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1 Motivation

The design, maintenance, reuse, and integration of ontologies are complex tasks. Like
software engineers, ontology engineers need to be supported by tools and methodolo-
gies that help them to minimize the introduction of errors, i.e., to ensure that ontologies
are consistent and do not have unexpected consequences. In order to develop this sup-
port, important notions from software engineering, such asmodule, black-box behavior,
andcontrolled interaction, must be adapted.

Recently, there has been growing interest in the topic of modularity in ontology
engineering [10, 9, 8, 5, 3], motivated by the above mentioned application needs. This
paper extends our previous results[3]. We focus on the problem of “safe” reuse of on-
tologies and consider the scenario in which we are developing an ontologyP and want
to reuse a setS of symbols—that is, concept names, role names and individuals— from
a “foreign” ontologyQ without changing their meaning.

Suppose that an ontology engineer is building an ontology about research projects,
which specifies different types of projects according to the research topics they focus on.
For example, the conceptsGenetic Disorder Project and Cystic Fibrosis EUProject
describe projects about genetic disorders and European projects about cystic fibrosis
respectively, as given by the axioms P1 and P2 in Figure 1. The ontology engineer is an
expert on research projects; he knows, for example, that every instance ofEU Project
must be an instance ofProject (axiom P3) and that the rolehas Focus can be applied
only to instances ofProject (axiom P4). He may be unfamiliar, however, with most
of the topics the projects cover and, in particular, with the termsCystic Fibrosis and
Genetic Disorder mentioned in P1 and P2. In order to complete the projects ontology
with suitable definitions of these medical terms, he decides to reuse the knowledge
about these subjects from a well-established medical ontology.

Suppose thatCystic Fibrosis andGenetic Disorder are described in an ontologyQ
containing axioms M1-M4 in Figure 1. The most straightforward way to reuse these
concepts is to import inP the ontologyQ—that is, to add the axioms fromQ to the
axioms ofP and work with the extended ontologyP ∪Q. Importing additional axioms
into an ontology may result into new logical consequences. For example, axioms M1–
M4 inQ imply that every instance ofCystic Fibrosis is an instance ofGenetic Disorder:

Q |= α := (Cystic Fibrosis v Genetic Disorder) (1)

Indeed,α1 = (Cystic Fibrosis v Genetic Disorder) follows from axioms M1 and M2
as well as from M1 and M3;α follows from α1 and M4. Using inclusionα from



Ontology of medical research projectsP :

P1 Genetic Disorder Project ≡ Project u ∃has Focus.Genetic Disorder

P2 Cystic Fibrosis EUProject ≡ EUProject u ∃has Focus.Cystic Fibrosis

P3 EUProject v Project

P4 ∃has Focus.> v Project

E1 Project u (Genetic Disorder u
::

Cystic Fibrosis) v ⊥
E2 ∀

:
has Focus.Cystic Fibrosis v ∃has Focus.Genetic Disorder

Ontology of medical termsQ:

M1Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u ∃has Origin.Genetic Origin

M2Genetic Fibrosis ≡ Fibrosis u ∃has Origin.Genetic Origin

M3Fibrosis u ∃located In.Pancreas v Genetic Fibrosis

M4Genetic Fibrosis v Genetic Disorder

Fig. 1: Reusing medical terminology in an ontology on research projects

(1) and axioms P1–P3 from ontologyP we can now prove that every instance of
Cystic Fibrosis EUProject must also be an instance ofGenetic Disorder Project:

P ∪Q |= β := (Cystic Fibrosis EUProject v Genetic Disorder Project) (2)

Note that, on the one hand,P 6|= β and, on the other hand, the ontology engineer might
be not aware of (2), even though it concerns the terms of primary scope inP.

It is to be expected that axioms likeα in (1) from an imported ontologyQ cause new
entailments likeβ in (2) over the terms defined in the main ontologyP. One would not
expect, however, that the meaning of the terms defined inQ changes as a consequence
of the import since these terms are supposed to be completely specified withinQ. Such
a side effect is highly undesirable for the modeling of ontologyP since the ontology
engineer ofP might not be an expert on the subject ofQ and is not supposed to alter
the meaning of the terms defined inQ, not even implicitly. The meaning of the reused
terms might change after the import due, for example, to modeling errors. In particular,
suppose the ontology engineer has learned about the conceptsGenetic Disorder and
Cystic Fibrosis from the ontologyQ (including the dependency (1)) and has decided to
introduce additional axioms formalizing the following statements:

“Every instance ofProject is different from every instance ofGenetic Disorder

::::
and every instance ofCystic Fibrosis.”(3)

“
:::::
Every

:::::::
project thathas Focus onCystic Fibrosis, alsohas Focus onGenetic Disorder”(4)

Note that the statements (3) and (4) add new information about projects and, intuitively,
they should not change or constrain the meaning of the medical terms.

