
Dynamic Description Logic: Embracing Actions
into Description Logic

Liang Chang1,2, Zhongzhi Shi1, Lirong Qiu1,2, and Fen Lin1,2

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China,
2 Graduate University of Chinese Academy of Sciences, Beijing, China

{changl,shizz,qiulr,linf}@ics.ict.ac.cn

Abstract. We present a dynamic description logic D-ALCO@ for repre-
senting knowledge about dynamic application domains. D-ALCO@ is a
combination of a typical action theory and the description logic ALCO@,
in such a way that actions are treated as citizens of the logic. Actions of
D-ALCO@ are explicitly specified with the help of formulas, and are then
used in the construction of concepts and formulas. Based on a regression
operator introduced to deal with actions, we provide a tableau-based
decision algorithm for this logic.

1 Introduction

Description logics are successfully used for representing knowledge about static
application domains in a structured way. In order to describe knowledge about
dynamic application domains, temporal extension of description logics has been
extensively studied for more then ten years [2]. With a general temporal descrip-
tion logic, the concept Mortal can be described as Mortal = LivingBeing u
(LivingBeing U �¬LivingBeing), which states that a mortal is a living being
that eventually will not be alive any more. A temporal evolution is embodied in
this description, but actions that fulfilling the evolution are not referred.

In [9], Wolter proposed a dynamic description logic named PDLC, by com-
bining the description logic ALC with propositional dynamic logic PDL. With
PDLC, the concept Mortal can be described as Mortal = LivingBeingu <
die > ¬LivingBeing, in which actions that bring the change are presented.
Although atomic actions of PDLC can be combined using PDL-like operators,
these atomic actions are still short of descriptions. Moreover, efficient decision
algorithm for this logic is still an open problem

In this paper, we propose a dynamic description logic D-ALCO@, by combin-
ing a typical action theory with the description logic ALCO@. On the one hand,
actions are generated from atomic actions with the help of many constructs, and
each atomic action is specified by its preconditions P and conditional effects E,
where P and E are described with formulas. On the other hand, actions could be
used in the construction of concepts and formulas. Therefore, not only concepts
with dynamic meaning, but also actions happened in dynamic domains, can all
be described and reasoned with this formalism.

We first define the syntax and semantics of D-ALCO@ in section 2, then
introduce a regression operator to deal with actions in section 3, and provide a
tableau based decision algorithm for a restricted form of the logic in section 4.
Section 5 concludes the paper.

2 Syntax and Semantics of Dynamic Description Logic

The primitive symbols of D-ALCO@ are a set NC of concept names, a set NR

of role names, and a set NI of individual names.
Concepts C, C ′ of D-ALCO@ are formed with the following syntax rules:

C, C ′ −→ D|@pC|C t C ′|∃R.C| < π > C (1)

D, D′ −→ Ci|{p}|@pD|¬D|D tD′|∃R.D

where Ci ∈ NC , p ∈ NI , R ∈ NR, π is an action. These syntax rules are designed
to ensure that no concepts of the form ¬ < π > C are constructed.

Formulas ϕ, ϕ′ of D-ALCO@ are formed with the following syntax rules:

ϕ,ϕ′ −→ φ|ϕ ∨ ϕ′| < π > ϕ (2)

φ, φ′ −→ C(p)|R(p, q)|¬φ|φ ∨ φ′

where C is a concept, p, q ∈ NI , R ∈ NR, and π is an action. These syntax rules
are designed to ensure that no formulas of the form ¬ < π > ϕ are constructed.

An atomic action of D-ALCO@ is a pair (P, E), where,

– P is a finite set of formulas, used for describing the so-called pre-conditions,
– E is a finite set of conditional effects of the form ψ/φ, where ψ is a formula,

φ is of form A(p), ¬A(p), R(p, q), or ¬R(p, q), with A ∈ NC , R ∈ NR, and
p, q ∈ NI ,

– let P={ϕ1, . . ., ϕn} and E={ψ1/φ1, . . . , ψm/φm}, then P and E subject to
the constraint that ϕ1 ∧ . . . ∧ ϕn → ¬φk for all k with 1 ≤ k ≤ m.

