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Abstract. We compare and contrast Description Logi]) and Order-Sorted Featui®§ F)
Logic from the perspective of using them for expressing &agoning with knowledge struc-
tures of the kind used for the Semantic Web.

Introduction

The advent of the Semantic Web has spurred a great deal ofsht@ various Knowldege Representation
formalisms for expressing, and reasoning with, so-caltethél ontologies Such ontologies are essentially
sets of expressions describing data and properties th&atzf is generally organized into ordered hierarchies
of set-denoting concepts where the order denotes setioalugroperties are binary relations involving these
concepts. This set-theoretic semantics is amenable tg@fotimal rendering based on first-order logic, and
therefore to proof-theoretic operational semantics.

Description Logic PL£) and Order-Sorted Featur®§ F) logic are two mathematical formalisms that
possess such proof-theories. Both are direct descendaRtznoBrachman’s original ideas [1]. This inher-
itance goes through my own early work formalizing Brachraddéeas [2], which in turn inspired the work
of Gert Smolka, who pioneered the use of constraih for the DL [3] and OSF [4] formalisms. While
the DL approach has become the mainstream of research on the S=Waht the lesser know@®S F for-
malisms have evolved out of Unification Theory [5], and besaduin Constraint-Logic Programming and
Computational Linguistics [6—19].

In this short communication (extracted from [20]), we comgpand contrasDL and OSF logics with
the purpose of using them effectively for ontological resergtation and reasoning.

Relation betweenD L and OSF Formalisms

The two formalisms for describing attributed typed objegftinterest—viz., DL and OS F—have several
common, as well as distinguishing, aspects. Thanks to lbothalisms using the common languagefad £

for expressing semantics, they may thus be easily compased;—for example, [21, 22]. We here brush on
some essential points of comparison and contrast.

Common AspectsDL reasoning is generally carried out using (variations orjudéive Tableau methods
[23].2 This is also the case of the constraint propagation rulesgflF which simply mimick a Deductive
Tableau decision procedure [24{)SF reasoning is performed by th2S F-constraint normalization rules
of Figs. 2 and 3, which implement a logic of sorted-featuneatity.

! Due to severe, and strictly enforced, space limitation @s¢hproceedings, most of the points we make here are futtrated for the
interested reader in [20].

2 Although one can find some publications on Description Legfiat do not (fully) use Tableaux reasoning for their openail semantics
and mix it with resolution i(e., Prolog technology), the overwhelming majority follow tb#ficial W3C recommendations based on
Tableaux methods for TBox reasoning.

3 The constraint-rule notation we use is Plotkin's SOS st§@.[The constraint systetA LCN R is given here as an exemplar of a DL
Tableaux-based reasoning system. It is neither the moséssige nor the most efficient. However, it uses the same sfyformula-
expansion rules used by all Tableaux-based DL systems sughparticular, the ever-growing family of esotericafigmed Description
Logics SHZQ, SHOIN, SHOZQ, SHOQ(D), SRIQ, and otherSROZ Q, which underlie all the official nocturnal bird
languages promoted by the W3C to enable the Semantic Webfersmeample the “official” DL site fttp://dl.kr.org/ )aswell
as the output of one of its most prolific spokespersutp(/www.cs.man.ac.uk/"horrocks/Publications/ ).



(Crn) CONJUNCTIVE CONCEPT:
|: if:r:(Clﬂcz)ES] s
and {z: C1,z: C2} £ S SU{JJZCl,I:CQ}

(Cu) DISJUNCTIVE CONCEPT:

|: ifz:(C1UC2) € S :| 5
andz:C; € S (i=1,2) m

(Cy) UNIVERSAL ROLE:
if z:(VR.C) € S:l S

andy € Rglz] -
landy:C ¢ S Su{y:C}

(C3) EXISTENTIAL ROLE:

if z:(3R.C) € S st R = (ﬂ;’;lRi):| S

andz: C € S = z ¢ Rg|z]
| and y is new SU{zRiy}1U{y:C}

(C>) MIN CARDINALITY :
{ ifz:(>nR) € 8 st R = (|_|',§';1Ri):| S

and |Rs[z]| # n
and y; isnew (0 < i < n) SuU {xRiyj}le’ZLl
U{y: # yihi<ici<n

(C<) MAX CARDINALITY :
if.’r:(Sn.R)ES:| s

and |Rs[z]| > n
and y,z € Rglz]

andy#z ¢ S SUSy/z

Fig. 1. SomeDL-constraint propagation rulestCCNR)

$Object Descriptions—Both theD£ and OSF formalisms describe typed attributed objects. In each, ob-
jects are data structures described by combining set-thgnmincepts and relation-denoting roles.

