
Rational Grading in
an Expressive Description Logic

Mitko Yanchev

Faculty of Mathematics and Informatics, Sofia University, Bulgaria
yanchev@fmi.uni-sofia.bg

Abstract. In this paper syntactic objects—concept constructors called
part restrictions which realize rational grading are considered in De-
scription Logics (DLs). Being able to convey statements about a rational
part of a set of successors, part restrictions essentially enrich the ex-
pressive capabilities of DLs. We examine an extension of well-studied
DL ALCQIHR+ with part restrictions, and prove that the reasoning
in the extended logic is still decidable. The proof uses tableaux tech-
nique augmented with indices technique, designed for dealing with part
restrictions.

1 Introduction

Description Logics (DLs) are widely used in knowledge-based systems. The repre-
sentation in the language of transitive relations, in different possible ways [11], is
important for dealing with complex objects. Transitive roles permit such objects
to be described by referring to their components, or ingredients without specify-
ing a particular level of decomposition. The expressive power can be strengthened
by allowing additionally role hierarchies. The DL ALCHR+ [6], an extension of
well-known DL ALC with both transitive roles and role hierarchies, is shown to
be suitable for implementation. Though having the same EXPTIME-complete
worst-case reasoning complexity as other DLs with comparable expressivity, it
is more amendable to optimization [5].

Inverse roles enable the language to describe both the whole by means of
its components and vice versa, for example has part and is part of. This syntax
extension is captured in DL ALCIHR+ [7]. As a next step, in [7] the language is
enriched with the counting (or grading—a term coming from the modal counter-
parts of DLs [4]) qualifying number restrictions, what results in DL ALCQIHR+ .
It is given a sound and complete decision procedure for that logic.

We go further considering concept constructors which we call part restric-
tions, capable of distinguishing a rational part of a set of successors. These con-
structors are analogues of the modal operators for rational grading [12] which
generalize the majority operators [10]. They are MrR.C and (the dual) WrR.C,
where r is a rational number in (0, 1), R is a role, and C is a concept. The in-
tended meaning of MrR.C is ‘(strongly) More than r-part of R-successors (or
R-neighbours, in the presence of inverse roles) of the current object possess the

property C’. Part restrictions essentially enrich the expressive capabilities of
DLs. From the ‘object domain’ point of view they seem to be more ‘socially’
than ‘technically’ oriented, but in any case they give new strength to the lan-
guage. An example of the use of part restrictions is the concept M 2

3 voted.Yes
which expresses the notion of qualifying majority in a voting system.

On the other hand, presburger constraints in the language of extended modal
logic EXML [3], a language with only independent relations, capture both in-
teger and rational grading, and have rich expressiveness. The rational grading
modalities are expressible by the presburger constraints, and the satisfiability of
EXML is shown to be in PSPACE. Another constraints on role successors which
subsume the part restrictions are introduced in [2] using the quantifier-free frag-
ment of Boolean Algebra with Presburger Arithmetic. The corresponding DL
ALCSCC also captures both integer and rational grading, and it is shown that
the complexity of reasoning in it is the same as in ALCQ (an extension of ALC
with qualifying number restrictions), both without and with TBoxes.

A combinatorial approach to grading in modal logics [9] uses the so called
majority digraphs. In this approach, in addition to integer and rational grading,
also the grading with real coefficients can be expressed.

Nonetheless, the use of separate rational grading, having its place also in
modal logics, proves markedly beneficial in DLs. Part restrictions can be com-
bined in a DL with many other constructors. Indices technique, specially designed
for exploring the part restrictions, allows following a common way for obtaining
decidability and complexity results as in less, so in more expressive languages
with rational grading. In particular, reasoning complexity results—polynomial,
NP, and co-NP—concerning a range of description logics from the AL-family
with part restrictions added, are obtained ([14], [13], [15]), as well as PSPACE-
results for modal and expressive description logics ([16], [17], [18]).

Now we consider the DLALCQPIHR+ , in which the language ofALCQIHR+

is augmented with part restrictions. We use the tableaux technique to prove that
the reasoning in the extended logic is also decidable.

2 Syntax and Semantics of ALCQPIHR+

The ALCQPIHR+ -syntax and semantics differ from those of ALCQIHR+ only
in the presence of part restrictions.

Definition 1. Let Co 6= ∅ be a set of concept names, Ro 6= ∅ be a set of
role names, some of which transitive, and Q0 be a set of rational numbers in
(0, 1). We denote the set of transitive role names R+, so that R+ ⊆ Ro. Then
we define the set of ALCQPIHR+-roles (we will refer to simply as ‘roles’) as
R = Ro ∪ {R− | R ∈ Ro}, where R− is the inverse role of R.

As the inverse relation on roles is symmetric, to avoid considering roles such
as R−− we define a function Inv which returns the inverse of a role. Formally,
Inv(R) = R−, if R is a role name, and Inv(R−) = R. Thus, Inv(Inv(R)) = R.

