
On Importing Knowledge from DL Ontologies:
some intuitions and problems

Alex Borgida
Dept. of Computer Science,

Rutgers University, New Brunswick, NJ, USA

Abstract. This paper argues for the benefits of distinguishing the no-
tions of “ontology module” and “importing terms from an ontology”, by
sampling some papers on these topics in the AI and Database communi-
ties. It then proposes intuitions and a formal definition for “importing
terms S from KB under rules G”, and looks at the problems of imple-
menting this for very simple kinds of TBoxes.

1 Introduction
There has been considerable recent interest in the notion of “module” in ontolo-
gies, including a workshop on this topic at ISWC’06. We wish to consider mod-
ules not just as units of development, but also as sources of information used by
other ontologies. In this regard, modern programming languages, such as Python
provide interesting patterns of use: “from YourModule import name1 as name2,

name3 as name4, . . . ”. Such an ability to selectively import ontology fragments
will also be beneficial in ontology engineering. For example, the enormous medi-
cal ontology ON9.3, developed at CNR in Italy (http://www.loa-cnr.it/medicine/),
documents each of its theories (modules) with a list of imported terms. Thus,
Anatomy, which defines 55 classes, specifies in its documentation not just
Theories included by Anatomy:

Meronymy, Positions, Topo-Morphology
but also
The following constants were used from included theories:

* 3d-Area-Of defined as a relation in theory Topo-Morphology

* > defined as a relation in theory Kif-Numbers

... (60+ other terms)
and even more interestingly
The following constants were used from theories not included:

* Anatomical-Abnormality defined as a class in theory Abnormalities

... (20+ other terms)

Given the decade-long experience of the scientists on the above project, one
should not ignore their insight that such specifications are helpful in under-
standing, developing, and maintaining large ontologies.

To establish some intuitions concerning the desirable properties of “importing
terms”, we survey a small sample of relevant techniques that have been proposed
in the literature. (Many additional papers are omitted for lack of space.)

2 Previous Approaches to Knowledge Import
A variety of papers provide more subtle approaches than importing entire on-
tology files, as in OWL. The first two categories (a-b) below, rely on (semi-
automatically) fragmenting an ontology into modules, and then importing only
relevant modules. The last two (c-d) directly address importing individual terms.

(a) Logical Specification of Modules A logical module KB1 of a theory
KB is required to be locally sound (if KB1 |=ψ then KB |=ψ) and locally complete
(if KB |=ψ for a formula ψ that uses only symbols from vocab(KB1), then in
fact also KB1 |=ψ). Cuenca Grau et al [4] extend this idea, by requiring that
module(N,KB) — the module of name N in KB, also be “a coherent and self-
contained subset of KB” (which in this case is a description logic TBox). As
such, it should contain N’s subsuming and subsumed concept names in KB, and
ensure “self-containment”. A more recent proposal, “minimal S-modules” [6],
will be reviewed later.

(b) (Automatic) Graphical Segmentation of Modules. Seidenberg and
Rector [10] suggest that module(N,KB) start out with axioms specifying the
(1) subclasses of N, (2) super-classes of N, (3) restrictions on the roles of N, and
(4) super-roles of N in KB. One then repeatedly adds new identifiers and axioms
according to steps 2-4 above, until a fixed point is reached. If one were to draw
a graph GKB with concept names as nodes connected by edges representing role
restrictions or IsA relationships, then this can be described as a simple graph
traversal algorithm. To reduce a large module, [10] allow limiting the depth of
the traversal, resulting in “dangling” boundary classes.

(c) Importing Terms by Ontology Winnowing. A surprising number
of papers argue for the development of domain-specific ontologies by reusing
fragments of generic, top-level ontologies such as Cyc, WordNet, etc. In such
cases, the portion of the top-level ontology KB to be imported is influenced by a
set of “seed concepts” S, that are to be re-used in the domain-specific ontology.
The key to each such technique are the principles which automatically derive the
axioms and possibly additional concepts to be imported.

For example, Navigli [9] starts with WordNet, whose concepts are organized
by hyponym subsumption. The elements of S are concepts corresponding to
the roots of local ontology trees for domain specific terms. The algorithm first
eliminates concepts not on a path from the top of the WordNet hierarchy to
some element of S, in a “pruning phase”; it then eliminates, as uninteresting,
concepts with only one child in the hierarchy left, in a “trimming phase”. As a
result, import(S,KB) is a taxonomy where every node has at least two children,
so that long chains of uninteresting subsumptions are not present.