Actions π, π′ of D-ALCO@ are formed with the following syntax rule:

π, π′ −→ (P, E)|ϕ?|π ∪ π′|π;π′ (3)

where (P, E) is an atomic action, ϕ is a formula.
Before introducing the semantics for this logic, we will give some intuitive

examples. Firstly, we describe an atomic action named load as ({Gun(a), ¬
loaded(a)}, {>(a)/loaded(a)}), where > is an abbreviation of C t ¬C for any
concept C. The description tells that the action could happen in the case that a
is an unloaded gun, and the only change brought about by this action is that a
is loaded. Similarly, an atomic action named shoot is described as ({Gun(a),
LivingBeing(b)}, {loaded(a)/¬LivingBeing(b)}), the conditional effect of it
means that in the case a is loaded, b will be not alive after the execution of
shoot.

These two atomic actions can then be used to form a formula < load ; shoot >
(¬ LivingBeing(b)), which asserts that b might be not alive after the sequential
execution of load and shoot. Furthermore, we can also construct a concept <
shoot > LivingBeing to describe these individuals that might be alive after the
execution of shoot.

A model of D-ALCO@ is a pair M=(W, I), where W is a set of states, I

associates with each state w ∈ W an interpretation I(w) = (4I , C
I(w)
0 , . . .,

R
I(w)
0 , . . ., p

I(w)
0 , . . .), with C

I(w)
i ⊆ 4I for each Ci ∈ Nc, R

I(w)
i ⊆ 4I ×4I for

each Ri ∈ NR, and p
I(w)
i ∈ 4I for each pi ∈ NI ; furthermore, for any pi ∈ NI

and any u, v ∈ W , we have p
I(u)
i = p

I(v)
i . Based on the interpretations of all

these states, each action π is interpreted as a binary relation πI ⊆ W ×W .
Given a D-ALCO@ model M=(W, I) and a state w ∈ W , the value CI(w) of a

concept C, the truth-relation (M, w) |= ϕ (or simply w |= ϕ if M is understood)
for a formula ϕ, and the relation πI for an action π are defined inductively as
follows:
(1) {p}I(w) = {pI(w)};
(2) If pI(w) ∈ CI(w) then (@pC)I(w) = 4I , else (@pC)I(w) = {};
(3) (¬C)I(w) = 4I − CI(w);
(4) (C tD)I(w) = CI(w) ∪DI(w);
(5) (∃R.C)I(w) = {x|∃y.((x, y) ∈ RI(w) ∧ y ∈ CI(w))};
(6) (< π > C)I(w) = {p|∃w′ ∈ W.((w, w′) ∈ πI ∧ p ∈ CI(w′))};
(7) (M, w) |= C(p) iff pI(w) ∈ CI(w);
(8) (M, w) |= R(p, q) iff (pI(w), qI(w)) ∈ RI(w);
(9) (M, w) |= ¬ϕ iff (M, w) |= ϕ not holds;
(10) (M, w) |= ϕ ∨ ψ iff (M, w) |= ϕ or (M, w) |= ψ;
(11) (M, w) |=< π > ϕ iff ∃w′ ∈ W.((w, w′) ∈ πI ∧ (M, w′) |= ϕ);
(12) Let S be a formula set, then, (M, w) |= S iff (M, w) |= ϕi for all ϕi ∈ S;
(13) Let (P, E) be an atomic action with E={ψ1/φ1, . . ., ψm/φm}, then, (P, E)I

= {(w1, w2) ∈ W×W | (M, w1) |= P , CI(w2) = CI(w1)∪C+−C− for each concept
name C ∈ NC , and RI(w2) = RI(w1) ∪ R+ − R− for each role name R ∈ NR},
where,
C+={ pI(w1) | ψ/φ ∈ Eα, φ = C(p), and (M, w1) |= ψ},
C−={ pI(w1) | ψ/φ ∈ Eα, φ = ¬C(p), and (M, w1) |= ψ},
R+= { (pI(w1), qI(w1)) | ψ/φ ∈ Eα, φ = R(p, q), and (M, w1) |= ψ},
R−= { (pI(w1), qI(w1)) | ψ/φ ∈ Eα, φ = ¬R(p, q), and (M, w1) |= ψ};
(14) (ϕ?)I = {(w1, w1) ∈ W ×W | (M, w1) |= ϕ};
(15) (π ∪ π′)I = πI ∪ π′I ;
(16) (π;π′)I = πI ◦ π′I .

