
Partitioning ABoxes Based on Converting DL to
Plain Datalog

Jianfeng Du1,2 and Yi-Dong Shen1

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences

2 Graduate University of the Chinese Academy of Sciences
Beijing 100080, China

jfdu,ydshen@ios.ac.cn

Abstract. To make ABox reasoning scalable for large ABoxes in de-
scription logic (DL) knowledge bases, we develop a method for partition-
ing the ABox so that specific kinds of reasoning can be performed sep-
arately on each partition and the results trivially combined can achieve
complete answers. Our method applies to SHIQ(D) knowledge bases.
It first converts a DL knowledge base KB to a plain datalog program
H(KB), and then computes the least fixpoint of the definite part of
H(KB) while generating ABox partitions. Its time data complexity is
polynomial in the ABox size, under some general assumption on con-
crete domains. Experimental results further demonstrate the advantages
of our method.

1 Introduction

ABox reasoning (e.g., query answering) in DL knowledge bases is a great chal-
lenge, due to high complexity of reasoning in expressive DL languages [2] and
the resource limitations (e.g., physical memory) for handling large ABoxes. As
[3] pointed out, there are two approaches towards scalable ABox reasoning. One
approach is to partition the ABox so that some kinds of reasoning can be per-
formed separately on each partition [3, 5]. Another approach is to convert DL
to disjunctive datalog and use deductive databases to reason over the ABox [7].
Based on [7], Motik et al. [8] propose a resolution based algorithm which evalu-
ates non-ground queries in one pass so that the efficiency of the query answering
is further improved. However, the algorithm requires exponential space in the
worst case, thus it is particularly important to partition the ABox to cut down
memory consumption.

In this paper, we present a new method for partitioning the ABox. For a
SHIQ(D) knowledge base KB, we first reduce KB to an equisatisfiable dis-
junctive datalog program DD(KB), using the methods in [7]. Then, we convert
DD(KB) to a plain datalog program H(KB) by replacing disjunctions with def-
inite implications, and compute the least fixpoint of the definite part of H(KB).
During the fixpoint computation, we put sets of assertions that (indirectly) trig-
ger rules in H(KB) to the same part and keep track of the triggering information

on each assertion. At last, we adjust parts to partitions according to the tracking
data. The time data complexity of our method is polynomial in the ABox size,
assuming a polynomial oracle for reasoning with concrete domains and a con-
stant bound on the arity of the concrete domain predicates. Our method always
produces a disjoint and independent partitioning, such that each assertion over
atomic concepts or simple roles is entailed by the whole knowledge base if and
only if it is independently entailed by some partition.

2 Reducing SHIQ(D) to Disjunctive Datalog

A SHIQ(D) [7] knowledge base KB = (KBT ,KBR,KBA) consists of a TBox
KBT , an RBox KBR and an ABox KBA. KBT is a finite set of concept inclusion
axioms. KBR is a finite set of transitivity axioms and role inclusion axioms.
KBA is a set of concept and role membership assertions (¬)A(a), R(a, b), T (a, c),
and (in)equality assertions a = b, a 6= b, where A is an atomic concept, R
an abstract role, T a concrete role, c a concrete individual, a and b abstract
individuals.

In [7], a resolution framework is proposed to reduce a SHIQ(D) knowl-
edge base KB to a disjunctive datalog program DD(KB) = Γ (KBT ,KBR) ∪
KBA∪∆KB . Γ (KBT ,KBR) is a positive disjunctive datalog program computed
regardless of KBA and consists of rules of the form

A1 ∨ . . . ∨Am ← B1, . . . , Bn (m ≥ 0, n > 0) .

A1, . . . , Am, B1, . . . , Bn are all positive atoms which can be over the equality
predicate =, (possibly inverse) roles, original atomic concepts or new atomic
concepts introduced during the structural transformation. In addition, a body
atom can also be a concrete domain atom, an atom of the form HU(x) which
makes the rule safe, or an atom of the form Sf (x, xf) which is introduced for
eliminating the function symbol f . ∆KB is made up of HU(a), HU(af) and
Sf (a, af), instantiated for each individual a and each function symbol f .

