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Abstract. Human-robot interaction finalized to cooperation and team-
work is a demanding research task, both under the development and the
implementation point of view. In this context, cognitive architectures
are a useful means for representing the cognitive perception-action cycle
leading the decision-making process. In this paper, we present ongoing
work on a cognitive architecture whose modules consider the possibility
to represent the decision-making process starting from the observation
of the environment and also of the inner world, populated by trust at-
titudes, emotions, capabilities and so on, and the world of the other in
the environment.
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1 Introduction

A human-robot interaction system is created for different purposes, from as-
sisting in home, healthcare or learning to safety or search and rescue scenarios
and so on; in any case, it is a complex system to design and develop. If also,
we consider, a human-robot team where the robot and the human have to au-
tonomously cooperate, communicate and collaborate to reach a common and
shared objective, we are talking of a more complex system. Here the term “com-
plex” is used to mean that, in such a context, the robot, as well as the whole
system, does not have a behavior that can be analyzed and implemented as a
sum of the parts because it assumes an emergence of behaviors at runtime. For
instance, let us suppose to have a team made up of a human and a robot who
has to carry out a task, known to both of them, interacting with each other.
During the design phase, all the actions that each of the two must perform and
all the communications that they must exchange during the interaction can be
set. During the execution phase, if the task is to be carried out in a dynamic
environment, the interactions between the robot and the human and between
them and the environment inevitably change the state of the world that can thus
provide new constraints or requirements for achieving the initial goal. The actual
behavior of the whole system comes out at runtime and the team members need
to be able to respond to changes efficiently.
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The most significant difficulties in these types of systems are related to equip-
ping the robot with the ability to select at runtime the best action to perform
to achieve the team’s goal. These types of problems are often studied and imple-
mented by looking at their human counterpart, in our case the human-human
team. The question is: how does a human being act in a team whose goals he
knows and shares in a changing environment? And, how can this be reported in a
human-robot team? Usually, a human being grounds his decisional process on a
set of factors, such as knowledge of the surrounding environment and knowledge
of a set of possible plans allowing to achieve a goal.
These factors, which could be described as reactive, occur when the situation
being addressed is known and the changes are foreseeable before an action plan
is established. When one is engaged in a cooperative and dynamic context some
psychological factors intervene, that is, the whole set of internal states that trig-
ger a decision and are closely related to the mental state of the human being,
the knowledge of himself and the other elements of the team. For example, one
element of a team may understand to be not able to perform a certain action
that can lead to the achievement of the common goal. It cannot, also, want to
do an action, and delegate it to the other team member based on a certain level
of trust in the skills of the other. Or it could be in such an emotional state (for
example euphoria) to want to do more than what was told during the design
phase and so propose to the other component to carry out some actions or even
decide to act independently on the behalf of the other.

In this context, the human behaves, in all respects, as a cognitive agent so
a research field that is spreading nowadays is that of cognitive architectures. In
recent years, various cognitive architectures have been studied and have served
to examine how human beings behave, but they have also been adopted as the
basis for the implementation of robotic systems that act like humans.

This paper presents an ongoing study focused on the use of self-modeling
and the theory of mind in order to propose a cognitive architecture. It would
allow modeling a human-robot teaming system that cooperates to achieve a
common goal and, as well as a human team, applies a decision-making process
that is driven from the objective situation of the environment, but also from the
knowledge that each cognitive agent has of itself and the other members of the
team.

In the rest of the paper, we set state of the art in the cognitive architec-
ture of human-robot interaction systems and the motivation of our work, then
we present our proposal for a cognitive architecture and finally we draw some
discussions and conclusions.

2 Cognitive Architectures for HRI

Modeling and understanding cognitive processes are the primary aim of the re-
search on cognitive architectures. A cognitive architecture determines the struc-
ture of a computational cognitive model, applied in a generic domain, by under-
lying the infrastructure of an intelligent system.
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Typically, cognitive architectures include modules representing the short and
long-term memory and the functional processes operating on memory modules
for realizing learning and action mechanisms. Several cognitive architectures
have been proposed in the literature; our work starts from the analysis of a lot
of them in order to deduce the elements suitable for our application context and
whether and how they needed to be extended and integrated. We have been
driven by the assumption that cognitive architectures model intelligent systems
where components’ behaviors are not established and coded at design time but
arise from perception and knowledge.

Among the most known cognitive architectures, we may count those inspired
by psychology and biology (for instance CLARION, SOAR, ACT-R . . . ) and
those by agent technology, like for instance LIDA [2, 6, 10, 13]. The fundamental
principles they underpin are that every autonomous agent, be it human, animal,
robot, software component/agent etc., has to continuously sense the environment
and reason on it in order to be able to select the appropriate action to reach an
objective (action-perception cycle [7]). The previous scenario is the simplest one:
an agent that has to be endowed with the capability of answering in a specific
context exhibiting the right action. Thus, regardless of the context, a cognitive
cycle can be schematically outlined as the module receiving all the sensorial data
and the one processing them thus resulting in the corresponding action.
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Fig. 1. Common modules
in cognitive architectures.