The interpretation of atomic actions follows the possible models approach[8],
and adopts the style introduced in[4].

A formula ϕ (or a formula set S) is satisfiable if and only if there is a model
M = (W, I) and a state w ∈ W with (M, w) |= ϕ (or (M, w) |= S).

The goal of the following sections is to develop an algorithm for checking the
satisfiability of D-ALCO@ formulas. For simplicity, we take the unique name

assumption (UNA), i.e., p
I(w)
i 6= p

I(w)
j for any pi, pj ∈ NI with pi 6= pj . Further-

more, we don’t take into account TBoxes that composed of concept definitions[3].

3 Regression Operator

In this section we introduce a regression operator to deal with actions.

Definition 1 (Regression). For a formula of the form < π > ϕ, ψ is the
result of regressing < π > ϕ, in symbols Regress(< π > ϕ) = ψ, if
(1) no actions occurred in ψ, i.e., ψ is an ALCO@ formula;
(2) < π > ϕ |= ψ, i.e., for any model M = (W, I) and any state w ∈ W : if
(M, w) |=< π > ϕ, then (M, w) |= ψ;
(3) for any model M = (W, I) and any state w ∈ W : if (M, w) |= ψ, then we can
construct a model M ′ = (W ′, I ′) by introducing a world w′, with the constraint
that W ′ = W ∪ {w′}, I ′(wi) = I(wi) for each wi ∈ W , (w, w′) ∈ πI′ , and
(M ′, w′) |= ϕ; therefore we have (M ′, w) |=< π > ϕ.

Before presenting algorithms for the regression operator, we introduce an-
other operator named ABox updating triggered by atomic action.

An ABox is a finite set of individual assertions of the form C(p), R(p, q), and
¬R(p, q), where C is a concept, R ∈ NR, and p, q ∈ NI . An ABox A entails a
formula ϕ (written A |= ϕ) if and only if for any model M = (W, I) and any
state w ∈ W : (M, w) |= A implies (M, w) |= ϕ. An ABox A entails a formula
set S (written A |= S) if and only if A |= ϕ for any formula ϕ ∈ S.

Definition 2 (ABox updating triggered by atomic action). Let A, A′ be
ABoxes, (P, E) be an atomic action. Then, A′ is the result of updating A with
(P, E), in symbols A ∗ (P, E)=A′, if
(1) A |= P ;
(2) For any model M = (W, I) and any states w, w′ ∈ W : if (w, w′) ∈ (P, E)I

and (M, w) |= A, then (M, w′) |= A′;
(3) For any model M = (W, I) and any state w in W : if (M, w) |= A′, then
we can construct a model M ′ = (W ′, I ′) by introducing a world w′, with the
constraint that W ′ = W ∪ {w′}, I ′(wi) = I(wi) for each wi ∈ W , (w′, w) ∈
(P, E)I′ and (M ′, w′) |= A.

This operator is similar to the ABox updating introduced by Liu et al[6].
Therefore, based on the ABox update algorithm by Liu et al[6], we develop the
following algorithm to calculate A∗ (P, E), by adding step (1) to decide whether
the action is executable on A, adding step (2) to select these changes that will
take place, and adding the seventh case in step (3) to calculate (< π > C)Ea for
concepts of the form < π > C.