Conesa and Olive [2] elaborate Navigli’s technique, to build database concep-
tual schemas by starting from OpenCyc as KB. The paper describes import(S,KB)
as a minimal subset of KB whose vocabulary contains S and its superclasses, and
the algorithm may eliminate concepts between the topmost classes in S and the
root of the taxonomy in KB, as well as classes that only provide “redundant
inheritance paths”.

Note that in all proposals in this category the imported concept names are
restricted to be used in the importing KB according to the following simple
grammar Gwinnow for TBox axioms
<TBox axiom> ::= <local axiom> | <connect up axiom>

<local axiom> ::= <local DL concept> v <local DL concept>

<connect up axiom> ::= <local DL concept> v <Imported concept identifier>

<local DL concept> ::= ...

(d) Importing Terms in Local-Model Semantics
The theory of binary E-connections between description logics has been used

in [3] to connect DL ontologies KB1 and KB2 (which are interpreted in disjoint
“local” domains) through a number of binary relations (“links”) pk between ob-
jects in these interpretations. The result is that in KB1 one can now construct
concepts by restricting pk with terms C2 from KB2, such as ∀pk.C2. (In KB2, one
can use p−k .) This is like importing concepts from KB2 into KB1, but restricting
their syntactic occurrence to express value restrictions on the roles pk — some-
thing that can obviously be expressed by another grammar, GE , for subsumption
axioms involving imported concepts.

Distributed Description Logics (DDL) [1] use “bridge rules” with approxi-
mately the meaning 1:A v 2:B to relate concepts A and B from ontologies KB1

and KB2 respectively. Such a rule can also be viewed as importing concept B
into KB1 and then highly restricting its syntactic occurence in an axiom.

3 Importing S: intuitions and definition

From the Anatomy example in Section 1, we start by using syntactic expressions
of the form “import S from KBexpt” for import(S,KBexpt), where S is a set of
identifiers {N1, N2, . . . } contained in vocab(KBexpt). For simplicity, when some
KBimpt uses axioms relating the symbols in S to its own local identifiers, we
assume that vocab(KBimpt) ∩ vocab(KBexpt) ⊆ S.

Based on the preceding survey, we take it that the purpose of importing some
set of identifiers S and their related axioms from ontology KB, as opposed to
including the entire KB as a file, is to minimize the material import(S,KB)
required to understand S, in order to facilitate comprehension by humans, and
possibly to help with local caching. This philosophy is most evident above in the
ontology winnowing work, but also appears in the work on automatic ontology
modularization.

There is some sentiment that import(S,KB) should be a subset of KB, rather
than its theorems [4–6]. This means that the syntactic presentation of axioms in
KB is taken to matter, presumably since it helps humans understand the problem
domain. We shall modify this requirement somewhat to say that explanations
of reasoning in import(S,KB) should correspond to explanations in KB. The
main reason for switching to this alternate requirement is that, as argued in
[7], explanations need not always be complete logical proofs, since some obvious
steps may be omitted. One example of this is simple inheritance: chaining of
IsA in a classification hierarchy of primitives. For example, if KB contains {Dog
:<Canine, Canine :<Animal} and S={Dog,Animal} then it should be sufficient
to import {Dog :<Animal}1. Note that Navigli’s proposal [9] omits exactly such
kinds of trivial steps.

1 Contrary to standard practice, we will use A:<B to indicate an axiom in the theory,
and Av B to indicate the subsumption judgment, entailed or proven in a theory.

Another implication of the need for explanations is that import(S,KB) may
have to contain symbols other than those in S2. For example, if KB= {Married
≡Person u ≥ 1.spouse, Unmarried ≡Person u ≤ 0.spouse}, and S={Married,
Unmarried}, then, to explain why they are disjoint, we will want import(S,KB)
to contain {Married :< ≥ 1.spouse, Unmarried :< ≤ 0.spouse}. One could
also make a case that the actual definitions should be included, since users of the
term should appreciate that these are defined, as opposed to primitive concepts.
A compromise might be to allow for definitions with ellipses: {Married ≡ . . .
u ≥ 1.spouse, Unmarried ≡ . . . u ≤ 0.spouse}.

Once we admit the need for seeing additional symbols from vocab(KB), other
than those in S, the question arises whether such symbols should become part
of S, allowing the importer to use them in constructing new concepts/axioms.
We suggest that this should not be the case, since the user has specified S as the
set of concepts (s)he will be using. Therefore we will keep the set S unchanged,
and consider vocab(import(S,KB))−S to be boundary concepts, used only in
explanations. In line with our desire to reduce the need to understand all of KB,
the set of such additional concepts should however be minimized.

