
Description Logic vs.Order-Sorted Feature Logic

Hassan Aı̈t-Kaci

ILOG, Inc.
hak@ilog.com

Abstract. We compare and contrast Description Logic (DL) and Order-Sorted Feature (OSF)
Logic from the perspective of using them for expressing and reasoning with knowledge struc-
tures of the kind used for the Semantic Web.

Introduction

The advent of the Semantic Web has spurred a great deal of interest in various Knowldege Representation
formalisms for expressing, and reasoning with, so-called formalontologies. Such ontologies are essentially
sets of expressions describing data and properties thereof. Data is generally organized into ordered hierarchies
of set-denoting concepts where the order denotes set inclusion. Properties are binary relations involving these
concepts. This set-theoretic semantics is amenable to a crisp formal rendering based on first-order logic, and
therefore to proof-theoretic operational semantics.

Description Logic (DL) and Order-Sorted Feature (OSF) logic are two mathematical formalisms that
possess such proof-theories. Both are direct descendants of Ron Brachman’s original ideas [1]. This inher-
itance goes through my own early work formalizing Brachman’s ideas [2], which in turn inspired the work
of Gert Smolka, who pioneered the use of constraintsboth for theDL [3] andOSF [4] formalisms. While
theDL approach has become the mainstream of research on the Semantic Web, the lesser knownOSF for-
malisms have evolved out of Unification Theory [5], and been used in Constraint-Logic Programming and
Computational Linguistics [6–19].

In this short communication (extracted from [20]), we compare and contrastDL andOSF logics with
the purpose of using them effectively for ontological representation and reasoning.

Relation betweenDL and OSF Formalisms

The two formalisms for describing attributed typed objectsof interest—viz., DL andOSF—have several
common, as well as distinguishing, aspects. Thanks to both formalisms using the common language ofFOL
for expressing semantics, they may thus be easily compared—see, for example, [21, 22]. We here brush on
some essential points of comparison and contrast.1

Common AspectsDL reasoning is generally carried out using (variations on) Deductive Tableau methods
[23].2 This is also the case of the constraint propagation rules of Fig. 1, which simply mimick a Deductive
Tableau decision procedure [24].3 OSF reasoning is performed by theOSF-constraint normalization rules
of Figs. 2 and 3, which implement a logic of sorted-feature equality.

1 Due to severe, and strictly enforced, space limitation in these proceedings, most of the points we make here are further elaborated for the
interested reader in [20].

2 Although one can find some publications on Description Logics that do not (fully) use Tableaux reasoning for their operational semantics
and mix it with resolution (i.e., Prolog technology), the overwhelming majority follow theofficial W3C recommendations based on
Tableaux methods for TBox reasoning.

3 The constraint-rule notation we use is Plotkin’s SOS style [30]. The constraint systemALCNR is given here as an exemplar of a DL
Tableaux-based reasoning system. It is neither the most expressive nor the most efficient. However, it uses the same style of formula-
expansion rules used by all Tableaux-based DL systems such as, in particular, the ever-growing family of esoterically-named Description
LogicsSHIQ, SHOIN , SHOIQ, SHOQ(D), SRIQ, and otherSROIQ, which underlie all the official nocturnal bird
languages promoted by the W3C to enable the Semantic Web—seefor example the “official” DL site (http://dl.kr.org/ ) as well
as the output of one of its most prolific spokesperson (http//www.cs.man.ac.uk/˜horrocks/Publications/ ).



(C⊓) CONJUNCTIVE CONCEPT:
»

if x : (C1 ⊓ C2) ∈ S
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Fig. 1. SomeDL-constraint propagation rules (ALCNR)

§Object Descriptions—Both theDL andOSF formalisms describe typed attributed objects. In each, ob-
jects are data structures described by combining set-denoting concepts and relation-denoting roles.
§Logic-Based Semantics—BothDL andOSF logic are syntatic formalisms expressing meaning using con-
ventional logic styles. In other words, both formalisms take their meaning in a common universal language—
viz., (elementary) Set Theory. This is good since it eases understanding each formalism in relation to the
other thanks to their denotations in the common language.
§Proof-Theoretic Semantics—Both DL andOSF logics have their corresponding proof theory. Indeed,
since both formalisms are syntactic variants of fragments of FOL, proving theorems in each can always rely
onFOL mechanized theorem proving.
§Constraint-Based Formalisms—Even further, bothDL andOSF logic are operationalized using a constraint-
based decision procedure. As we have expounded, this makes both paradigms amenable to being manipulated
by rule-based systems such as based onCLP , rewrite rules, or production rules.
§Concept Definitions—BothDL andOSF provide a means for defining concepts in terms of other con-
cepts. This enables a rich framework for expressing recursive data structures.