Algorithm 1 (A ∗ (P, E)) Let A be an ABox, (P, E) be an atomic action with
E = {ψ1/φ1, . . . , ψm/φm}. Construct an ABox A′ with the following steps:
(1) If A |= P not holds, exit the algorithm with the result “(P, E) is not executable
on A”;

(2) Construct a set Eff(A, E):={φ | ψ/φ ∈ E and A |= ψ}; If Eff(A, E) is empty,
return the ABox A′:= A, exit the algorithm;
(3) Let ObjE(A, E) be all the individual names occurred in Eff(A, E); Construct
an ABox AE := {CE(p) | C(p) ∈ A} ∪ {R(p, q) | R(p, q) ∈ A and ¬R(p, q) /∈
Eff(A, E)} ∪ {¬R(p, q)|¬R(p, q) ∈ A and R(p, q) /∈ Eff(A, E)}, where CE is
constructed inductively as follows:

– For concept name Ci, CE
i := Ci t

⊔
¬Ci(p)∈Eff(A,E)

{p} u d
Ci(p)∈Eff(A,E)

¬{p};

– {p}E := {p};
– (@pD)E := @pD

E;
– (¬D)E := ¬DE;
– (D1 tD2)E := DE

1 tDE
2 ;

– (∃R.D)E := (
d

p∈ObjE(A,E)

¬{p} u ∃R.DE)

t (
⊔

p∈ObjE(A,E)

{p} u ∃R.(
d

q∈ObjE(A,E)

¬{q} u DE))

t ⊔
p,q∈ObjE(A,E),R(p,q)/∈Eff(A,E),¬R(p,q)/∈Eff(A,E)

({p} u ∃R.({q} u DE))

t ⊔
¬R(p,q)∈Eff(A,E)

({p} u @qD
E);

– (< π > D)E :=< ({}, {φ1/¬φ1, . . . , φm/¬φm});π > C, where ({}, {φ1/¬φ1,
. . ., φm/¬φm}) is an atomic action constructed according to the elements of
E;

(4) Return the ABox A′ := AE ∪ Eff(A, E).

In this algorithm, rules used for constructing CE are technically designed to
guarantee the following property:

Property 1. Let M = (W, I) be a D-ALCO@ model, w, w′ ∈ W , and (w, w′) ∈
(P, E)I . Then, for any D-ALCO@ concept C and any individual name x, w′ |=
CE(x) if and only if w |= C(x).

Since xI(w′) = xI(w), we only need to demonstrate (CE)I(w′) = CI(w), by struc-
tural induction on C. In these cases that C is Ci, {p}, @pD, ¬D, D1 tD2, and
∃R.D, the proof is similar to those given in[5]. In the case that C is < π > D, we
have ((< π > D)E)I(w′) = (< ({}, {φ1/¬φ1, . . . , φm/¬φm}) ; π > D)I(w′) = {p
|∃w1 ∈ W.((w′, w1) ∈ (({}, {φ1/¬φ1, . . . , φm/¬φm}) ; π)I ∧ p ∈ DI(w1))} = {p
|∃w1 ∈ W. ∃w2 ∈ W.((w′, w2) ∈ ({}, {φ1/¬φ1, . . . , φm/¬φm})I ∧ (w2, w1) ∈ πI

∧ p ∈ DI(w1))}. According to the semantics of D-ALCO@ actions, I(w2) and
I(w) are equivalent and (w′, w) ∈ ({}, {φ1/¬φ1, . . . , φm/¬φm})I , therefore we
can continue these equations as ((< π > D)E)I(w′) = {p |∃w1 ∈ W. ((w, w1) ∈ πI

∧ p ∈ DI(w1))} = (< π > D)I(w).
The following property is an easy consequence:

Property 2. Algorithm 1 is terminable, the returned A′ satisfies A ∗ α= A′.
Utilizing the algorithm of A ∗ (P, E), we develop the following algorithm for

the regression operator:

Algorithm 2 (Regress(< π > ϕ)) Let π be an action, ϕ be a formula. Calcu-
late Regress(< π > ϕ) recursively with the following steps:
(1) If ϕ contains a subformula of the form < πi > ϕi, then replace all the oc-
currence of < πi > ϕi in ϕ with Regress(< πi > ϕi); Repeat this step, until no
such subformulas contained in ϕ;
(2) If π is an atomic action (P, E) with E={ψ1/φ1, . . ., ψm/φm}, then,

(i) Construct an atomic action α′= ({}, {φ1/¬φ1, . . ., φm/¬φm});
(ii) Translate ϕ into a disjunction normal form ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕk, where

each ϕi is a conjunction of individual assertions;
(iii) For each ϕi, let it be ϕi1 ∧ ϕi2 ∧ . . . ∧ ϕim, construct an ABox Ai:=