Suppose the ontology engineer has formalized statements (3) and (4) inP using ax-
ioms E1 and E2 respectively. At this point, he has introduced modeling errors by trans-
lating the wordsandandeveryas conjunctionu and value restriction∀ respectively. As



a consequence, axioms E1 and E2 do not correspond to (3) and (4): E1 actually formal-
izes the following statement:“Every instance ofProject is different from every common
instance ofGenetic Disorder andCystic Fibrosis” , and E2 expresses that“Every object
that has Focus only on Cystic Fibrosis if at all, alsohas Focus on Genetic Disorder” .
This kind of modeling errors are difficult to detect, especially when they do not lead to
inconsistencies in the original ontology.

Note that, although axiom E1 does not correspond to fact (3), it is still a consequence
of (3) and hence it should not constrain the meaning of the medical terms. In contrast, E2
is not a consequence of (4) and, in fact, it does constrain the meaning of these medical
terms. Indeed, axioms E1 and E2 together with axioms P1-P4 fromP imply new axioms
about the conceptsCystic Fibrosis andGenetic Disorder, namely their disjointness:

P |= γ := (Genetic Disorder u Cystic Fibrosis v ⊥) (5)

The entailment (5) can be proved using axiom E2 which is equivalent to:

> v ∃has Focus.(Genetic Disorder t ¬Cystic Fibrosis) (6)

The inclusion (6) and P4 imply that every element in the domain must be a project—
that is,P |= (> v Project). Now, together with axiom E1, this implies (5). The
axioms E1 and E2 not only imply new statements about the medical terms, but also
cause inconsistencies when used together with the imported axioms fromQ. Indeed,
from (1) and (5) we obtainP ∪ Q |= δ := (Cystic Fibrosis v ⊥) which expresses the
inconsistency of the conceptCystic Fibrosis.

To summarize, we have seen that importing an external ontology can lead to unde-
sirable side effects in our knowledge reuse scenario, like the entailment of new axioms
or even inconsistencies over the reused vocabulary.

The contributions of this paper are as follows. First, we formalize some reasoning
services that are relevant for ontology reuse. In particular, we propose the notion of safe
reuse of a signature in an ontology. Second, we show that the problem of checking safety
is undecidable inALCO. This result leaves us with two alternatives: we can either
focus on simple DLs for which this problem is decidable, or we may look for sufficient
conditions for safety—that is, an incomplete solution. We define in general terms the
notion of a sufficient condition for safety— asafety class— and define a family of safety
classes—called locality— with some compelling properties. We have implemented a
safety checking algorithm and obtained empirical evidence of its usefulness in practice.

This paper comes with an extended version available online [4]; we refer the reader
to the extended version for further technical details.

2 Conservative Extensions and Safety

As argued in the previous section, an important requirement for the reuse of an ontol-
ogyQ within an ontologyP should be thatP ∪ Q produces exactly the same logical
consequences over the vocabulary ofQ asQ alone does. This requirement can be nat-
urally formulated using the well-known notion of a conservative extension, which has
recently been investigated in the context of ontologies [7, 8].



Definition 1 (Conservative Extension).Let L be a description logic and letO1 ⊆
O be two ontologies, andS a signature overL. We say thatO is an S-conservative
extensionofO1 w.r.t.L, if for every axiomα overL with Sig(α) ⊆ S, we haveO |= α
iff O1 |= α. We say thatO is a conservative extensionof O1 w.r.t. L if O is an S-
conservative extension ofO1 w.r.t.L for S = Sig(O1).

Definition 1 implies that, in order to show thatP ∪Q is not aS-conservative extension
of Q it suffices to find an axiomα overS that is implied byP ∪Q but not byQ alone.
In our example, the ontologyP ∪ Q is not a conservative extension ofQ w.r.t. S =
{Cystic Fibrosis,Genetic Disorder} sinceP ∪ Q impliesα1 = (Cystic Fibrosis v ⊥)
andα2 = (Genetic Disorder v ⊥) overS, butQ does not.

Definition 1 applies to fixedP,Q. In realistic scenarios, however, the reused ontol-
ogyQ mayevolvebeyond the control of the designers ofP, which may not be autho-
rized to modifyQ, or may decide at a later time to reuse the symbolsCystic Fibrosis
andGenetic Disorder from a medical ontology other thanQ. Therefore, for application
scenarios in which the external ontologyQ may change, it is reasonable to “abstract”
from the particularQ under consideration. In other words, the fact that the axioms in
P do not change the meaning of the external symbols inS should beindependentfrom
the particular meaning of these symbols. This idea can be made precise as follows:

Definition 2 (Safety for a Signature).LetL be an ontology language, and letO be
an ontology andS a signature overL. We say thatO is safe forS w.r.t.L, if for every
ontologyO′ overL with Sig(O)∩ Sig(O′) ⊆ S, we have thatO∪O′ is a conservative
extension ofO′ w.r.t.L.