To enable equality reasoning in disjunctive datalog, the equality predicate
= is interpreted as a congruence relation and treated as an ordinary predi-
cate, with required properties axiomatized explicitly [7, 8]. A disjunctive datalog
program P with equality is thus transformed into a disjunctive datalog pro-
gram P= without equality, by stating that = is reflexive, symmetric, and transi-
tive, and by appending replacement rules of the form “R(x1, . . . , yi, . . . , xn) ←
R(x1, . . . , xi, . . . , xn), xi = yi”, instantiated for each distinct predicate R and
each position i. In what follows, we assume that = has been treated as an ordi-
nary predicate in DD(KB), and with |=c we denote the cautious entailment in
positive disjunctive datalog programs.

Theorem 1 ([7]). For KB a SHIQ(D) knowledge base, (1) KB is unsat-
isfiable if and only if DD(KB) is unsatisfiable; (2) KB |= α if and only if
DD(KB) |=c α for each assertion α of the form A(a) or S(a, b), where A is an
atomic concept and S a simple role.

3 Partitioning the ABox

With the reduction, DD(KB), of a SHIQ(D) knowledge base KB, we can
reduce the reasoning on KB to the reasoning on DD(KB). In what follows, a
ground atom is also called an assertion; an atom (or assertion) is called basal
if it is over concrete domain predicates or the predicates in ∆KB ; an atom (or
assertion) is called normal if it is not basal. A set S of assertions is said to
trigger a rule R if S = Body(Rσ) for some ground substitution σ. A set S of
assertions is said to indirectly trigger a rule R in logic program Π if there is a
set S′ of assertions such that S ∪Π |= S′ and S′ triggers R. An assertion a is
said to participate in the (indirect) triggering of R (in Π) if there is a set S of
assertions such that a ∈ S and S (indirectly) triggers R (in Π). If Π is clear from
the context, it is omitted. Consider Π0 in Example 1. We say {b, c, d} triggers
r1, {e, c, d} indirectly triggers r1, and e participates in the indirect triggering
of r1. If the logic program contains rules with disjunctions, such as r3 in Π0,
the indirect triggering is nondeterministic. We say a set S of assertions might
indirectly trigger R in Π if S indirectly triggers R in a Horn logic program Π ′

which is converted from Π by replacing disjunctions with definite implications.
Continue with Example 1, we say {b, g, d} might indirectly trigger r1 in Π0.

Example 1. Let Π0 be a logic program consisting of the following ground rules.

r1 : a ← b, c, d . r2 : b ← e . r3 : c ∨ f ← g .

r4 : c . r5 : d . r6 : e . r7 : g .

We intend to partition KBA so that the subsequent reasoning on DD(KB)
can be performed separately on each of its partitions. So we should avoid commu-
nication between partitions during reasoning on DD(KB). Consider Example
1. {c, d, e} should be placed in the same partition, otherwise a cannot be in-
dependently entailed over any partition of {c, d, e, g}. This shows that sets of
assertions that (might) indirectly trigger rules should be placed in the same par-
tition. However, this intuition is too rough. Consider Example 1 again. {d, e, g}
might indirectly triggers r1, but we need not put g to the same partition where
{d, e} locates, since {c, d, e} need be placed in the same partition and then a can
be independently entailed over {c, d, e}. The intuition behind such case is that
for two sets of assertions S1 and S2, when S1∪S2 (might) indirectly trigger R in
logic program Π, i.e., there exists S′ such that S1 ∪S2 ∪Π |= S′ and S′ triggers
R, S1 need not be placed in the same partition where S2 locates, if S2∪Π |= S′.