$Logic-Based Semantics-Both DL andOS F logic are syntatic formalisms expressing meaning using con
ventional logic styles. In other words, both formalismstétkeir meaning in a common universal language—
viz., (elementary) Set Theory. This is good since it eases utateling each formalism in relation to the
other thanks to their denotations in the common language.

$Proof-Theoretic Semantics—Both DL and OSF logics have their corresponding proof theory. Indeed,
since both formalisms are syntactic variants of fragmehtE@L, proving theorems in each can always rely
on FOL mechanized theorem proving.

§ Constraint-Based Formalisms—Even further, bottD£ andOS F logic are operationalized using a constraint-
based decision procedure. As we have expounded, this mattepdradigms amenable to being manipulated
by rule-based systems such as based 6/, rewrite rules, or production rules.

§Concept Definitions—Both DL and OSF provide a means for defining concepts in terms of other con-
cepts. This enables a rich framework for expressing regidata structures.



Distinguishing Aspects There are also aspects in each that distinguisttieand OS F formalisms
apart. However, several of these distinguishing featuresirafact cosmetic—+¢e., are simply equivalent
notation for the same meaning. Remaining non-cosmetierdifices are related to the nature of the deductive
processes enabled out by each formalism.

$Functional Featuresvs. Relational Roles—The OSF formalism usegunctionsto denote attributes while
the DL formalism usesbinary relationsfor the same purpose. Many have argued that this difference i
fundamental and restricts the expressivityd$F vs. DL. This, however, is only a cosmetic difference as
we have already explained. First of all, a functibn A — B is a binary relation sinc¢ € A x B. Ita
functionalrelation because it obeys the axiom of functionality; naniel b) € f & (a,b') € f = b=1'.

In other words, a function is a binary relation that assesiat most one range element to any domain element.
This axiom is fundamental as it is is used in ba8i§ F unification“Feature Functionality’shown in Fig. 2.
Indeed, the correctness of this rule relies on the semasttiemtures as functions, not as relations.

(O1) SORT INTERSECTION: P& X:s&X:s
p& X :sNés
(O2) INCONSISTENT SORT: p& XL
X:1

(O3) FEATURE FUNCTIONALITY : ¢ & X.f = X' & X.f = X"
¢&X.fiX/&X/iXN

(O4) VARIABLE ELIMINATION :

P& X =X
PIX/X') & X = X'

[if X # X" and X € VAR(¢) |

(Os) VARIABLE CLEANUP: p& X=X
4

Fig. 2. BasicOS F-constraint normalization rules

However, a relatiol? € A x B is equivalent to either of a pair of set-denoting functionsz-, either
the functionR[_] : A +— 27, returning theR-object (or R-image setR[x] C B of an element: € A; or,
dually, the functionR™*[_] : B — 2%, returning theR-subject(or R-antecedentsetR™*[y] C A of an
elementy € B. Indeed, the following statements }s(s;) are equivalent:

V{z,y) € Ax B, (z,y) €R (s1)
y € R[x] (s2)
z€ Ry (59)

Therefore, it is a simple matter for tii&S F formalism to express relational attributes (or roles) viédtures
taking values as sets. This is trivially done as a specia oashe “Value Aggregation”OSF unification
rule shown in Fig. 3, using a set data constructoes-a commutative idempotent monoid.



(Os) PARTIAL FEATURE:

& X.f =X’
[if s € pom(f) and RAN,(f) =s"]
P& X f=X'&X:5& X' :5

(O7) WEAK EXTENSIONALITY :
[ifsES andeGARITY(s):] P& X:s&X s
{(Xf=Y. X' f=Y}Co PEX sLX=X

(Og) VALUE AGGREGATION:

p— . p— / . /
[ifsands’arebothsubsortsif P& X=e:s&X=¢:s
commutative monoidx, 1,

d ) o& X =exe :sNs

Fig. 3. Additional OS F-constraint normalization rules

§Setsvs. Individuals—Because thé€SF formalism has only set-denoting sorts, it is often miscarest as
unable to deal with individual elements of these sets. Heweas explained in [20], this is again an innocuous
cosmetic difference since elements are simply assimitatsthgleton-denoting sorts.

