals in specific DL representations
have been proposed which turned out to be practically effective for the targeted induc-
tive tasks (e.g. the nearest-neighbor approach applied to retrieval [5]). Although these
measures ultimately rely on the semantics of primitive concepts as elicited from the
ABox, still they are partly based on structural criteria (a notion of normal form coupled
with a most specific concept operator [1]) which determine also their main weakness:
they are hardly scalable to deal with standard languages used in the current knowl-
edge management frameworks. For example, in [5] the most specific concepts w.r.t.
the ABox of individuals are first computed (or their approximations in a normal form)
as expressed in ALC, then a structural measure assesses the similarity of the resulting
AND-OR trees, where, ultimately, the computation is based on the extensions of the
primitive concepts in the leaves.



Therefore, we have devised a new family of dissimilarity measures for semantically
annotated resources, which can overcome the aforementioned limitations. Our measures
are mainly based on Minkowski’s measures for Euclidean spaces induced by means of
a proper method developed in the context of multi-relational learning [15]. Another
source of inspiration was rough sets theory [13] which aims at the formal definition of
vague sets (concepts) by means of their approximations determined by an indiscerni-
bility relationship.

Namely, the measures are based on the degree of discernibility of the input indi-
viduals with respect to a committee of features, which are represented by concept de-
scriptions expressed in DL. One of the advantages of these measures is that they do
not rely on a particular language for semantic annotations. As such, these new mea-
sures are not absolute, since they depend on both the choice (and cardinality) of the
features committee and the knowledge base they are applied to. Rather, they rely on
statistics on individuals that are likely to be maintained by knowledge base management
systems [9, 4], which can determine a potential speed-up in the measure computation
during knowledge-intensive tasks. Furthermore, we also propose a way to extend the
presented measures to the case of assessing concept similarity by means of the notion
of medoid [11], i.e., in the DL context, the most centrally located individual in a concept
extension w.r.t. a given metric.

Experimentally, it may be shown that the measures induced by large committees
(e.g. including all primitive and defined concepts) can be sufficiently accurate (i.e. prop-
erly discriminating) when employed for classification tasks even though the committee
of features employed were not the optimal one or if the concepts therein were partially
redundant. Nevertheless, this has led us to investigate on a method to optimize the com-
mittee of features that serve as dimensions for the computation of the measure. To this
purpose, the employment of genetic programming and randomized search procedures
was considered. Finally we opted for an optimization procedure based on simulated an-
nealing [3], a randomized approach that can overcome the problem of the local minima,
i.e. finding a good solution w.r.t. the fitness function that is not globally optimal.

The remainder of the paper is organized as follows. The definition of the family of
measures is proposed in Sect. 2, where we prove them to be semi-distances. In Sect. 3,
we illustrate and discuss the method for optimizing the choice of concepts for the com-
mittee of features which induces the measures. Possible developments are finally exam-
ined in Sect. 4.

2 A Family of Semi-distances for Individuals

In the following, we assume that resources, concepts and their relationship may be
defined in terms of a generic DL language endowed with the standard descriptive se-
mantics (see the handbook [1] for a thorough reference).

For the measure definition, we simply consider a knowledge base K = 〈T ,A〉
containing a TBox T and an ABox A. The set of the individuals occurring in A will be
denoted with Ind(A).

As regards the inference services, our measures require (non)membership queries
performing ABox lookups or instance-checking [1]. The complexity depends on the



DL of choice, however much of the computational effort can be saved by means of
pre-computation (see projection functions below).

2.1 A Family of Measures for Individuals

We focus on the problem of assessing the semantic similarity (or dissimilarity) of indi-
viduals in the context of a knowledge base expressed in DL. To the best of our knowl-
edge, only few measures tackle this problem so far [5]. Following some ideas borrowed
from machine learning [15], a family of totally semantic distance measures for individ-
uals can be defined in the context of a knowledge base.

It can be observed that individuals lack a syntactic structure that may be exploited
for a comparison. However, on a semantic level, similar individuals should behave simi-
larly with respect to the same concepts, i.e. similar assertions should be shared by them.
Therefore, we introduce novel dissimilarity measures for individuals, whose rationale
is the comparison of their semantics w.r.t. a fixed number of dimensions represented by
DL concept descriptions. Namely, individuals are compared on the grounds of their be-
havior w.r.t. a reduced (yet not necessarily disjoint) committee of features, represented
by a collection of concept descriptions, say F = {F1, F2, . . . , Fm}, which stands as a
group of discriminating features expressed in the language taken into account.