Definition 2 captures the intuition in our example: the axioms inP should not yield new
consequences over the signatureS and the signatureSig(Q) of the reused ontologyQ,
independently of the particularQ under consideration. In our example, the ontology
O = {E2} is not safe w.r.t.S = {Cystic Fibrosis,Genetic Disorder} andL = ALC.
Indeed, takeQ1 = { > v Cystic Fibrosis; Genetic Disorder v ⊥}. Then,Q1 ∪ O is
inconsistent whereasQ1 is consistent. Consequently,Q1 ∪ O is not aS-conservative
extension ofQ1 w.r.t.L = ALC, and thereforeO = {E2} is not safe forS andL.

Proving that an ontology is safe is more involved than proving that it is not. One way
to prove thatO is S-safe is the following: if we can take an arbitrary interpretation for
the symbols inS and extend it to a model ofO by interpreting the additional symbols
in Sig(O), thenO must beS-safe. This property can be formalized as follows:

Definition 3. Two interpretationsI1 = (∆I1 , ·I1) andI2 = (∆I2 , ·I2) coincide on a
signatureS (notation:I1|S = I2|S) if ∆I1 = ∆I2 andXI1 = XI2 for everyX ∈ S.

Lemma 1. LetO be aSHOIQ ontology andS a signature such that for every inter-
pretationI there exists a modelJ of O such thatJ |S = I|S. ThenO is safe forS
w.r.t.L = SHOIQ.

We can now prove that the ontologyP1 consisting of axioms P1-P4 is safe forS =
{Cystic Fibrosis,Genetic Disorder}. Take an arbitrary interpretationI of S and con-
struct an interpretationJ to be identical toI except for the interpretations of the atomic
conceptsGenetic Disorder Project, Cystic Fibrosis EUProject, Project, EUProject and



the atomic rolehas Focus, all of which we interpret inJ as the empty set. All the ax-
ioms P1–P4, E2 are satisfied inJ and henceJ |= P1.

Using Lemma 1, we are now ready to show the main result in this section:

Theorem 1 (Undecidability for Safety of Ontologies).Given anALC-ontologyO
and a signatureS it is undecidable whetherO is S-safe w.r.t.L = ALCO.

Proof. The proof is based on a reduction to a domino tiling problem. A domino system
is a tripleD = (T,H, V ) whereT = {1, . . . , k} is a finite set oftilesandH,V ⊆ T×T
arehorizontalandvertical matching relations. A solutionfor a domino systemD is a
mappingti,j that assigns to every pair of integersi, j ≥ 1 an element ofT , such that
〈ti,j , ti,j+1〉 ∈ V and〈ti,j , ti+1,j〉 ∈ H. A periodic solutionfor a domino systemD
is a solutionti,j for which there exist integersm ≥ 1 , n ≥ 1 calledperiodssuch that
ti+m,j = ti,j andti,j+n = ti,j for everyi, j ≥ 1.

LetD be the set of all domino systems,Ds be the subset ofD that admit a solution
andDps be the subset ofDs that admit a periodic solution. It is well-known [1, Theorem
3.1.7] that the setsD \ Ds andDps are recursively inseparable, that is, there is no
recursive (i.e. decidable) subsetD′ ⊆ D of domino systems such thatDps ⊆ D′ ⊆
Ds. For every domino systemD, we construct a signatureS = S(D), an ontology
O = O(D) which consists of a singleALC-axiom such that:(a) if D does not have a
solution thenO = O(D) is safe forS = S(D) w.r.t.L = ALCO, and(b) if D has a
periodic solution thenO = O(D) is not safe forS = S(D) w.r.t.L = ALCO.

In other words, for the setD′ consisting of the domino systemsD such thatO =
O(D) is not safe forS = S(D) w.r.t. L = ALCO, we haveDps ⊆ D′ ⊆ Ds. Since
D\Ds andDps are recursively inseparable, this implies undecidability forD′ and hence
for the problem of checking ifO is anS-safe w.r.t.L = ALCO, because otherwise one
can use this problem for deciding membership inD′.