{ϕi1, ϕi2, . . ., ϕim}, and construct the ABox A′i that satisfying Ai ∗ α′= A′i;
(iv) Return the formula (Set2F(A′1) ∨ . . . ∨ Set2F(A′k)) ∧ Set2F(P), where

Set2F(S) represents the conjunction of all the elements of S, e.g., if S = {ϕ1,
. . ., ϕn}, then Set2F(S) := ϕ1 ∧ . . . ∧ ϕn.
(3) If π is φ?, then return the formula φ ∧ ϕ;
(4) If π is π1 ∪ π2, then return Regress(< π1 > ϕ) ∨ Regress(< π2 > ϕ);
(5) If π is π1 ; π2, then return Regress(< π1 > Regress(< π2 > ϕ)).

Property 3. Algorithm 2 is terminable, the returned formula ψ satisfies Regress(
< π > ϕ) = ψ.

This property can be proved with three steps. Firstly, in the case that π is
an atomic action and ϕ is a formula containing no subformulas of the form
< πi > ϕi, it is obvious that the algorithm will terminate, it is also easy to
demonstrate that the returned formula ψ satisfies Regress(< π > ϕ) = ψ.
Secondly, we relax the π to be any actions, and demonstrate the same results
by structural induction on π. Finally, we relax the ϕ to be any formulas and
demonstrate the property. Due to space limitation, we omit the details here.

4 Tableau Algorithm

Based on the regression operator, we can develop a tableau-based procedure for
deciding the satisfiability of D-ALCO@ formulas.

Algorithm 3 (Deciding the satisfiability of a D-ALCO@ formula) For a
D-ALCO@ formula ϕ, decide its satisfiability with the following steps:
(1) Construct a formula set S′ := {ϕ}. If S′ contains clash, exit the algorithm
with the result “ϕ is unsatisfiable”.
(2) Construct a set SS := {S′};
(3) Take out an element S from SS, apply one of the rules in table 1 to S; For
every new generated formula set, if it contains no clash, then add it into SS;
(4) Repeat step (3), until SS is empty or no rules can be applied to the for-
mula set S that taken out from SS, in the former case return the result “ϕ is
unsatisfiable”, in the latter case return the result “ϕ is satisfiable”.

A clash in a formula set S is one of the following cases: (1) ϕ ∈ S and
¬ϕ ∈ S for a formula ϕ; (2) C(p) ∈ S and (¬C)(p) ∈ S for a concept C and an

individual name p; (3) {q}(p) ∈ S for two different individual names p and q;
(4) (¬{p})(p) ∈ S for an individual name p.

Table 1. Tableau rules for D-ALCO@

Rules on concepts:

R@: If (@qC)(x) ∈ S and C(q) /∈ S, then S1:= {C(q)} ∪ S;
R¬@: If (¬@qC)(x) ∈ S and (¬C)(q) /∈ S, then S1:= {(¬C)(q)} ∪ S;
Rt: If (C1 t C2)(x) ∈ S, C1(x) /∈ S and C2(x) /∈ S,

then S1:=C1(x) ∪ S, S2:= C2(x) ∪ S;
R¬t: If (¬(C1 t C2))(x) ∈ S, and (¬C1)(x) /∈ S or (¬C2)(x) /∈ S,

then S1:= {(¬C1)(x), (¬C2)(x)} ∪ S;
R∃: If (∃R.C)(x) ∈ S, there is no y such that R(x, y) ∈ S and C(y) ∈ S,

then S1:={C(z), R(x, z)} ∪ S, where z is a new individual name;
R¬∃: If (¬(∃R.C))(x) ∈ S, then S1:={(¬C)(y)|R(x, y) ∈ S, (¬C)(y) /∈ S};
R<>c: If (< π > C)(x) ∈ S, and Regress(< π > C(x)) /∈ S,

then S1:={Regress(< π > C(x))} ∪ S
R¬¬c: If (¬(¬C))(x) ∈ S, and C(x) /∈ S, then S1:= {C(x)} ∪ S;