A role inclusion axiom has the form R v S, for two roles R and S, and
the acyclic inclusion relation v. For a set of role inclusion axioms R, a role

hierarchy is R+ :=
(
R∪{Inv(R) v Inv(S) | R v S ∈ R}, v+

)
, where v+ is the

reflexive and transitive closure of v over R∪ {Inv(R) v Inv(S) | R v S ∈ R}.
A role R is simple with respect to R+ iff R 6∈ R+ and, for any S v+R, S is

also simple w.r.t. R+.
The set of ALCQPIHR+-concepts (we will refer to simply as ‘concepts’) is

the smallest set such that: 1. every concept name is a concept; 2. if C and D
are concepts, and R is a role, then ¬C, C u D, C t D, ∀R.C, and ∃R.C are
concepts; 3. if C is a concept, R is a simple role, n ≥ 0, and r ∈ Q0, then
> nR.C, 6 nR.C, MrR.C, and WrR.C are concepts.

The limitation roles in qualifying number restrictions, as well as in part re-
strictions to be simple is used essentially in the proofs. From the other side, the
presence in the language of role hierarchies together with only number restric-
tions on transitive roles leads to undecidability [8]

An interpretation I = (∆I , ·I) consisting of a nonempty set ∆I , called the
domain of I, and a function ·I which maps every concept to a subset of ∆I

and every role to a subset of ∆I×∆I , is defined in a standard way.1 We only
set the additional restriction for any object x ∈ ∆I and any role R ∈ R the
set of objects, RI-related to (RI-neighbours of) x, denoted RI(x), to be finite.
RI(x,C) denotes the set {y | 〈x, y〉 ∈ RI and y ∈ CI} of RI-neighbours of x
which are in CI , and]M denotes the cardinality of a set M . For part restrictions,
for any concept C, simple role R, and r ∈ Q0 the definitions of mapping are:

(MrR.C)I = {x ∈ ∆I |]RI(x,C) > r.]RI(x)}

(WrR.C)I = {x ∈ ∆I |]RI(x,¬C) ≤ r.]RI(x)}
(

= (¬MrR.¬C)I
)

An interpretation I satisfies a role hierarchy R+ iff RI ⊆ SI for any R v+

S ∈ R+; we denote that by I |= R+.
A concept C is satisfiable with respect to a role hierarchy R+ iff there exists

an interpretation I such that I |= R+ and CI 6= ∅. Such an interpretation is
called a model of C with respect to R+. For an object x ∈ CI we say that x
satisfies C, also that x is an instance of C, while x ∈ ∆I\CI refuses C.

Thus, for x ∈ ∆I , x is in (MrR.C)I iff strictly greater than r part of RI-
neighbours of x satisfies C, and x is in (WrR.C)I iff no greater than r part of
RI-neighbours of x refuses C.

A concept D subsumes a concept C with respect to R+ (denoted C vR+D)
iff CI ⊆ DI holds for every interpretation I such that I |= R+.

Checking the subsumption between concepts is the most general reasoning
task in DLs. From the other side, C vD iff C u ¬D is unsatisfiable. Thus, in

1 All definitions and techniques from Section 5 of [7] concerning ALCQIHR+ are ap-
plicable to the extended DL, eventually with only mild changes. So, in what follows
we present explicitly, due to the restriction of space, only what is new, or changed,
relying on and referring to [7] for the rest. The complete definition of the interpre-
tation, the complete sets of tableaux properties and completion rules, and all proofs
can be seen in [19].

the presence of negation of an arbitrary concept, checking the (un)satisfiability
becomes as complex as checking the subsumption.

In what follows we consider concepts to be in the negation normal form
(NNF). We denote the NNF of ¬C by ∼C. The NNF of ∼MrR.C is WrR.¬C,
and, dually, ∼WrR.C = MrR.¬C. For any concept C in NNF we denote with
clos(C) the smallest set of concepts containing C and closed under sub-concepts
and ∼. The size of clos(C) is linear to the size of C. With RC we denote the set
of roles occurring in C and their inverses.

3 A Tableau for ALCQPIHR+

We will use a tableaux algorithm to test the satisfiability of a concept. We ex-
tend the definition of ALCQIHR+ -tableau by modifying one property to reflect
the presence of part restrictions, and adding two new ones. Thus we obtain a
definition of a tableau for ALCQPIHR+ .

Definition 2. A tableau T for a concept D in NNF with respect to a role hier-
archy R+ is a triple (S,L, E), where S is a set of individuals, L : S → 2clos(D)

is a function mapping each individual of S to a set of concepts which is a subset
of clos(D), E : RD → 2S×S is a function mapping each role occurring in RD

to a set of pairs of individuals, and there is some individual s ∈ S such that
D ∈ L(s). For all individuals s, t ∈ S, concepts in clos(D), and roles in RD, T
must satisfy 13 properties.

We denote with RT (s) the set of individuals, R-related to s, and RT (s, C) :=
{t ∈ S | 〈s, t〉 ∈ E(R) and C ∈ L(t)}. The new and the modified properties
follow. In property 13 (modified property 11 from the definition of ALCQIHR+ -
tableau), and in what follows, � is a placeholder, besides for > n and 6 n, for
arbitrary n ≥ 0, also for ∃, and for Mr and Wr, for arbitrary r ∈ Q0.