GivenD = (T,H, V ), let S consist of fresh atomic conceptsAi for everyi ∈ T
and atomic rolesrH andrV . Consider an ontologyOtile in Figure 2 constructed forD.
Note thatSig(Otile) = S. The axioms ofOtile express the tiling conditions for a domino

(q1) > v A1 t · · · tAk whereT = {1, . . . , k}
(q2) Ai uAj v ⊥ 1 ≤ i < j ≤ k

(q3) Ai v ∃rH .(
F
〈i,j〉∈H Aj ) 1 ≤ i ≤ k

(q4) Ai v ∃rV .(
F
〈i,j〉∈V Aj ) 1 ≤ i ≤ k

Fig. 2: An ontologyOtile = Otile(D) expressing tiling conditions for a domino systemD

systemD, namely(q1) and(q2) express that every domain element is assigned with a
unique tilet ∈ T ; (q3) and(q4) express that every domain element has horizontal and
vertical matching successors. Now lets be an atomic role andB an atomic concept with
s,B /∈ S. LetO := {β} where:

β := > v ∃s.
[ ⊔

(CivDi)∈Otile
(Ci u ¬Di) t (∃rH .∃rV .B u ∃rV .∃rH .¬B)

]



We say thatrH andrV commute in an interpretationI = (∆I , ·I) if for every
domain elementsa, b, c, d1 andd2 from ∆I with 〈a, b〉 ∈ rH

I , 〈b, d1〉 ∈ rV
I , 〈a, c〉 ∈

rV
I , and〈c, d2〉 ∈ rH

I , we haved1 = d2. The following claims can be easily proved:

Claim 1. If Otile(D) has a modelI in whichrH andrV commute, thenD has a solution.

Claim 2. If I is a model ofO = {β}, then eitherI 6|= Otile or rH andrV do not
commute inI.

To prove Property (a), we use Lemma 1 and demonstrate that ifD has no solution then
for every interpretationI there exists a model ofJ of O such thatJ |S = I|S, which
implies thatO is safe forS w.r.t. L. Let I be an arbitrary interpretation. SinceD has
no solution, then by the contra-position of Claim 1 either (1)I is not a model ofOtile,
or (2) rH andrV do not commute inI. We demonstrate for both of these cases how to
construct the required modelJ of O such thatJ |S = I|S.

Case (1). IfI = (∆I , ·I) is not a model ofOtile then there exists an axiom(Ci v
Di) ∈ Otile such thatI 6|= (Ci v Di). That is, there exists a domain elementa ∈ ∆I

such thata ∈ CIi but a 6∈ DIi . Let us defineJ to be identical toI except for the
interpretation of the atomic roles which we define inJ assJ = {〈x, a〉 | x ∈ ∆}.
Since the interpretations of the symbols inS has remained unchanged, we havea ∈ CJi ,
a ∈ ¬DJi , and soJ |= (> v ∃s.[Ci u ¬Dj ]). This implies thatJ |= β, and so, we
have constructed a modelJ of O such thatJ |S = I|S.

Case (2). Suppose thatrH andrV do not commute inI = (∆I , ·I). This means that
there exist domain elementsa, b, c, d1 andd2 from ∆I with 〈a, b〉 ∈ rH

I , 〈b, d1〉 ∈
rV
I , 〈a, c〉 ∈ rV

I , and 〈c, d2〉 ∈ rH
I , such thatd1 6= d2. Let us defineJ to be

identical toI except for the interpretation of the atomic roles and the atomic concept
B. We interprets in J assJ = {〈x, a〉 | x ∈ ∆}. We interpretB in J asBJ = {d1}.
Note thata ∈ (∃rH .∃rV .B)J anda ∈ (∃rV .∃rH .¬B)J sinced1 6= d2. So, we have
J |= (> v ∃s.[∃rH .∃rV .B u ∃rV .∃rH .¬B]) which implies thatJ |= β, and thus, we
have constructed a modelJ of O such thatJ |S = I|S.

To prove Property (b), assume thatD has a periodic solutionti,j with the periods
m,n ≥ 1. We show thatO is notS-safe w.r.t.L. We build anALCO-ontologyO′ with
Sig(O) ∩ Sig(O′) ⊆ S such thatO ∪ O′ |= (> v ⊥), butO′ 6|= (> v ⊥). This
will imply that O is not safe forO′ w.r.t. L = ALCO, and hence, is not safe forS
w.r.t.L = ALCO. We defineO′ such that every model ofO′ is a finite encoding of the
periodic solutionti,j . For every pair(i, j) with 1 ≤ i ≤ m and1 ≤ j ≤ n, introduce a
fresh individualai,j and takeO′ the extension ofOtile with the following axioms:

(p1) {ai1,j} v ∃rV .{ai2,j} (p2) {ai1,j} v ∀rV .{ai2,j}, i2 = i1 + 1 mod m

(p3) {ai,j1} v ∃rH .{ai,j2} (p4) {ai,j1} v ∀rH .{ai,j2}, j2 = j1 + 1 mod n

(p5) > v
⊔

1≤i≤m, 1≤j≤n {ai,j}

Axioms(p1)–(p5) ensure thatrH andrV commute in every model ofO′. IndeedO′ has
a model corresponding to every periodic solution forD with periodsm andn. Hence
O′ 6|= (> v ⊥). Also, since every model ofO′ is a model ofOtile in which rH andrV

commute, by Claim 2,O′ ∪ O is unsatisfiable, soO′ ∪ O |= (> v ⊥).
ut



3 Safety Classes

Theorem 1 leaves us with two alternatives: first, we can focus simple DLs for which
this problem is decidable; second, we may look for sufficient conditions for the notion
of safety—that is, if an ontology satisfies our conditions then we can guarantee that it
is safe, but not necessarily vice versa. In this paper, we will explore the latter approach.