$No Number Restrictionsvs. Number Restrictions—Strictly speaking, th€SF formalism has no special
constructs for number restrictions as they exisDif. Now, this does not mean that it lacks the power to
enforce such constraints. Before we show how this may be, dmveever, it important to realize that it may
not always be a good idea to use i€ approach to do so.

Indeed, as can be seen in Fig. 1, thin Cardinality” rule (C<) will introduce n(n — 1)/2 new dis-
equality constraints for each such constraint of cardipali Clearly, this is a source of gross inefficiency
an increases. Similarly, th&Existential Role”rule (C5) will systematically introduce a new variable for a
role, even when this role is never accesséiddoes so because, it materializes the full extent of rolaeva
sets. In other wordg] constraint-propagation rules flesh out complete skeleftmrettributed data structures
whether or not the actual attribute values are needed.

By contrast, it is simple and efficient to accommodate caldinconstraints in th&SF calculus with
value aggregation using a set constructce.(an idempotent commutative monoldd = (x,1,)), and a
functioncARD : M +— N that returns the number of elements in a set. Then, imposhateacardinality
constraint for a role in a feature termt = X : s(r = S = {e1,...,en} : m), where sortn denotesM'’s
domain, is achieved by the constraintt) & CARD(S) < n—or ¢(t) & CARD(S) > n. If the set contains
variables, these constraints will residuate as neededmetite complete evaluation of the functioarD.
However, as soon as enough non-variable elements haveialiaget in the set that enable the decision,
the constraint will be duly enforced. Clearly, this “lazypf@oach saves the time and space waste® By
propagation rules, while fully enforcing the needed caatires.

Incidentally, note also that this principle allows not onfyn and max cardinality, but any constraints on
a set, whether cardinality or otherwise. Importantly, fleigoing method works not only for sets, but can
be used with arbitrary aggregations using other monoids.

§Greatest Fix-Point vs. Least Fix-Point—It is well known that unfolding recursive definitions of alhkls
(be it function, relation, or sort) is precisely formalizeasicomputing a fix-point in some information-theoretic

DEF

lattice. Indeed, given a complete lattige == (D*, C <,1*,u*, T*, L*) and a monotone functién

DEF

F : D* — D%, Tarski's fix-point theorefstates that the setP(F) = {z € D* | F(z) = =} of

4 Thatis, such thatvz,y € D*, = C%y = F(z) C*F(y).
5Seee.g, [25].



fix-points of F is itself a complete sublattice &f. Moreover, its bottom element is calléds least fix-point
(LFP), writtenF', defined by Equation (1):

Fre | Ao &)

neN

and its top element is called’s greatest fix-pointGFP), writtenF*, defined by Equation (2):

FLE T AT @)
neN
where:
" =z if n=0,
T ) = {]—"(]—"n‘l(x)) otherwise

Informally, 7' is the upward iterative limit of F starting from the least element iR, while F' is its
downwarditerative limit starting from the greatest elementlit. One can easily show thai(F') = F'
[resp.,F(F') = F!, and that no element dd® lesser thar " [resp., greater thaf* ] is a fix-point of F.

One may wonder when one, or the other, kind of fix-point casttihe semantics intended for a set of re-
cursive definitions. Intuitively, LFP semantics is appiafg when inference proceeds by derivimgcessary
consequencesom facts that hold true, and GFP semantics is appropriatmnvinference proceeds by deriv-
ing sufficient conditionsfor facts to hold trué. Therefore, LFP computation can model only well-founded
(i.e, terminating) recursion, while GFP computation can alsaehaon well-foundedi(e., not necessarily
terminating) recursion. Hence, typically, LFP computatie naturally described as ottom-upprocess,
while GFP computation is naturally described as@downprocess.

An example of GFP semantics is given by the Herbrand-terification. Indeed, this process transforms
a set of equations into an equivalent one using sufficienditions by processing the terms top-down from
roots to leaves. The problem posed is to find sufficient canditfor a term equation to hold on the con-
stituents (e, the subterms) of both sides of the equation. For first-otelens, this process converges to
either failure or producing a most general sufficient caoditn the form of a variable substitution, or equa-
tion set in solved form (the MGU). Similarly, th®@S F-constraint normalization rules of Figs. 2, 4, 5, and
3 also form an example of converging GFP computation for #mesreasons. Yet another example of GFP
computation where the process may diverge is the lazy rigewert definition unfolding described in [26].