Distinguishing Aspects There are also aspects in each that distinguish theDL andOSF formalisms
apart. However, several of these distinguishing features are in fact cosmetic—i.e., are simply equivalent
notation for the same meaning. Remaining non-cosmetic differences are related to the nature of the deductive
processes enabled out by each formalism.
§Functional Featuresvs.Relational Roles—TheOSF formalism usesfunctionsto denote attributes while
the DL formalism usesbinary relationsfor the same purpose. Many have argued that this difference is
fundamental and restricts the expressivity ofOSF vs.DL. This, however, is only a cosmetic difference as
we have already explained. First of all, a functionf : A 7→ B is a binary relation sincef ∈ A × B. It a
functional relation because it obeys the axiom of functionality; namely,〈a, b〉 ∈ f & 〈a, b′〉 ∈ f ⇒ b = b′.
In other words, a function is a binary relation that associates at most one range element to any domain element.
This axiom is fundamental as it is is used in basicOSF unification“Feature Functionality”shown in Fig. 2.
Indeed, the correctness of this rule relies on the semanticsof features as functions, not as relations.

(O1) SORT I NTERSECTION: φ & X : s & X : s′

φ & X : s ∧ s′

(O2) I NCONSISTENT SORT: φ & X : ⊥

X : ⊥

(O3) FEATURE FUNCTIONALITY : φ & X.f
.
= X ′ & X.f

.
= X ′′

φ & X.f
.
= X ′ & X ′ .

= X ′′

(O4) VARIABLE ELIMINATION :
ˆ

if X 6= X′ and X ∈ VAR(φ)
˜

φ & X
.
= X ′

φ[X/X ′] & X
.
= X ′

(O5) VARIABLE CLEANUP : φ & X
.
= X

φ

Fig. 2. BasicOSF-constraint normalization rules

However, a relationR ∈ A × B is equivalent to either of a pair of set-denoting functions—viz.., either
the functionR[ ] : A 7→ 2

B , returning theR-object (or R-image) setR[x] ⊆ B of an elementx ∈ A; or,
dually, the functionR−1[ ] : B 7→ 2

A, returning theR-subject(or R-antecedent) setR−1[y] ⊆ A of an
elementy ∈ B. Indeed, the following statements (s1)–(s3) are equivalent:

∀〈x, y〉 ∈ A × B, 〈x, y〉 ∈ R (s1)
y ∈ R[x] (s2)

x ∈ R−1[y] (s3)

Therefore, it is a simple matter for theOSF formalism to express relational attributes (or roles) withfeatures
taking values as sets. This is trivially done as a special case of the“Value Aggregation”OSF unification
rule shown in Fig. 3, using a set data constructor—i.e., a commutative idempotent monoid.



(O6) PARTIAL FEATURE :
ˆ

if s ∈ DOM (f) and RANs(f) = s′
˜

φ & X.f
.
= X ′

φ & X.f
.
= X ′ & X : s & X ′ : s′

(O7) WEAK EXTENSIONALITY :
»

if s ∈ E and ∀f ∈ ARITY (s) :
{X.f

.
= Y, X′.f

.
= Y } ⊆ φ

– φ & X : s & X ′ : s

φ & X : s & X
.
= X ′

(O8) VALUE AGGREGATION :
»

if s ands′ are both subsorts of
commutative monoid〈⋆, 1⋆〉

– φ & X = e : s & X = e′ : s′

φ & X = e ⋆ e′ : s ∧ s′

Fig. 3. AdditionalOSF-constraint normalization rules

§Setsvs. Individuals—Because theOSF formalism has only set-denoting sorts, it is often misconstrued as
unable to deal with individual elements of these sets. However, as explained in [20], this is again an innocuous
cosmetic difference since elements are simply assimilatedto singleton-denoting sorts.
§No Number Restrictionsvs.Number Restrictions—Strictly speaking, theOSF formalism has no special
constructs for number restrictions as they exist inDL. Now, this does not mean that it lacks the power to
enforce such constraints. Before we show how this may be done, however, it important to realize that it may
not always be a good idea to use theDL approach to do so.