In general, any sufficient condition for safety can be represented by defining, for
every signatureS, the set of ontologies over a language that satisfy the condition for
that signature. These ontologies should be guaranteed to be safe.

Definition 4 (Class of Ontologies, Safety Class).A class of ontologies for a DLL
and a signatureS is a functionO(·) that assigns to every subsetS′ of S a setO(S′) of
ontologies inL; it is anti-monotonicif for everyS1 ⊆ S2, we haveO(S2) ⊆ O(S1);
it is subset-closedif for everyS andO1 ⊆ O we have thatO ∈ O(S) impliesO1 ∈
O(S); it is union-closedif O1 ∈ O(S) andO2 ∈ O(S) implies(O1 ∪O2) ∈ O(S) for
everyS. A safety classfor L is a class of ontologiesO(·) for L such that, for everyS,
every ontology inO(S) is safe forS.

Safety classes may admit many natural properties, as given in Definition 4.Anti-
monotonicityintuitively means that if an ontologyO can be proved to be safe w.r.t.S
using the sufficient condition, thenO can be proved to be safe w.r.t. every subset ofS.
Similarly, subset-closuremeans that under the same assumption, every subset ofO can
also be proved to be safe using the same sufficient condition. If a safety class isunion-
closedand two ontologiesO1 andO2 can be proved safe using that sufficient test, then
their unionO1 ∪ O2 can also be proved safe using the same test.

3.1 Locality

In this section we introduce a particular family of safety classes forL = SHOIQ, that
we call locality classes. In Section 2, we have seen that, according to Lemma 1, one
way to prove thatO is S-safe is to show that everyS-interpretation can be extended to
a model ofO. Local ontologies are those for which safety can be used using Lemma 1.

Definition 5 (Locality). Given aSHOIQ signatureS, we say that a set of interpreta-
tionsI is local w.r.t.S if for everySHOIQ-interpretationI there exists an interpreta-
tion J ∈ I such thatI|S = J |S. A class of interpretationsis a functionI(·) that given
a SHOIQ signatureS returns a set of interpretationsI(S); it is local if I(S) is local
w.r.t. S for everyS; it is monotonicif S1 ⊆ S2 impliesI(S1) ⊆ I(S2).

An axiomα (an ontologyO) is valid in I if every interpretationI ∈ I is a model of
α (respectivelyO). Given a class of interpretationsI(·), O(·) is the class of ontologies
O(·) based onI(·) if for everyS, O(S) is the set of ontologies that are valid inI(S);
if I(·) is local then we say thatO(·) is a class of local ontologies, and for everyS and
O ∈ O(S) and everyα ∈ O, we say thatO, respectivelyα is local (based onI(·)).

Example 1.Let Ir←∅
A←∅(·) be a class ofSHOIQ interpretations defined as follows. Given

a signatureS, the setIr←∅
A←∅(S) consist of interpretationsJ such thatrJ = ∅ for every

atomic roler /∈ S andAJ = ∅ for every atomic conceptA /∈ S. It is easy to show that



Ir←∅
A←∅(S) is local for everyS, since for every interpretationI = (∆I , ·I) and the inter-
pretationJ = (∆J , ·J ) defined by∆J := ∆I , rJ = ∅ for r /∈ S, AJ = ∅ for A /∈ S,
andXJ := XI for the remaining symbolsX, we haveJ ∈ Ir←∅

A←∅(S) andI|S = J |S.
SinceIr←∅

A←∅(S1) ⊆ Ir←∅
A←∅(S2) for everyS1 ⊆ S2, we have thatIr←∅

A←∅(·) is monotonic;
Ir←∅
A←∅(·) is also compact, since for everyS1 andS2 the sets of interpretationsIr←∅

A←∅(S1)
andIr←∅

A←∅(S2) are defined differently only for elements inS1 M S2.
Given a signatureS, the setAxr←∅

A←∅(S) of axioms that are local w.r.t.S based on
Ir←∅
A←∅(S) consists of all axiomsα such for everyJ ∈ Ir←∅

A←∅(S), we have thatJ |= α.
Then the class of local ontologies based onIr←∅

A←∅(·) could be defined byO ∈ Or←∅
A←∅(S)

iff O ⊆ Axr←∅
A←∅(S).