In its simple formulation, a family of semi-distance functions for individuals, in-
spired by Minkowski’s metrics, can be defined as follows:

Definition 1 (family of measures). Let K = 〈T ,A〉 be a knowledge base. Given a
set of concept descriptions F = {F1, F2, . . . , Fm}, a family {dF

p}p∈IN of functions dF
p :

Ind(A)× Ind(A) 7→ [0, 1] is defined as follows:

∀a, b ∈ Ind(A) dF
p(a, b) :=

1
m

[
m∑

i=1

| πi(a)− πi(b) |p
]1/p

where ∀i ∈ {1, . . . ,m} the i-th projection function πi is defined by:

∀a ∈ Ind(A) πi(a) =

 1 K |= Fi(a)
0 K |= ¬Fi(a)
1
2 otherwise

The superscript F will be omitted when the set of features is fixed.
As an alternative, especially when a good number of assertions are available in the

ABox, the measures can be approximated by defining the projection functions based on
a simple ABox look-up:

∀a ∈ Ind(A) πi(a) =

 1 Fi(a) ∈ A
0 ¬Fi(a) ∈ A
1
2 otherwise



2.2 Discussion

It is easy to prove that these functions have the standard properties for semi-distances:

Proposition 1 (semi-distance). For a fixed feature set and p > 0, function dp is a
semi-distance.

Proof. In order to prove the thesis, given any three individuals a, b, c ∈ Ind(A) it must
hold that:
1. dp(a, b) ≥ 0 (positivity)
2. dp(a, b) = dp(b, a) (symmetry)
3. dp(a, c) ≤ dp(a, b) + dp(b, c) (triangular inequality)
Now, we observe that:

1. trivial, by definition
2. trivial, for the commutativity of the operators involved
3. the property follows for the properties of the power function:

dp(a, c) =
1
m

[
m∑

i=1

| πi(a)− πi(c) |p
]1/p

=
1
m

[
m∑

i=1

| πi(a)− πi(b) + πi(b)− πi(c) |p
]1/p

≤ 1
m

[
m∑

i=1

| πi(a)− πi(b) |p + | πi(b)− πi(c) |p
]1/p

=
1
m

[
m∑

i=1

| πi(a)− πi(b) |p +
m∑

i=1

| πi(b)− πi(c) |p
]1/p

≤ 1
m

[
m∑

i=1

| πi(a)− πi(b) |p
]1/p

+
1
m

[
m∑

i=1

| πi(b)− πi(c) |p
]1/p

= dp(a, b) + dp(b, c)

As such, these are only a semi-distances. Namely, it cannot be proved1 that dp(a, b) =
0 iff a = b. This is the case of indiscernible individuals with respect to the given set of
features F.

The underlying idea for the measure is that similar individuals should exhibit the
same behavior w.r.t. the concepts in F. Here, we make the assumption that the feature-
set F may represent a sufficient number of (possibly redundant) features that are able to
discriminate really different individuals.

It could be criticized that the subsumption hierarchy has not been explicitly in-
volved. However, this may be actually yielded as a side-effect of the possible partial
redundancy of the various concepts, which has an impact on their extensions and thus

1 In case the unique names assumption were made, a further projection function can be intro-
duced π0, such that |π0(a)− π0(b)| = 1 iff a 6= b.



on the related projection function. A tradeoff is to be made between the number of
features employed and the computational effort required for computing the related pro-
jection functions.

Compared to other distance (or dissimilarity) measures [2, 5], the presented func-
tions do not depend on a specific language. Note that the computation of projection
functions πi (i = 1, . . . ,m) on the individuals can be performed in advance (with the
support of KBMS [9, 4]) thus determining a speed-up in the actual computation of
the measure. This is very important for the measure integration in algorithms which
massively use this distance, such as case-based reasoning and all other instance-based
methods including clustering algorithms.

Following the rationale of the average link criterion used in agglomerative clustering
[11], the measures can be extended to the case of concepts, by recurring to the notion
of medoids. The medoid of a group of individuals is the individual that has the highest
similarity w.r.t. the others. Formally. given a group G = {a1, a2, . . . , an}, the medoid
is defined:

medoid(G) = argmin
a∈G

n∑
j=1

d(a, aj)

Now, given two concepts C1, C2, we can consider the two corresponding groups of
individuals obtained by retrieval Ri = {a ∈ Ind(A) | K |= Ci(a)}, and their resp.
medoids mi = medoid(Ri) for i = 1, 2 w.r.t. a given measure dF

p (for some p > 0 and
committee F). Then we can define the function for concepts as follows:

dF
p(C1, C2) := dF

p(m1,m2)

3 Feature Set Optimization

Experimentally, we obtained satisfactory results2 by testing the measure on distance-
based classification. Nevertheless, various optimizations of the measures can be fore-
seen as concerns their parametric definition. Specifically, the choice of the concepts to
be included in the committee – feature selection – will be examined. Among the pos-
sible committees, those that are able to better discriminate the individuals in the ABox
ought to be preferred:

Definition 2 (good feature set). Let F = {F1, F2, . . . , Fm} be a set of concept de-
scriptions. We call F a good feature set for the knowledge base K = 〈T ,A〉 iff ∀a, b ∈
Ind(A), a 6= b : ∃i ∈ {1, . . . ,m} : πi(a) 6= πi(b).

Note that, when the function defined above adopts a good feature set, it has the proper-
ties of a metric on the related instance-space.