To exploit above intuitions, we first convert DD(KB) to a plain datalog pro-
gram H(KB) by replacing disjunctions with conjunctions and adding constraints
for negative atoms. That is, a rule of the form “A1∨ . . .∨Am ← B1, . . . , Bn(m >
0, n > 0)” in DD(KB) is converted to “A1 ∧ . . . ∧ Am ← B1, . . . , Bn” and
other rules in DD(KB) remain. In addition, we treat negative atoms in H(KB)
as positive ones by adding constraints of the form “← a,¬a” to H(KB) if
¬a ∈ H(KB). We then separate H(KB) into the definite part H1(KB), which
consists of rules with heads, and the constraint part H0(KB), which consists of
rules without heads, for different treatments.

Our partitioning algorithm is shown in Figure 1. Some tracking data are used.
For each normal assertion a, we use marked(a) to store whether a is marked. We
mark a, i.e., set marked(a) to true, if and only if a participates in triggering rules
in H(KB). Secondly, we use parts(a) to store the set of identifiers of the parts
where a locates, i.e., parts(a) = {id(p)|a ∈ p}. Besides we put a to the merged
part when a participates in triggering rules, we might put a to a part p if there
is some b ∈ p supporting a through rule r ∈ ground(H(KB), i.e., a ∈ Head(r)
and b ∈ Body(r), according to the intuition that a set of assertions indirectly
triggering rules should be placed in the same partition. However, as another
intuition shows, when a is entailed over one of its parts, a need not be placed in
the parts where its supporters locate. So parts(a) is unchanged in such case. We
can see that the set of marked assertions in

⋃
id(p)∈parts(a) p approximates the

support closure of a. Thirdly, we use entailed(a) to store whether a is entailed
by DD(KB), i.e., DD(KB) |=c a. For efficiency, we use a simple recursive
evaluation of entailed(a), which is sound but incomplete. That is, if there exists a
definite rule r ∈ ground(DD(KB)) such that Head(r) = {a} and entailed(b) =
true for all b ∈ Body(r), we set entailed(a) to true.

There are some remarks on the merging procedure MergeParts. First, we
merge parts instead of assertions for efficiency. Second, only when a participates
in triggering rules can marked(a) be set to true. After marked(a) is set to true,
parts(a) remains a single set. Third, for all a ∈ SH with entailed(a) = false,
parts(a) is updated for enlarging the support closure of a: the support closures
of all b ∈ SB (approximated with id(p′)) are appended to the support closure of
a, by adding id(p′) to parts(a), and a to p′ correspondingly.

Our proposed method will always produce a disjoint and independent par-
titioning of the ABox (Theorem 2), which ensures that a query over atomic
concepts or simple roles can be performed separately on each generated parti-
tion and the results trivially combined yield complete answers. Another benefit
of our method is the ability to filter unmarked assertions to the unique unmarked
partition pU (other partitions are called marked partitions correspondingly). Un-
marked assertions do not participate in triggering rules in DD(KB), and thus
the reasoning over pU can be performed on a fragment of DD(KB) consisting
of a kind of rules whose body has no normal atoms. This implies that reasoning
over pU is trivial.

Lemma 1. Let KB be a SHIQ(D) knowledge base such that (KBT ,KBR,
∅) is consistent, KBA,1, . . . , KBA,n the parts returned by PartitionABox(KB).
Then (1) {KBA,1, . . . , KBA,n} is a disjoint partitioning of KBA; (2)

⋃n
i=1 Mi

is a model of DD(KB) = Γ (KBT , KBR) ∪KBA ∪∆KB if for all i = 1, . . . , n,
Mi is a minimal model of DD(KB)i = Γ (KBT ,KBR) ∪KBA,i ∪∆KB.

Proof Sketch. (1) For all assertions a ∈ KBA, if a is marked in PartitionABox,
it is placed in a unique part, otherwise it is moved to the unmarked partition.
So KBA,1, . . . , KBA,n is a disjoint partitioning of KBA.