From a logical point of view, we will obviously want import(S,KB) to be
locally sound. We will not however insist on full “local completeness”. The reason
for this is that we have seen in both the work on upper-ontology prunning
and local-model semantics that the imported identifiers might only be used in
a limited way in KBimpt. (The use of external symbols is also limited in [5],
in order to guarantee the desired property of “conservative extension”.) For
example, if imported names Ni can only appear in axioms of the form α :<Ni,
as per Gwinnow, then it might not matter whether import(S,KB) |=¬N1v N2,
since the syntax does not allow asking such questions directly of K3 = KBimpt∪
import(S,KB), and knowledge of this fact might not affect inferences from K3 in
certain DLs. (See Sec. 4 for examples.) The same might happen if the importing
ontology uses a different, weaker logical language than the exporting one. The
limited use of imported concept identifiers can then be exploited to decrease the
set of concepts and axioms from KB that need to be included in import(S,KB).

The import syntax should therefore reflect rules about the use of symbols in
S in the importing ontology. An instruction of the form “KBimpt imports S from

KBexpt” would however seem to be too specific, since the material imported might
change as the local ontology evolves. For this reason, we suggest characterizing
the use of imported identifiers using a grammar G, as we have done in (c) and
(d) above.

To formalize the above discussion for the case of DL TBoxes, we assume
that every description logic D provides, as usual, a syntax for the concepts and
roles, as well as axioms allowed in a TBox, plus a semantic entailment relation-
ship |= of the logic for various kinds of judgements ψ, such as subsumption.
In addition, we also need a specification XPL of acceptable explanations for
judgements in the logic3. As part of XPL, we assume that every DL D provides

2 Of course, this is an integral part of all the proposals surveyed in Section 2.
3 Normally, such a specification is based on a proof theory for the logic, e.g., [7].

an operator expandD(KB), which may add some redundant axioms to KB to
avoid unnecessarily long explanations. For example4, expand() may collapse in-
heritance according to

inherit(KB)={ A :<α | A :<B0 :< . . . :<Bn :<α in KB}.
The following definition then summarizes the above intuitions
Definition 1. Given (1) an (exporting) TBox KB of description logic D1, (2)
a set of concept names S ⊆ vocab(KB) to be imported, (3) a description logic
D2 for importing Tboxes, and (4) a grammar G specifying the syntax of axioms
in importing Tboxes, including the occurence of identifiers from S: We seek a
minimal set of identifiers S̃ containing S, and a minimal subset K of axioms from
expand(KB) involving only names from S̃ such that for every KBimpt satisfying
G, and every judgement ψ with vocab(ψ) ⊆ vocab(KBimpt) ∪ S , we have that
KBimpt∪ KB |=ψ iff KBimpt∪K|=ψ, with all explanations in the latter being
valid in the former.

Such a TBox K will be referred to as importG(S,KB). ut
Note that such aK is guaranteed to exist, since one can start with S̃=vocab(KB),
and K=KB, and then minimize from there. Of course, K may not be unique.

Independently, in a soon-to-appear paper [6], Cuenca Grau et al have pro-
posed a definition for the notion of “minimal S-module”, which can be viewed
as a special case of the above, where D1 = D2, G does not officially restrict the
occurence of imported names (though a sufficient syntactic test for it is pro-
posed), explanations play no role, and the above-stated conditions must hold
for every D with Tarski-style set-theoretic semantics. Please note that our more
general definition was motivated by actual proposals in the prior literature (cat-
egories (c) and (d)), rather than just our own intuitions. The above cited paper,
as well as [5] contain discussions concerning the related notion of “conservative
extension”.

4 Computing import in some simple cases

We propose to explore some computational consequences of the above definition.
Because of the observation concerning the work in [6], their negative complex-
ity results (e.g., undecidability for ALCO) immediately transfer to our case. So,
rather than jumping to consider very expressive DLs, we propose to see how var-
ious characteristics of DLs (e.g., primitive vs. defined concepts, ability to specify
inconsistent concepts, role restrictions) interact with the above definition in the
absence of other sources of complexity. Hence we restrict ourselves to “weak”
DLs. In fact, Dimport will be taken to be only atomic concepts; and in Dexport

subsumption will be determinable by a proof theory consisting of normalization
rules followed by structural subsumption rules. As in [7], explanations of α v β
are provided by (i) decomposing β into a conjunction of “atomic descriptions”
βj

5, (ii) computing normalize(α), and (iii) then showing how normalize(α)v βj

4 Below, we will use A,B,C, . . . to denote concept identifiers, and Greek letters α, β,
. . . to denote possibly complex concept expressions.