Proposition 1 (Locality Implies Safety). LetO(·) be a class of ontologies based on a
local class of interpretationsI(·). ThenO(·) is a subset-closed and union-closed safety
class forL = SHOIQ. If additionallyI(·) is monotonic, thenO(·) is anti-monotonic.

Proposition 1 and Example 1 suggest a particular way for proving safety of ontolo-
gies. Given anSHOIQ ontologyO and a signatureS it is sufficient to check if every
axiomα in O is satisfied by every interpretation fromIr←∅

A←∅(S); that is, givenα andS,
it suffices to interpret every atomic concept and atomic role not inS as the empty set
and then check ifα is satisfied in all interpretations of the remaining symbols. Note that
for definingOr←∅

A←∅(S), we do not fix the interpretation of the individuals outsideS, but
in principle, we could do that. The reason is that there is no elegant way how to describe
such interpretations. Namely, every individual needs to be interpreted as an element of
the domain, and there is no “canonical” element of every domain to choose, as opposed
to the “canonical” subsets of (pairs of) the domain elements, which can be taken, say
as the empty set or the set of all (pairs of) the domain elements. These observations
suggest the following test for locality:

Proposition 2 (Testing Locality). Given aSHOIQ-signatureS, conceptC, axiomα
and ontologyO let τ(C,S), τ(α,S) andτ(O,S) be defined recursively as follows:

τ(C,S) ::= τ(A,S) = ⊥ if A /∈ S and otherwise= A; (a)
| τ(C1 u C2,S) = τ(C1,S) u τ(C2,S); (b)
| τ(¬C1,S) = ¬τ(C1,S); (c)
| τ(∃R.C1,S) = ⊥ if Sig(R) * S and otherwise= ∃R.τ(C1,S); (d)
| τ(>n R.C1,S) = ⊥ if Sig(R) * S and otherwise= (>n R.τ(C1,S)). (e)

τ(α,S) ::= τ(C1 v C2,S) = (τ(C1,S) v τ(C2,S)); (g)
| τ(R1 v R2,S) = (⊥ v ⊥) if Sig(R1) * S, otherwise

= ∃R1.> v ⊥ if Sig(R2) * S, otherwise= (R1 v R2); (h)
| τ(a :C,S) = a : τ(C,S); (i)
| τ(r(a, b),S) = > v ⊥ if r /∈ S and otherwise= r(a, b); (j)
| τ(Trans(r),S) = ⊥ v ⊥ if r /∈ S and otherwise= Trans(r); (k)
| τ(Funct(R),S) = ⊥ v ⊥ if Sig(R) * S and otherwise= Funct(R). (l)

τ(O,S) ::=
⋃

α∈O τ(α,S) (m)

Then,O ∈ Or←∅
A←∅(S) iff every axiom inτ(O,S) is a tautology.



Example 2.Let O = {α} consists of axiomα = M2 from Figure 1. We demonstrate
using Proposition 2 thatO is local w.r.t.S = {Fibrosis, Genetic Origin}. According
to Proposition 2, in order to check ifO is local w.r.t.S1 it is sufficient to perform the
following replacements inα (the symbols fromS are underlined):

M2

⊥ [by (a)]︷ ︸︸ ︷
Genetic Fibrosis ≡ Fibrosis u

⊥ [by (d)]︷ ︸︸ ︷
∃has Origin.Genetic Origin (7)

We obtainτ(M2,S) = (⊥ ≡ Fibrosis u⊥) which is aSHOIQ-tautology. HenceO is
local w.r.t.S and hence by Lemma 1 isS-safe w.r.t.SHOIQ.

By Proposition 2, one can use available DL-reasoners for testing locality. If this is
too costly, one can still formulate a tractable approximation of locality:

Definition 6 (Syntactic Locality for SHOIQ). Let S be a signature. The following
grammar recursively defines two sets of conceptsCon∅(S) andCon∆(S) for S:

Con∅(S) ::= A∅ | ¬C∆ | C u C∅ | ∃R∅.C | ∃R.C∅ | (>n R∅.C) | (>n R.C∅) .

Con∆(S) ::= ¬C∅ | C∆
1 u C∆

2 .

whereA∅ /∈ S is an atomic concept,R is a role, andC is a concept,C∅ ∈ Con∅(S),
C∆

(i) ∈ Con∆(S), i = 1, 2, andR∅ is (possibly inverse of) an atomic roler∅ /∈ S. An

axiomα is syntactically local w.r.t.S if it is of one of the following forms:(1) R∅ v R,
or (2) Trans(R∅), or (3) Funct(R∅), or (4) C∅ v C, or (5) C v C∆, or (6) a :C∆. A
SHOIQ-ontologyO is syntactically local w.r.t.S if everyα ∈ O is syntactically local.