Rules on formulas:

R∨: If ϕ ∨ ψ ∈ S, ϕ /∈ S, and ψ /∈ S, then S1:= {ϕ} ∪ S, S2:= {ψ} ∪ S
R¬∨: If ¬(ϕ ∨ ψ) ∈ S, and ¬ϕ /∈ S or ¬ψ /∈ S, then S1:= {¬ϕ,¬ψ} ∪ S;
R<>f : If < π > ϕ ∈ S and Regress(< π > ϕ) /∈ S, then S1:= {Regress(< π > ϕ)}∪S;
R¬¬f : If ¬(¬ϕ) ∈ S and ϕ /∈ S, then S1:= {ϕ} ∪ S.

It is easy to demonstrate that this algorithm holds the following properties:

– (Termination) The algorithm is terminable;
– (Soundness) For the set SS, let SS′ be the result of executing step (3), then,

there is a satisfiable formula set S ∈ SS if and only if there is a satisfiable
formula set S′ ∈ SS′.

– (Completeness) For any finite formula set S ∈ SS, if no rules can be applied
to S and S contains no clash, then S is satisfiable.

5 Discussion

TBoxes composed of concept definitions are not taken into account in previous
sections. In fact, if a TBox is referred, the set NC could be divided into two
disjoined sets NCD and NCP , where NCD is the set of defined concept names,
NCP is the set of primitive concept names [3]. In this case, adopting the idea
of [4], we will add a constraint to the description of atomic actions: for every
conditional effect ψ/φ, φ must be of form A(p), ¬A(p), R(p, q), or ¬R(p, q), with
A ∈ NCP . Then, if the TBox is acyclic and contains no general concept inclusion

axioms(GCIs), our algorithms are still effective, by adding processes to replace
each occurrence of defined concept names with their corresponding definitions.

As actions are treated as citizens in D-ALCO@, reasoning problems about
actions could be introduced into this formalism, such as the executability, projec-
tion, and subsumption problems[1][4][7]. We think that the regression operator
is useful for these reasoning tasks. For example, in order to decide that whether
a formula ϕ is a consequence of applying a sequence of actions π1, . . . , πk in an
ABox A, we can calculate the formula ψ:= ¬Regress(< π1; . . . ;πk > ¬ϕ) and
check A |= ψ.

Another future work is to alleviate these syntactic restrictions posed on this
logic, so that concepts of the form ¬ < π > C, formulas of the form ¬ < π > ϕ,
and actions of the form π∗ can be constructed.

Acknowledgments. This work was partially supported by the National Sci-
ence Foundation of China (No. 90604017, 60435010), and National Basic Re-
search Priorities Programme(No. 2003CB317004). We would like to thank these
anonymous reviewers for their valuable suggestions.

References

1. Artale, A., Franconi, E.: A Temporal Description Logic for Reasoning about Actions
and Plans. Journal of Artificial Intelligence Research, 1998, 9: 463-506.

2. Artale, A. Franconi, E.: A Survey of Temporal Extensions of Description Logics.
Annals of Mathematics and Artificial Intelligence, 2000, 30(1-4):171-210.

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. F., eds.:
The Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press, 2003.

4. Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating Description
Logics and Action Formalisms: First Results. In Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI’05), Pittsburgh, PA, USA, 2005.

5. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating Description Logic ABoxes.
LTCS-Report 05-10, Chair for Automata Theory, Institute for Theoretical Com-
puter Science, Dresden University of Technology, Germany, 2005.

6. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating description logic ABoxes. In
Proceedings of the 10th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’2006), 2006.

7. Lutz, C., Sattler, U.: A Proposal for Describing Services with DLs. In Proceedings
of the 2002 International Workshop on Description Logics (DL’2002), 2002.

8. Winslett, M.: Reasoning about action using a possible models approach. In Pro-
ceedings of the 7th National Conference on Artificial Intelligence (AAAI’88), 1988.

9. Wolter, F., Zakharyaschev, M.: Dynamic description logic. In Advances in Modal
Logic, Vol 2. Stanford: CSLI Publications, 2000: 449–463