5 An atomic description βj cannot be expressed as the conjunction of two or more
descriptions, each of which is smaller in size.

for each j. The decomposition of β into atomic description is not usually ex-
plained, since it is rather trivial.

We also restrict G throughout to very simple “top-level ontology” style im-
ports, allowing B∈S to only appear in axioms A:<B for A/∈S. (But note that ax-
ioms {F :<C, F :<B} will give the effect of conjoining elements of S in KBimpt!)

Throughout, we allow KBexpt to have axioms of the form A :<α, providing
necessary conditions for primitive concepts, A. But we forbid recursion in axioms.

4.1 Conjunction in Necessary Conditions
For this, we decompose axioms involving conjunction into ones without them.

Thus, if KB contained F:< (A uG), but all we needed for a proof is F:<A, we
will avoid the trivial steps of going from F:< (A uG) to F:<A. For this purpose,
we use an operator expandu() defined as
expandu(α1u . . .uαn) = {α1, . . . , αn}
expandu(α:<β) = {α:<γ | γ ∈ expandu(β)}
expandu(KB) = {expandu(α:<β) | α:<β ∈ KB}
and call the fixed point of this operator expandu*().

Subsumption reasoning in KBimpt∪ expandu*(KB) now consists solely of
transitive chaining of axioms, which is abbreviated by inherit(). This yields

import(S,KB) = reduce(select(S, inherit(expandu∗(KB))))
where select(V,KB) = {ψ ∈ KB | vocab(ψ) ⊆ V } and reduce() removes re-
dundant axioms — in this case, redundancy introduced earlier by inherit().

The complexity of this computation is clearly polynomial.

4.2 Disjoint Concepts and Necessary Conditions
If the exporting DL now also has atomic negation, say, one can specify disjoint

concepts B and C, which means that if KBimpt has axioms {F:<B, F:<C}, then
we must be able to conclude that Fv ⊥, in addition to inherit.

This may require considering identifiers, A, not in S, as in the case where
S={B,C} but KB contains {B :<A, C :<¬A}.

If we define TS = {A ∈ vocab(KB) | there exist B,C∈ S, KB|=Bv A, C
v ¬A}, then it is sufficient to also include in import(S,KB) for all such A,B
and C, axioms {B :<A , C:<¬A}, testifying to the presence of A in TS .

In and of itself this is not hard. However, the two concepts B and C may be
disjoint for more than one reason: e.g., they may also be subsumed by Â and ¬Â
respectively. According to our definition, and its intuitions, we should minimize
the set of additional concepts introduced; hence vocab(import(S,KB)) should
not contain both A and Â. Unfortunately, this minimization is a combinatorial
problem:
Proposition 1. There are simple KB with axioms of the form C :<D and C’
:<¬D’, (C,C’∈S, D,D’/∈S), such that the following problem is NP-hard: find the
smallest set W ⊆ vocab(KB)−S with the property that for all B,C∈ S: KB |=(B
uC) v ⊥ iff select(S∪W,KB) |=(B uC) v ⊥
The proof is by reduction from the hitting set problem [Garey & Johnson, SP8].

Similar arguments will hold for any DL that has some way of describing
inconsistent concepts, such as number restrictions; they also seem to apply to
the minimal S-modules of [6].

4.3 Definitions with Conjunction
The novelty here is that KB can now have axioms of the form D≡AuB,

as well as C:<E. In this case, definitions can no longer be replaced by simple
subsumptions on atoms. In fact, if we have S ={A’,B’,D,H}, KB0 = {D≡AuB,
A′:<A,B′:<B}, while KBimpt contains {E :<A’, E :<B’}, then KBimpt∪ KB0
|=E v D. Thus import(S,KB0) needs to support this inference by importing all
of KB0.

Now note that since the conjunction of all concepts in S not subsumed by D (
δD = uC∈S,KB6|=Cv DC) is the strongest possible condition w.r.t. KB applicable
to some concept F in KBimpt, if this is not sufficient to entail D (KB 6|= δD
v D) then D’s definition need not be considered, and hence can be omitted from
import(S,DB), since it would never be needed as part of an explanation for
why an F is subsumed by D. Therefore it would be sufficient to repeatedly add
to import(S,KB) definitions for concepts D ∈ vocab(KB) as long as KB|= δD
v D.