In addition to these two modules, there is a basic module that manages ev-
erything related to data storage for further processing. This allows to represent,
and therefore to implement, a system in which the decisional process passes from
the elaboration of a set of data, relative to everything that is perceived, memo-
rized in the system. In existing architectures, the memory is mainly divided into
short-term memory and long-term memory. The short-term memory stores all
the facts and elements relating to the current moment. The long-term memory
contains all data and events that are held indefinitely. Long-term memory is fur-
ther divided into explicit and implicit memory in all its different forms (episodic,
semantic, autobiographical...) already widely debated in the literature [11, 1].

So, the memory module plays a fundamental role in reasoning on and learning
the current situation in order to trigger the decision process.

Nevertheless, frequently human-robot teaming applications are not so simple
to be sketched through these three simple modules but it is necessary, at least,
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that the memory mechanism also refers to all the evidence coming from percep-
tion and from knowledge of self and from the perception and knowledge of all
the other agents present in the environment. This means that, in a human-robot
teaming context, architectures must contain the modules useful for the repre-
sentation of itself, of the (physical) world around and of the other, including all
the mental states that this fact entails.

To date, most architectures base their decision and learning process only on
the concept of stored data or fact and not on the notion of mental state, and also
the implementation part of most known cognitive architectures is still missing.
Our contribution lies in the creation of a cognitive architecture in which memory
also contains all the information about the mental state so that the perceive-act
cycle becomes what we call the perceive-proact cycle. Besides, the architecture
we propose can be easily mapped to a BDI agent architecture [17, 8] for the
effective implementation of a cognitive agents system.

In the next paragraph, we explain how the architecture we propose includes
the modules to model and represent a human-robot teaming system.

3 Modeling and Representing Autonomous and Adaptive
Interactions

In Fig. 2 we illustrate the cognitive architecture we propose for realizing human-
robot teaming interaction. The architecture is composed of the several known
modules from general cognitive architecture and is enriched with the modules
devoted to employing decision functionalities.

Our starting point is the generalization of all the characteristics of the cogni-
tive architectures studied that led, together with the in-depth analysis of LIDA,
to the representation given in Fig. 1. The figure shows what has been said above
regarding a perception-action cycle; the workspace is the module used for inter-
action with the work environment.
In LIDA the workspace module takes into account two different facts: the chang-
ing environment, in the cognitive cycle the agents are able to make an internal
representation of the world; all this helps agents in selecting the actions to be
done also taking into account the conscious part of the agent. Consciousness in
LIDA is the mental counterpart of attention, that is, of the perception process.
LIDA gives a complete representation of a cognitive cycle but it is not suit-
able to represent interactions in teaming because it lacks the part related to the
representation of the self and to the representation of the other.

Before going into the details of the proposed architecture, it is worth to make
a hint to some necessary starting hypotheses. As was said in the introduction, a
human-robot system working in team to achieve a common objective is a com-
plex system. A complex system, by definition, is a system made up of complex
components that interact with each other and with the surrounding environment.
The global behavior and characteristics of the system emerge from interactions.
The behavior of a complex system cannot be analyzed and implemented as the
sum of the single components, the system must be seen as a whole. In our case,
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we consider the system as composed of a set of cognitive agents, living in an
environment made by inanimate objects and cognitive agents at the same time.
Analysis and design of such a system must begin by choosing the perspective
from which we look at the system.

For example, if the perspective is that of the cognitive agent (the robot), it
will see the system as the set of inanimate objects on which he can act. It will
see itself with everything he has inside (his goals, his capabilities, his mental
states) and he will see the other (any other cognitive agent) with everything
he has inside and with the set of objects on which the other can act. So the
man-robot system is, to all intents and purposes, a system of systems in which
the environment is not external like something with which he only interacts but
is an integral part of the system itself.