Indeed, as can be seen in Fig. 1, the“Min Cardinality” rule (C≤) will introducen(n − 1)/2 new dis-
equality constraints for each such constraint of cardinality n. Clearly, this is a source of gross inefficiency
a n increases. Similarly, the“Existential Role” rule (C∃) will systematically introduce a new variable for a
role, even when this role is never accessed!It does so because, it materializes the full extent of role value
sets. In other words,C constraint-propagation rules flesh out complete skeletonsfor attributed data structures
whether or not the actual attribute values are needed.

By contrast, it is simple and efficient to accommodate cardinality constraints in theOSF calculus with
value aggregation using a set constructor (i.e., an idempotent commutative monoidM = 〈⋆, 1⋆〉), and a
function CARD : M 7→ N that returns the number of elements in a set. Then, imposing arole cardinality
constraint for a roler in a feature termt = X : s(r ⇒ S = {e1, . . . , en} : m), where sortm denotesM ’s
domain, is achieved by the constraintϕ(t) & CARD(S) ≤ n—or ϕ(t) & CARD(S) ≥ n. If the set contains
variables, these constraints will residuate as needed pending the complete evaluation of the functionCARD.
However, as soon as enough non-variable elements have materialized in the set that enable the decision,
the constraint will be duly enforced. Clearly, this “lazy” approach saves the time and space wasted byDL-
propagation rules, while fully enforcing the needed cardinalities.

Incidentally, note also that this principle allows not onlymin and max cardinality, but any constraints on
a set, whether cardinality or otherwise. Importantly, thisforegoing method works not only for sets, but can
be used with arbitrary aggregations using other monoids.
§Greatest Fix-Point vs. Least Fix-Point—It is well known that unfolding recursive definitions of all kinds
(be it function, relation, or sort) is precisely formalizedas computing a fix-point in some information-theoretic
lattice. Indeed, given a complete latticeL

DEF
== 〈DL , ⊑ L ,⊓L ,⊔L ,⊤L ,⊥L〉 and a monotone function4

F : DL 7→ DL , Tarski’s fix-point theorem5 states that the setFP(F)
DEF
== {x ∈ DL | F(x) = x} of

4 That is, such that:∀x, y ∈ DL, x ⊑Ly =⇒ F(x) ⊑LF(y).
5 See,e.g., [25].



fix-points ofF is itself a complete sublattice ofL. Moreover, its bottom element is calledF ’s least fix-point
(LFP), writtenF↑, defined by Equation (1):

F↑ DEF
==

G

n∈N

L

Fn
`

⊥L
´

(1)

and its top element is calledF ’s greatest fix-point(GFP), writtenF↓, defined by Equation (2):

F↓ DEF
==

l

n∈N

L

Fn
`

⊤L
´

(2)

where:

Fn(x) =



x if n = 0,
F(Fn−1(x)) otherwise.

Informally, F↑ is the upward iterative limit of F starting from the least element inDL , while F↓ is its
downward iterative limit starting from the greatest element inDL . One can easily show thatF(F↑) = F↑

[resp.,F(F↓) = F↓], and that no element ofDL lesser thanF↑ [resp., greater thanF↓ ] is a fix-point ofF .
One may wonder when one, or the other, kind of fix-point captures the semantics intended for a set of re-

cursive definitions. Intuitively, LFP semantics is appropriate when inference proceeds by derivingnecessary
consequencesfrom facts that hold true, and GFP semantics is appropriate when inference proceeds by deriv-
ing sufficient conditionsfor facts to hold true.6 Therefore, LFP computation can model only well-founded
(i.e., terminating) recursion, while GFP computation can also model non well-founded (i.e., not necessarily
terminating) recursion. Hence, typically, LFP computation is naturally described as abottom-upprocess,
while GFP computation is naturally described as atop-downprocess.

An example of GFP semantics is given by the Herbrand-term unification. Indeed, this process transforms
a set of equations into an equivalent one using sufficient conditions by processing the terms top-down from
roots to leaves. The problem posed is to find sufficient conditions for a term equation to hold on the con-
stituents (i.e., the subterms) of both sides of the equation. For first-orderterms, this process converges to
either failure or producing a most general sufficient condition in the form of a variable substitution, or equa-
tion set in solved form (the MGU). Similarly, theOSF-constraint normalization rules of Figs. 2, 4, 5, and
3 also form an example of converging GFP computation for the same reasons. Yet another example of GFP
computation where the process may diverge is the lazy recursive sort definition unfolding described in [26].