Unfortunately, while the result will include enough axioms, it may include
too many. For example, if concepts A and B in KB are subsumed by Â and
B̂ individually, as well as n other concepts C1, . . . , Cn jointly, then importing
the defined concept D ≡ Â uC1 u . . . uCn uB̂, allows for 2n possible minimal
combinations of axioms to be imported (depending on how the Ci are alloted to
A and B). The presence of other concepts and axioms will then tilt in favor of
some of these choices.
Proposition 2. If one allows necessary conditions on definitions, the problem
of finding import(S,KB) when KB has conjunctive definitions or axioms of the
form A:<B, is NP-hard
Proof is by reduction from the NP-hard problem of minimizing Horn proofs, or
minimizing input to monotone boolean circuits. We strongly suspect that the
theorem holds even if definitions cannot have necessary conditions.

4.4 Using FL−

We have seen so far the effect of allowing disjoint concepts and definitions.
Let us consider now the other sine qua non of DLs, role restrictions.

When considering necessary conditions, restrictions of the form ∃p.> are
treated as atomic, while nested ∀-restrictions need to be separated into atomic
descriptions, which do not involve conjunction. For this purpose, extend expandu()
as follows:

expandu(∀p.β) = {∀p.γ | γ ∈ expandu(β)}.
Now inherit(expandu∗(KB)) again contains axioms abbreviating chains of sub-
sumption from a concept A in S to atomic descriptions βi appearing on the right
hand side of axioms in S. import(S,KB) can now be computed as in 4.1 above.

As illustrated above, the general pattern for adding new constructors for DLs
with structural subsumption seems to be to extend the notion of atomic description
and expandu() so that inherit(expandu(KB)) contains the axioms needed to find
the normal forms of concepts in S, and detect conjunctions that can lead to ⊥.
One is then faced with a minimization problem for deciding which new identifiers
and axioms to include, and this is likely to be difficult to solve precisely.

5 Conclusions

Starting from a sample of works on ontology modularization and reuse, we have
argued for a set of desirable properties for the notion of “KB1 imports terms S
from KB2”, distinguishing this from the problem of ontology modularization by:
allowing restrictions on the place where imported names can be used, and requir-
ing both minimization of material imported and preservation of explanations —
all properties motivated by prior examples of importing studied in the literature.
We then investigated the difficulties encountered with implementing the corre-
sponding formal definition in the case of TBoxes that use simple DLs, where
subsumption itself is easy. Perhaps not surprisingly, attempts to minimize the
set of axioms imported leads to combinatorial difficulties. It remains to be seen
if the definition can be modified in a motivated manner (e.g., importing should
provide all explanations in the exporting KB) and if approximate solutions to
NP-hard problems would help. Forthcoming work with Fausto Giunchiglia will
apply this framework to UML.

Acknowledgements. I am greatful to Fausto Giunchiglia for discussions
starting down this path, and to the referees for pointing out unclear aspects.
This work was supported in part by the U.S. DHS under ONR grant N00014-
07-1-0150.

References

1. Alex Borgida, Luciano Serafini: Distributed Description Logics — Assimilating
Information from Peer Sources. J. Data Semantics 1: 153-184 (2003)

2. Jorge Conesa, Antoni Olive: A Method for Pruning Ontologies in the Develop-
ment of Conceptual Schemas of Information Systems. J. Data Semantics V: 64-90
(2006)

3. Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin: Working with Multiple Ontolo-
gies on the Semantic Web. International Semantic Web Conference 2004: 620-634

4. Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, Aditya Kalyanpur: Modularity
and Web Ontologies. KR 2006: 198-209

5. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov and Ulrike Sattler, A
Logical Framework for Modularity of Ontologies. IJCAI 2007.

6. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov and Ulrike Sattler Just
the Right Amount: Extracting Modules from Ontologies. WWW 2007.

7. Deborah L. McGuinness, Alexander Borgida: Explaining Subsumption in Descrip-
tion Logics. IJCAI 1995: 816-821

8. Carsten Lutz, Dirk Walther, and Frank Wolter: Conservative Extensions in Ex-
pressive Description Logics. IJCAI 2007.

9. Roberto Navigli: Extending, Pruning and Trimming General Purpose Ontologies.
2nd IEEE SMC 2002

10. Julian Seidenberg, Alan L. Rector: Web ontology segmentation: analysis, classifi-
cation and use. WWW 2006: 13-22