This is the main difference between our architecture and the existing ones.
Such a feature allows us to represent and then implement a decision-making
process based on a series of factors similar to human ones, such as the sense
of self, elements of the theory of the mind, trust, emotions and everything can
generate a mental state. In so doing we are able to realize a change of design
paradigm, from design time to runtime, already studied and analyzed in some
previous works [12, 5], and also allows us to create a system that can adapt to
runtime new situations.
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Fig. 2. The Proposed Cognitive Architecture for Human-Robot Teaming

Fig. 2 our architecture is shown. As it can be noted, the cycle Monitor,
Analyzing, Planning and Executing (MAPE), which is the basis of all the imple-
mentations of complex autonomous systems [3], is realized within the four main
modules (the ones in black) along with the memory module.
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In [15, 14], the authors define a cognitive system as, generally, an agent able
to perceive the environment and learn from experience. At the same time, a
cognitive agent is able to anticipate the outcome of its action and to adapt to
changing situation in the environment by acting driven by its own motivation (so
called pro-activeness in the field of multi-agent systems [9, 16, 4]). These latter
two parts of the definition imply specific architectural modules when we study
robots that interact with a human in a collaborative fashion. Indeed, in the ar-
chitecture we propose, the decision process is centered in the Anticipation and
Motivation modules. Moreover, we explicit the representation of Goal; it is
part of the memory of the overall system and embodies the state of the world the
robot-human team wants to achieve. A goal is in and tightly linked to the mem-
ory because we claim that, for a cognitive agent be able to act autonomously,
it has to be configured along with all the elements of the knowledge useful for
successfully pursuing it. We mean among the others: agent’s skills, knowledge
on the environment, pre-condition for the commitment, knowledge on the pos-
sible actions to perform for pursuing it, all the possible factors contributing or
preventing it. These factors may be already stored in the memory or have to be
acquired and stored at runtime.

The Decision Process part of the architecture is centered on Anticipa-
tion and Motivation. According to our architecture, the robot does not act
only after the reasoning process based on a certain data stored in the memory,
but also and mainly after evaluating the anticipation of its actions. During the
anticipation process, the current situation is generated; it represents the state of
the world corresponding to the currently selected action. The current situation
is elaborated on the basis of motivations, goals and all those elements are in the
memory thus getting the execution launched. A queue of possible situations is
also created, intended as a set of pre-conditions, objectives and knowledge to
achieve them, and postconditions on the objectives. The robot can draw on all
these elements at any time to respond to changes and still maintain its initial
target. The Motivation module is the one triggering the anticipation and the
action selection. It is the core of the decision process, here all the information
and process for elaborating mental states reside and it is the module devoted to
the representation of inner and word of each cognitive agent. Through this mod-
ule, therefore, it is possible to make decisions about the actions being conveyed
by the sense of self, by the ability to attribute mental states (belief, desire, inten-
tion, knowledge, capabilities) to oneself and to others and by the understanding
that others have different mental states, by emotions, by the level of trust in the
abilities (or more generally by trust) of others and of oneself.

The experiments 3 we are performing in our laboratory are confirming that
with these modules, the architecture we propose can be easily mapped into a
BDI agent architecture thus giving the possibility to implement a human-robot
interaction system with a multi-agent system made of cognitive agents.

3 Showing the experiments is not in the scope of this paper.
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4 Discussions and Conclusions

Designing and implementing a human-robot interaction system in a dynamic
environment and for tasks that require team organization is a challenging issue.
The literature provides a rich set of cognitive architectures that allow modeling
the human-robot interactions through the classical perception-action cycle of
a cognitive agent. However, the application domain we are working on is such
that considering and using the action-perception cycle only is not enough and
also, most existing cognitive architectures do not provide a usefully implemented
counterpart. In this work, we have therefore generalized and extended the ex-
isting architectures in order to obtain the modules that meet our requirements,
namely to create a human-robot interaction on the basis of the human-human
interaction in a team that cooperates in the same highly evolving environment
to achieve a known and shared goal.

The main contribution of this work is the module for the anticipation of the
situation and the one for the representation of the internal state of the robot and
for the representation of knowledge about the internal state of the other. In this
way, we can integrate the use of self-modeling and the theory of mind in team
interaction and besides, we can scale the use of this module including a whole
set of mental states that are typical in the human, therefore emotions, levels of
trust in oneself and the others, etc. It was also fundamental to make a change
in the abstract representation of the environment, from the element with which
the robot interacts, as a portion of the world outside, to the element that is the
world together with the robot itself as in a sort of recursive structure.

In this way, for example, the work of the execution module on the environ-
ment and therefore on any elements of the environment can be configured, for
example, in the delegation an action from the robot to the human being when it
cannot do an action for any reason generated by the knowledge of himself and
the environment.

Finally, the module we have called Motivation, allows us to verticalize the
architecture from a theoretical level to a system level with a mapping one by one
with a BDI agent architecture. We are already doing several experiments on this
and in the future, we will realize the whole system in which the internal state
of the robot completely conveys decisions on actions. We expect, for example,
that a robot at the beginning of its activities, which has learned few elements of
the surrounding world and of the human being with whom it is interacting, has
little margin for autonomous choices on the actions to be taken and is only able
to implement those given at design time. After a certain number of interactions,
it will have acquired knowledge, a certain level of trust in the other and be able
to act autonomously.
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