On the other hand, constraint-propagation rules based dnddige Tableau methods such as used in [3]
or shown in Fig. 1 are LFP computations. Indeed, they probegtdm-up by building larger and larger con-
straint sets by completing them with additional (and oftetiundant) constraints. In sho@®S F-constraint
normalization follows a reductive semantics (it elimirsat®nstraints) whil L-constraint propagation fol-
lows an inflationary semantics (it introduces constraims)a result,DL’s tableau-style reasoning method
is expansive—therefore expensiven time and space. One can easily see this simply by realthageach
rule in Fig. 1 builds a larger s&f as it keeps adding more constraints and more variablés ©nly the
“Max Cardinality” rule (C<) may reduce the size ¢f to enforce upper limits on a concept's extent’s size by
merging two variables. Finally, it requires that the coaisti-solving process be decidable.

By contrast, theDS F labelled-graph unification-style reasoning method is nedfieient both in time
and space. Moreover, it can accommodate semi-decidal#e-undecidable, though recursively enumerable—
constraint-solving. Indeed, no rule in Figs. 2, 4, 5, and & éntroduces a new variable. Moreover, all the
rules in Fig. 2 as well as the rule 3, except for tRartial Feature’rule, all eliminate constraints. Even this
latter rule introduces no more constraints than the numbé&atures in the whole constraint. The rules in
Figs. 4 and 5 may replace some constraints with more contgrdiut the introduced constraints are all more
restrictive than those eliminated.

§Coinduction vs. Induction—Remarkably, the interesting duality between least andtgsefix-point com-
putations is in fact equivalent to another fundamental aaeyely,induction vs. coinductioim computation

5 One might also say that LFP #eductivesince it moves from premiss to consequent, and that GRBdsictivesince it moves from
consequent to premiss.



(Og) NON-UNIQUE GLB :
[if {sl};;gzmaXS{tes\tgs] o & X:s & X:5§
and t < s’} ¢&(X;51 HHXSn)

(O10) DISTRIBUTIVITY : o & (¢’ | ¢”)
(&) I (¢&¢")

(O11) DISJUNCTION: o | ¢

¢

Fig. 4. Disjunctive OS F-constraint normalization

(O12) DISEQUALITY : & X #X

(O13) COMPLEMENT :
[ifS'EmaXS{t€S|t$si| p& X3
andt £ s} ¢&X:S/

Fig. 5. NegativeOS F-constraint normalization

and logic, as nicely explained in [27]. Indeed, while indastallows to derive a whole entity from its con-
stituents, coinduction allows to derive the constituentenfthe whole. Thus, least fix-point computation is
induction, while greatest fix-point computation is cointioi. Indeed, coinduction is invaluable for reason-
ing about non well-founded computations such as thoseechorit on potentially infinite data structures [28],
or (possibly infinite) process bisimulation [29].

This is a fundamental difference betweBf andOS F formalisms:DL reasoning proceeds by actually
building a model’s domain verifying a TBox, whil®SF reasoning proceeds by eliminating impossible
values from the domains. Interestingly, this was alreadgng@ed in [3] where the authors state:

“[...] approaches using feature terms as constraints [use] a lazy classification and can thus
tolerate undecidable subproblems by postponing the decisitil further information is available.
[. .. these] approaches are restricted to feature termsveman extension to KL-ONE-like concept
terms appears possible.”

Indeed, the extende@S F formalism overviewed in [20] is a means to achieve precitby

Conclusion

We have briefly reviewed two well-known data descriptionnfatisms based on constraints, Description
Logic and Order-Sorted Feature Logic, explicating how theyk and how they are formally related. We



have identified similarities and differences by studyingittset-theoretic semantics and first-order logic
proof-theory based on constraint-solving. In so doing, dentified that the two formalisms differ essentially
as they follow dual constraint-based reasoning strate@i¢sconstraint-solving being inductive (or eager),
and OS F constraint-solving being coinductive (or lazy). This hascansequence thé&SF logic is more
effective at dealing with infinite data structures and sdetidable inference.

It seems therefore evident that, since i€ and OSF formalisms are one another’s formdlals
both semantically and pragmatically, we should be welligety to know preciselyvhen one or the other
technology is more appropriate fathat Semantic Web reasoning task.
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