(2) Let C be the set of all satisfiable basal assertions, D = {a ∈ lfp(H1(KB))|
entailed(a) = true} the set of all entailed normal assertions in the least fix-

MergeParts(SH , SB ,P)
1. for each h ∈ SH with parts(h) undefined do

2. parts(h) := ∅; marked(h) := false; entailed(h) := false;

3. if SH = {h} then entailed(h) :=
∧

b∈SB
entailed(b);

4. merge :=
⋃

b∈SB
parts(b) ∪⋃

h∈SH ,marked(h)=true
parts(h);

5. p′ :=
⋃

id(p)∈merge
p; P := P ∪ {id(p′)} −merge;

6. for each b ∈ SB do marked(b) := true;

7. for each h ∈ SH with marked(h) = false do

8. parts(h) := parts(h) ∪ {id(p′)} −merge; p′ := p′ ∪ {h};
9. for each a ∈ p′ do

10. if marked(a) = true then parts(a) := {id(p′)};
11. else parts(a) := parts(a) ∪ {id(p′)} −merge;

PartitionABox(KB)
Input: a SHIQ(D) knowledge base KB such that (KBT , KBR, ∅) is consistent.

Output: the set of partitions of KBA.

1. for each a ∈ KBA do

2. pa := {a}; parts(a) := {id(pa)}; marked(a) := false; entailed(a) := true;

3. P :=
⋃

a∈KBA
parts(a); Compute the least fixpoint MA of H1(KB);

4. Meanwhile for each rule r ∈ ground(H1(KB)) such that all concrete domain atoms
of Body(r) are satisfiable and all abstract domain atoms of Body(r) are in MA do

5. MergeParts({h ∈ Head(r)|entailed(h) = false}, {b ∈ Body(r)|parts(b) is defined},P);

6. for each rule r ∈ ground(H0(KB)) such that all concrete domain atoms of Body(r)
are satisfiable and all abstract domain atoms of Body(r) are in MA do

7. MergeParts(∅, {b ∈ Body(r)|parts(b) is defined},P);

8. pU := KBA ∩
⋃

id(p)∈P{a ∈ p|marked(a) = false};
9. for each part p such that id(p) ∈ P do p := KBA ∩ {a ∈ p|marked(a) = true};
10. return {p 6= ∅|id(p) ∈ P} ∪ pU ;

Fig. 1. An algorithm for partitioning the ABox

point of H1(KB), p1, . . . , pN all parts generated before line 8 in Partition-
ABox. W.l.o.g., we assume that KBA,n is the unmarked partition, and KBA,i =
KBA ∩ {a ∈ pi|marked(a) = true} for all i < n. For all i < n, we show that
Mi can be divided into layers L1, . . . , Lm such that L1 = KBA,i ∪ (Mi ∩ C) and
each assertion in Lk+1 is supported by a set of assertions in

⋃k
j=1 Lj . Then, we

show that Mi ⊆ pi ∪ C ∪D by using induction on the layers of Mi, according to
a fact that if there exists a rule r ∈ ground(DD(KB)) such that a ∈ Head(r)
and Body(r) ⊆ pi ∪ C ∪ D, either a ∈ D or a is put to pi in MergeParts.
Now, suppose M =

⋃n
i=1 Mi is not a model of DD(KB). There must be a rule

r ∈ ground(DD(KB)) such that Body(r) ⊆ M and Head(r) ∩ M = ∅. Let
b1, . . . , bm be all the normal assertions in Body(r). Since Mn is a subset of the
least fixpoint of the fragment of DD(KB) consisting of a kind of rules whose
body has no normal atoms, any bi cannot be in Mn and thus is marked in Par-
titionABox. On the other hand, since different parts do not together participate

in triggering rules, b1, . . . , bm are all in the same part, say pk. Then, each bi must
be in Mk ∪ D, otherwise there is Mj (j 6= k) such that bi ∈ Mj − C − D ⊆ pj ,
contradicting that bi is marked. In case bi ∈ D, bi is entailed over pk and thus
bi is in every model of DD(KB)k. This implies that each bi is in Mk and thus
Hear(r) ∩Mk 6= ∅, contradicting that Head(r) ∩M = ∅. ut
Theorem 2 (independent partitioning). Let KB be a SHIQ(D) knowledge
base such that (KBT ,KBR, ∅) is consistent, {KBA,1, . . . , KBA,n} the disjoint
partitioning of KBA returned by PartitionABox(KB), and KBi = (KBT ,KBR,
KBA,i) for all i = 1, . . . , n. Then (1) KB is consistent if and only if KBi is
consistent for all i = 1, . . . , n; (2) KB |= α if and only if there exists KBi such
that KBi |= α for each assertion α of the form A(a) or S(a, b), where A is an
atomic concept and S a simple role.