Since the function strongly depends on the choice of concepts included in the com-
mittee of features F, two immediate heuristics can be derived:

2 Results omitted for lack of space. They are available in technical reports and papers to appear.
See http://lacam.di.uniba.it:8000/people/nicola.html.



1. controlling the number of concepts of the committee (which has an impact also on
efficiency), including especially those that are endowed with a real discriminating
power;

2. finding optimal sets of discriminating features of a given cardinality, by allowing
also their composition employing the specific constructors made available by the
DL language of choice.

Both these heuristics can be enforced by means of suitable machine learning tech-
niques especially when knowledge bases with large sets of individuals are available.
Namely, part of the entire data can be drawn in order to induce optimal F sets, in ad-
vance with respect to the application of the measure for all purposes. The adoption of
genetic programming has been considered for constructing optimal sets of features. Yet
these algorithms are known to suffer from being possibly caught in local minima. An
alternative may consist in employing a different probabilistic search procedure which
aims at a global optimization. Thus a method based on simulated annealing [3] has been
devised, whose algorithm is reported in Fig. 1.

Essentially the algorithm searches the space of all feature sets starting from an initial
guess (determined by MAKEINITIALFS(K)) based on the concepts (both primitive and
defined) currently referenced in the knowledge base. The loop controlling the search
is repeated for a number of times that depends on the temperature which gradually
decays to 0, when the current feature committee can be returned. Meanwhile, this set is
iteratively refined calling a suitable procedure RANDOMSUCCESSOR(). Then the fitness
of the new feature set is compared to that of the current one determining the increment
of energy ∆E. If this is positive then the candidate committee replaces the current one.
Otherwise it will (less likely) be replaced with a probability that depends on ∆E.

As regards the heuristic FITNESSVALUE(F), it can be computed as the average dis-
cernibility factor [13] of the individuals w.r.t. the feature set. For example, given a set
of individuals IS = {a1, . . . , an} ⊆ Ind(A) (the whole or just a sample of Ind(A) used
to induce an optimal measure) the fitness function may be defined:

FITNESSVALUE(F) = k ·
∑

1≤i<j≤n

|F|∑
k=1

| πk(ai)− πk(aj) |

where k is a normalization factor which may be set to: (1/m) (n · (n− 1)/4− n),
which depends on the number of couples of different individuals that really determine
the fitness measure.

As concerns finding candidates to replace the current committee, the function RAN-
DOMSUCCESSOR() can be implemented by recurring to simple transformations of the
feature set:

– adding (resp. removing) a concept C: nextFS← currentFS ∪ {C}
(resp. nextFS← currentFS \ {C})

– randomly choosing one of the current concepts from currentFS, say C;
replacing it with one of its refinements C ′ ∈ REF(C)

Refining concept descriptions is language-dependent. For the case ofALC logic, refine-
ment operators have been proposed in [12, 10]. Complete operators are to be preferred
to ensure exploring the whole search-space



FeatureSet OPTIMIZEFEATURESET(K, ∆T )
input K: Knowledge base

∆T : function controlling the decrease of temperature
output FeatureSet
static currentFS: current Feature Set

nextFS: next Feature Set
Temperature: controlling the probability of downward steps

begin
currentFS← MAKEINITIALFS(K)
for t← 1 to∞ do

Temperature← Temperature−∆T (t)
if (Temperature = 0)

return currentFS
nextFS← RANDOMSUCCESSOR(currentFS,K)
∆E ← FITNESSVALUE(nextFS)− FITNESSVALUE(currentFS)
if (∆E > 0)

currentFS← nextFS
else // replace FS with given probability

REPLACE(currentFS, nextFS, e∆E)
end

Fig. 1. Feature Set optimization based on a Simulated Annealing procedure.

Given a suitable cooling schedule, the algorithm is known to find an optimal solu-
tion. To control the complexity of the process alternate schedules may be preferred that
guaratee the construction of suboptimal solutions in polynomial time [3].

4 Conclusion and Extensions

We have proposed the definition of a family of semi-distances over the individuals in
a DL knowledge base. The measures are not language-dependent yet they are param-
eterized on a committee of concepts. Therefore, we have also presented a randomized
search method to find optimal committees. One of the advantages of the measures is
that they are not language-dependent differently from previous proposals [5]. As pre-
viously mentioned, the subsumption relationships among concepts in the committee is
not explicitly exploited in the measure for making the relative distances more accurate.
The extension to the case of concept distance may also be ameliorated.

The measure may have a wide range of application of distance-based methods to
knowledge bases. They have been integrated in an instance-based learning system im-
plementing a nearest-neighbor learning algorithm: an experimentation on performing
semantic-based retrieval proved the effectiveness of the new measures, compared to the
outcomes obtained adopting other measures [5]. The next step concerns exploiting the
measures in a conceptual clustering algorithm where clusters will be formed by group-
ing instances on the grounds of their similarity, possibly triggering the induction of new
emerging concepts, as in [8].
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