It is easy to see from the inductive definitions ofCon∅(S) andCon∆(S) in Definition 6
that for every interpretationI = (∆I , ·I) from Ir←∅

A←∅(S) we have that(R∅)I = ∅,
(C∅)I = ∅ and(C∆)I = ∆I , C∅ ∈ Con∅(S) andC∆ ∈ Con∆(S). Hence, every
syntactically local axiom is satisfied in every interpretationI from Ir←∅

A←∅(S), and so
is also semantically local. Furthermore, it can even be shown that the safety class for
SHOIQ based on syntactic locality enjoys all of the properties from Definition 4—that
is, it is anti-monotone, subset-closed and union-closed.

Example 3(Example 2 continued).Axiom M2 from Figure 1 is syntactically local w.r.t.
S1 = {Fibrosis, Genetic Origin}:

M2

∈ Con∅(S1)[matchesA∅]︷ ︸︸ ︷
Genetic Fibrosis ≡ Fibrosis u

∈ Con∅(S1)[matches∃R∅.C]︷ ︸︸ ︷
∃has Origin.Genetic Origin︸ ︷︷ ︸
∈ Con∅(S1)[matchesC u C∅]

(8)

It is easy to show that syntactic locality can be checked in polynomial time with respect
to the size of the input ontology and input signature.

Note that semantic locality does not imply syntactic locality. For example, the axiom
α = (A v AtB) is local w.r.t. everyS since it is a tautology, but it is not syntactically
local w.r.t.S = {A, B} since it involves symbols inS only.



Ir←∗
A←∗(S) r, A 6∈ S : rJ AJ

Ir←∅
A←∅(S) ∅ ∅
Ir←∆×∆
A←∅ (S) ∆J ×∆J ∅
Ir←id
A←∅ (S) {〈x, x〉 | x ∈ ∆J } ∅

Ir←∗
A←∗(S) r, A 6∈ S : rJ AJ

Ir←∅
A←∆(S) ∅ ∆J

Ir←∆×∆
A←∆ (S) ∆J ×∆J ∆J

Ir←id
A←∆ (S) {〈x, x〉 | x ∈ ∆J } ∆J

α Axiom ? α ∈ Ax r←∅
A←∅

r←∆×∆
A←∅

r←id
A←∅

r←∅
A←∆

r←∆×∆
A←∆

r←id
A←∆

P4∃has Focus.> v Project ✓ ✗ ✗ ✓ ✓ ✓

P5
BioMedical Project ≡ Projectu

u ∃has Focus.Bio Medicine
✓ ✓ ✓ ✗ ✗ ✗

P6Project u Bio Medicine v ⊥ ✓ ✓ ✓ ✗ ✗ ✗

P7Funct(has Focus) ✓ ✗ ✓ ✓ ✗ ✓

P8HumanGenome:Project ✗ ✗ ✗ ✓ ✓ ✓

P9has Focus(HumanGenome, Gene) ✗ ✓ ✗ ✗ ✓ ✗

E2
∀has focus.Cystic Fibrosis v
v ∃has Focus.Cystic Fibrosis

✗ ✗ ✗ ✗ ✗ ✗

Table 1: Examples for and Comparison Between Different Local Classes of Interpretations

The locality condition in Example 1 is just a particular example of a locality class.
Other classes of local interpretations can be constructed in a similar way, by fixing the
interpretations of the symbols not inS to different values. In Table 1 we provide several
such classes of local interpretations by fixing the interpretation of atomic roles outside
S to either the empty set∅, the universal relation∆×∆, or the identity relationid on
∆, and the interpretation of atomic concepts outsideS to either the empty set∅ or the
set∆ of all domain elements. Each class of local interpretations in Table 1 defines a
corresponding class of local ontologies. In Table 1 we have listed all of these classes
together with examples of typical types of axioms used in ontologies. Table 1 shows
that different types of locality conditions are appropriate for different types of axioms.
Note that E2 is not local for any of our locality conditions, since E2 is not safe forS.

One could design algorithms for testing locality for the classes of interpretations
in Table 1 similar to the one presented in Proposition 2. E.g., locality for the class
Ir←∅
A←∆(S) can be tested as in Proposition 2, where the case(a) of the definition for
τ(C,S) is replaced with: “τ(A,S) = > if A /∈ S and otherwise= A”. For the remain-
ing classes of interpretations, that is forIr←∆×∆

A←∗ (S) andIr←id
A←∗ (S), checking locality is

not straightforward, since it is not clear how to eliminate the universal roles and identity
roles from the axioms and preserve validity in the respective classes of interpretations.
Still, it is easy to design tractable syntactic approximations for all these locality condi-
tions by modifying Definition 6 accordingly. In Figure 3 we give recursive definitions
for syntactically local axiomsÃxr←∗

A←∗(S) that correspond to the classes of interpreta-
tionsIr←∗

A←∗(S) from Table 1, where some cases in the recursive definitions are present
only for the indicated classes of interpretations.