Proof. (1) The (⇒) direction is trivial. For the (⇐) direction, by Theorem 1,
DD(KB)i = Γ (KBT , KBR) ∪KBA,i ∪ ∆KB is satisfiable for all i = 1, . . . , n.
DD(KB)i is positive and thus has minimal models. Let Mi be a minimal model
of DD(KB)i. By Lemma 1,

⋃n
i=1 Mi will be a model of DD(KB). So KB is

consistent by Theorem 1. (2) The (⇐) direction is trivial. For the (⇒) direc-
tion, we have DD(KB) |=c α by Theorem 1. Suppose there is no KBi such
that KBi |= α. Let DD(KB)i = Γ (KBT ,KBR) ∪KBA,i ∪∆KB . By Theorem
1, there exist minimal models M1, . . . ,Mn of DD(KB)1, . . . , DD(KB)n respec-
tively such that α /∈ Mi for all i = 1, . . . , n. By Lemma 1, M =

⋃n
i=1 Mi is a

model of DD(KB). That α /∈ M contradicts that DD(KB) |=c α. ut
Regarding the complexity, we consider the data complexity, which is mea-

sured in |KBA| only, under the assumption that |KBT R| = |KBT |+ |KBR| is
bounded by a constant. In addition, we assume that there is a polynomial oracle
for reasoning with concrete domains and a constant bound on the arity of the
concrete domain predicates. Since the number of rules and the number of atoms
in each rule in Γ (KBT , KBR), and the computation time of Γ (KBT , KBR)
are all bounded by exponential of |KBT R| [7], the number of different variables
in each rule in H(KB) is bounded by a constant and the number of rules in
ground(H(KB)) is polynomial in |KBA|. Hence, PartitionABox runs in poly-
nomial time in |KBA|.

4 Experimental Evaluation

We tested our partitioning method on top of the ontologies available on the
KAON2 Web Site3 and the Lehigh University Benchmark (LUBM) [6]. The
implementation of the proposed method is based on secondary storage so as to
handle large ABox data. Specifically, we used MySQL as the back-end DBMS.
The input ABox data and the tracking data in run time are maintained in the
database. We implemented the partitioning method in GNU C++, used the
KAON2 system for the ontology reduction and performed testing on a 3.2GHz
Pentium 4 CPU 2GB RAM machine running Windows XP.
3 http://kaon2.semanticweb.org/download/test_ontologies.zip

Table 1. Test results on the partition time and granularity

Partition #filtered (i.e., Avg. marked Max. marked
Test Set #assertions Time unmarked)

#marked
partition size partition size

(hh:mm:ss) assertions
partitions

(#assertions) (#assertions)

Wine-0 496 00:02:29 78 43 9.72 336
Vicodi-0 53,653 00:05:58 0 53,653 1.00 1

Semintec-0 65,240 00:07:06 4,552 48,166 1.26 2
LUBM-1 100,543 00:03:02 22,418 45,931 1.70 2,190
LUBM-10 1,273 K 02:00:24 285,844 575,703 1.71 2,362

Table 1 shows the test results. In the table, all ontologies except Wine-0 are in
a Horn fragment, i.e., their reductions are plain datalog programs. The partition
granularity on these Horn-fragment ontologies is fine: the average size of marked
partitions is very small, and the maximum size of marked partitions is so small
that all partitions can be easily manipulated in physical memory. The ontology
Wine-0 is rather complex, whose reduction is a disjunctive datalog program
with more than 500 rules. The partition granularity on Wine-0 is not so fine as
others, but still acceptable, since the submaximum size of marked partitions is
21 (without shown in Table 1) and the average size of marked partitions is small.