On the other hand, constraint-propagation rules based on Deductive Tableau methods such as used in [3]
or shown in Fig. 1 are LFP computations. Indeed, they proceedbottom-up by building larger and larger con-
straint sets by completing them with additional (and often redundant) constraints. In short,OSF-constraint
normalization follows a reductive semantics (it eliminates constraints) whileDL-constraint propagation fol-
lows an inflationary semantics (it introduces constraints). As a result,DL’s tableau-style reasoning method
is expansive—therefore,expensivein time and space. One can easily see this simply by realizingthat each
rule in Fig. 1 builds a larger setS as it keeps adding more constraints and more variables toS. Only the
“Max Cardinality” rule (C≤) may reduce the size ofS to enforce upper limits on a concept’s extent’s size by
merging two variables. Finally, it requires that the constraint-solving process be decidable.

By contrast, theOSF labelled-graph unification-style reasoning method is moreefficient both in time
and space. Moreover, it can accommodate semi-decidable—i.e., undecidable, though recursively enumerable—
constraint-solving. Indeed, no rule in Figs. 2, 4, 5, and 3 ever introduces a new variable. Moreover, all the
rules in Fig. 2 as well as the rule 3, except for the“Partial Feature”rule, all eliminate constraints. Even this
latter rule introduces no more constraints than the number of features in the whole constraint. The rules in
Figs. 4 and 5 may replace some constraints with more constraints, but the introduced constraints are all more
restrictive than those eliminated.
§Coinduction vs. Induction—Remarkably, the interesting duality between least and greatest fix-point com-
putations is in fact equivalent to another fundamental one;namely,induction vs. coinductionin computation

6 One might also say that LFP isdeductivesince it moves from premiss to consequent, and that GFP isabductivesince it moves from
consequent to premiss.



(O9) NON-UNIQUE GLB :
»

if {s1}
n

i=0
= max≤{t ∈ S | t ≤ s

and t ≤ s′}

– φ & X : s & X : s′

φ &
`

X : s1 ‖ . . . ‖ X : sn

´

(O10) DISTRIBUTIVITY : φ &
`

φ′ ‖ φ′′
´

`

φ & φ′
´

‖
`

φ & φ′′
´

(O11) DISJUNCTION : φ ‖ φ′

φ

Fig. 4. DisjunctiveOSF-constraint normalization

(O12) DISEQUALITY : φ & X 6
.
= X

⊥

(O13) COMPLEMENT :
»

if s′ ∈ max≤{t ∈ S | t 6≤ s

and t 6≤ s}

– φ & X : s

φ & X : s′

Fig. 5. NegativeOSF-constraint normalization

and logic, as nicely explained in [27]. Indeed, while induction allows to derive a whole entity from its con-
stituents, coinduction allows to derive the constituents from the whole. Thus, least fix-point computation is
induction, while greatest fix-point computation is coinduction. Indeed, coinduction is invaluable for reason-
ing about non well-founded computations such as those carried out on potentially infinite data structures [28],
or (possibly infinite) process bisimulation [29].

This is a fundamental difference betweenDL andOSF formalisms:DL reasoning proceeds by actually
building a model’s domain verifying a TBox, whileOSF reasoning proceeds by eliminating impossible
values from the domains. Interestingly, this was already surmised in [3] where the authors state:

“[. . . ] approaches using feature terms as constraints [. . . ]use a lazy classification and can thus
tolerate undecidable subproblems by postponing the decision until further information is available.
[. . . these] approaches are restricted to feature terms; however, an extension to KL-ONE-like concept
terms appears possible.”

Indeed, the extendedOSF formalism overviewed in [20] is a means to achieve preciselythis.

Conclusion

We have briefly reviewed two well-known data description formalisms based on constraints, Description
Logic and Order-Sorted Feature Logic, explicating how theywork and how they are formally related. We



have identified similarities and differences by studying their set-theoretic semantics and first-order logic
proof-theory based on constraint-solving. In so doing, we identified that the two formalisms differ essentially
as they follow dual constraint-based reasoning strategies, DL constraint-solving being inductive (or eager),
andOSF constraint-solving being coinductive (or lazy). This has as consequence thatOSF logic is more
effective at dealing with infinite data structures and semi-decidable inference.

It seems therefore evident that, since theDL andOSF formalisms are one another’s formalduals,
both semantically and pragmatically, we should be well-advised to know preciselywhen one or the other
technology is more appropriate forwhat Semantic Web reasoning task.
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