In order to check safety in practice, one may try to apply different sufficient tests
and check if any of them succeeds. For such a purpose, one could combine two dif-



Con∅(S) ::= (¬C∆) | (C u C∅)

| (∃R.C∅) | (> n R.C∅)

Ir←∗
A←∅(·) : | A∅

Ir←∅
A←∗(·) : | (∃R∅.C) | (> n R∅.C)

Ir←id
A←∗ (·) : | (> m Rid.C), m ≥ 2 .

Con∆(S) ::= (¬C∅) | (C∆
1 u C∆

2 )

Ir←∗
A←∆(·) : | A∆

Ir←∆×∆
A←∗ (·) : | (∃R∆×∆.C∆) | (> n R∆×∆.C∆)

Ir←id
A←∗ (·) : | (∃Rid.C∆) | (> 1 Rid.C∆) .

Ãxr←∗
A←∗(S) ::= C∅ v C | C v C∆ | a : C∆

Ir←∅
A←∗(·) : | R∅ v R | Trans(r∅) | Funct(R∅)

Ir←∆×∆
A←∗ (·) : | R v R∆×∆ | Trans(r∆×∆) | r∆×∆(a, b)

Ir←id
A←∗ (·) : | Trans(rid) | Funct(Rid)

Where:

A∅, A∆, r∅, r∆×∆, rid 6∈ S;
R∅, R∆×∆, Rid 6∈ RolS;
C∅ ∈ Con∅(S), C∆

(i) ∈ Con∆(S);
C is any concept,R is any role

Fig. 3: Syntactic Approximations to the Locality Classes

ferent safety classes and obtain a more powerful one by checking whether an ontology
satisfies either the first or the second condition. The combination can be achieved by
forming a union of safety classes: given two safety classesO1(·) andO2(·), their union
(O1∪O2)(·) defined by(O1∪O2)(S) = O1(S)∪O2(S), also gives a safety class. It
is easy to demonstrate that if both safety classesO1(·) andO2(·) are anti-monotonic or
subset-closed then their union is also anti-monotonic or subset-closed. Unfortunately
the union-closure property for safety classes is not preserved under union of safety
classes. For example, the union(Or←∅

A←∅ ∪ Or←∆×∆
A←∆ )(·) of the classesOr←∅

A←∅(·) and
Or←∆×∆

A←∆ (·) is not union-closed since it captures, for example, the ontologyO1 con-
sisting of axioms P4–P7 from Table 1, which satisfies the fist locality condition, the
ontologyO2 consisting of axioms P8–P9 satisfies the second locality condition, but
their unionO1 ∪ O2 is not even safe forS.

It can be shown that the classesOr←∅
A←∅(·) and Or←∅

A←∆(·) of local ontologies are
maximal union-closed safety classes forSHIQ—that is, there is no union-closed class
that strictly extends them.

We have verified empirically that syntactic locality provides a powerful sufficient
test for safety which works for many real-world ontologies. We have implemented a
(syntactic) locality checker and run it over ontologies from a library of 300 ontologies
of various sizes and complexity some of which import each other [6].1For all ontologies
P that import an ontologyQ, we check syntactic locality ofP for S = Sig(P)∩Sig(Q).

It turned out that from 96 ontologies that import other ontologies, all but 11 are
syntactically local w.r.t. the given interface signature. From the 11 non local ontologies,
7 are written in the OWL-Full species of OWL to which our framework does not yet
apply. The remaining 4 non-localities are due to the presence of so-calledmapping
axiomsof the formA ≡ B′, whereA /∈ S andB′ ∈ S. Note that these axioms simply
indicate that the concept namesA,B′ in the two ontologies under consideration are
synonyms. Indeed, we were able to easily fix these non-localities as follows: we replace
every occurrence ofA in P with B′ and then remove this axiom from the ontology.
After this transformation, all 4 non-local ontologies turned out to be local.

1 The library is available athttp://www.cs.man.ac.uk/ ∼horrocks/testing/



4 Outlook

This paper extends the framework for modular reuse of ontologies presented in [3]. We
have formalized the notion of safe reuse of ontologies. We have shown that checking
safety of an ontology w.r.t. a signature is undecidable forALCO. We have provided
a general notion of a sufficient condition for checking safety—a safety class—and ex-
amples of safety classes based on semantic and syntactic restrictions. The former can
be checked using a reasoner and the latter can be checked syntactically in polynomial
time. It turns out that these sufficient conditions for safety work surprisingly well for
many real-world ontologies. In a recent paper [2], we have also demonstrated how to
use safety classes for extracting modules from ontologies.
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