5 Related Work and Conclusion

Guo and Heflin [5] develop a set of tableau rules for partitioning the ABox in
SHIF knowledge bases. Their partitioning method uses an intuition that as-
sertions in the antecedent of an inference rule should be placed in the same
partition. To estimate implicit inference in polynomial time, [5] uses some ap-
proximate tableau rules, such as C1 v C2 for all concepts C1 and C2. To reduce
partition size, [5] generates overlapped parts instead of partitions which need
be disjoint. Though the overlapped parts preserve the independent partitioning
property as ours, the performance of the subsequent reasoning may be impaired
due to introducing many duplicated assertions. For example, with 1,311K input
LUBM data, [5] generates 396,197 parts with average size 21.2 and maximum size
1,141. The number of duplicated assertions are about 7,000K. As a comparison,
with 1,273K input data (LUBM-10), our method generates smaller partitions
in average (see in Table 1). Though the largest marked partition generated by
our method is near two times larger than the largest one in [5], no partitions
generated by our method overlap.

Fokoue et al. [3] develop some role filtering techniques for partitioning the
(summary) ABox in SHIN knowledge bases. Their partitioning method filters
role assertions whose absence will not affect the outcome of a consistency check,
and then places assertions sharing individual names in the same partition. Due to
different focuses, the partitioning method in [3] is rather restricted, it filters role
assertions only, while our proposed method filters all kinds of assertions. More-
over, the filtering techniques proposed in [3] do not guarantee a subsequent inde-

pendent partitioning. As an example, consider a DL knowledge base KB, where
KBT = {A v≤1 R}, KBR = ∅ and KBA = {A(a), R(a, b), R(a, c), S(a, b)}.
S(a, b) will be filtered using the method in [3]. Then, any generated partition
cannot entail S(a, c) independently, while S(a, c) can be entailed by KB.

Grau et al. [4] propose E-Connections as a formalism for representing com-
binations of OWL knowledge bases and an algorithm for decomposing an OWL
knowledge base into connected components. Amir and McIlraith [1] present a
greedy algorithm for decomposing a first-order logic theory into partitions and
message passing algorithms for reasoning with the partitioned theory. Due to
different goals, the partitioning produced by either [4] or [1] may not have the
independent partitioning property. This is because both [4] and [1] generate
partitions with potential links and the subsequent reasoning may require com-
munication between partitions through the links.

We have presented a method for partitioning the ABox of a SHIQ(D) knowl-
edge base, based on a conversion from SHIQ(D) to plain datalog. The primary
advantage of our method is that it always produces a disjoint and independent
partitioning, while all existing methods in the related work may not. For future
work, we will continue to improve the performance of our partitioning method,
conduct more investigations on handling nominals and complex roles, and extend
the method to an incremental one for dealing with knowledge base updates.

Acknowledgements

This work is supported in part by NSFC grants 60673103, 60421001 and 60373052.

References

1. E. Amir and S. A. McIlraith. Partition-based logical reasoning for first-order and
propositional theories. Artif. Intell., 162(1-2):49–88, 2005.

2. F. M. Donini. Complexity of reasoning. In Description Logic Handbook, pages
96–136. Cambridge University Press, 2003.

3. A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg, and K. Srinivas. The summary
abox: Cutting ontologies down to size. In ISWC-06, pages 343–356, 2006.

4. B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Automatic partitioning of owl
ontologies using E-connections. In Description Logics, 2005.

5. Y. Guo and J. Heflin. A scalable approach for partitioning owl knowledge bases.
In SSWS-06, pages 47–60, 2006.

6. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for owl knowledge base
systems. Journal of Web Semantics, 3(2–3):158–182, 2005.

7. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− description logic to
disjunctive datalog programs. In KR-04, pages 152–162, 2004. (Extended version:
Reasoning for Description Logics around SHIQ in a Resolution Framework. FZI
Technical Report 3-8-04/04).

8. B. Motik, U. Sattler, and R. Studer. Query answering for owl-dl with rules. Journal
of Web Semantics, 3(1):41–60, 2005.