11. If MrR.C ∈ L(s), then]RT (s, C) > r.]RT (s).

12. If WrR.C ∈ L(s), then]RT (s,∼C) ≤ r.]RT (s).

13. If �R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t) or ∼C ∈ L(t).

Having the definition of ALCQPIHR+ -tableau, we can prove Lemma 1 fol-
lowing the standard way, also for the new and modified properties.

Lemma 1. An ALCQPIHR+-concept D is satisfiable with respect to a role hi-
erarchy R+ iff there exists a tableau for D with respect to R+.

4 Constructing an ALCQPIHR+-Tableau

Lemma 1 guarantees that the algorithm constructing tableaux forALCQPIHR+ -
concepts can serve as a decision procedure for concept satisfiability (and hence,
also for subsumption between concepts) with respect to a role hierarchy R+. We
present such an algorithm.

As usual with the tableaux algorithms, ALCQPIHR+ -algorithm tries to
prove the satisfiability of a concept D by constructing a completion tree (c.t.
for short) T, from which a tableau for D can be build. Each node x of the tree
is labelled with a set of concepts L(x) which is a subset of clos(D), and each
edge 〈x, y〉 is labelled with a set of roles L(〈x, y〉) which is a subset of RD. The
algorithm starts with a single node (the c.t. root) x0 with L(x0) = {D}, and the
tree is then expanded by completion rules, which decompose the concepts in the
nodes’ labels, and add new nodes and edges, giving the relationships between
nodes, and new labels to the nodes and edges.

A node y is anR-successor of a node x if y is a successor of x and S ∈ L(〈x, y〉)
for some S with S v+ R; y is an R-neighbour of x if it is an R-successor of x,
or if x is an Inv(R)-successor of y.

We denote with RT(x) the set of R-neighbours of a node x in the c.t. T, and
with RT(x,C)—the set of R-neighbours of x in T which are labelled with C.

A c.t. T is said to contain a clash (i.e., the obvious contradiction) if, for some
node x in T, a concept C, a role R, some n ≥ 0, and some r ∈ Q0 any of the
following is the case. Otherwise it is clash-free.

CL1. {C, ¬C} ⊆ L(x)

CL2. 6 nR.C ∈ L(x) and]RT(x,C) > n

CL3. MrR.C ∈ L(x) and]RT(x,C) ≤ r.]RT(x)

CL4. WrR.C ∈ L(x) and]RT(x,¬C) > r.]RT(x)

A completion tree is complete if none of the completion rules is applicable,
or if, for some node x, L(x) contains a clash of type CL1 or type CL2.2

If, for a concept D, the completion rules can be applied in a way to yield a
complete and clash-free completion tree, then the algorithm returns ‘D is satis-
fiable’; otherwise, it returns ‘D is unsatisfiable’.

During the expansion the algorithm uses the pair-wise blocking technique as
defined in [7], sections 4.1 and 5.3, to ensure only finite paths in the completion
tree. It also uses indices technique which will be presented in details, to prevent
from infinite branching of the tree (possibly) caused by part restrictions.

Figure 1 presents the completion rules which are new or modified in compar-
ison with ones in the ALCQIHR+ -algorithm. choose-rule is augmented (via the
placeholder �) to add also labels, induced by ∃-concepts and part restrictions.

In the presence of part restrictions, >-rule which adds all the necessary suc-
cessors at ones leads to incompleteness.3 So, it is modified to add successors
one by one, thus preventing the occurrence of redundant neighbours. This needs

2 Part restrictions talk about no exact quantities, but ratios. So, instances of CL3 and
CL4 (which are also conditions for applicability of M -rule and W -rule, see Figure 1)
can appear and disappear dynamically during the c.t. generation. That is why we
exclude them from the definition of the c.t. completeness.

3 For example, the concept Au∃R−.
(
>4R.>u 65R.>uM 2

5
R.(¬A)uW 1

2
R.A

)
, where

> = A t ¬A, and A is a concept name, has a unique tableau (modulo labelling of
the individuals) with just four individuals. But no complete and clash-free c.t. can
be built from that tableau using the ‘all-at-once’ >-rule.

some modification of 6-rule also. 6-rule transfers the label of an edge to just
one other edge. So, the use of L(〈x, y〉) ∩ L(〈x, z〉) = ∅ condition in the rule
is justified as follows. If two edges are labelled with the same role, it has been
labelling initially (even if some label transfer has happened meanwhile) two dif-
ferent edges connecting x with two of its neighbours. The possible cases are: 1)
the labels of y and z are different and contradict each other for any labelling by
choose-rule, so y and z cannot be merged; 2) the labels of y and z are different
but there is a labelling by choose-rule which makes them not contradicting, then
there is no need nodes to be merged, as when this labelling is made to the firstly
generated node, the second one would not be generated at all; 3) the labels of y
and z are identical, then the generation of both nodes is triggered by >n-concept
with n ≥ 2, M -, or W -concept, or, anyway, they are used for the satisfying in
the c.t. of such a concept, so they must not be merged.

M -rule and W -rule (the part rules) are new generating rules (in addition to
∃-rule and >-rule) which deal with part restrictions. The rest of the rules—u-,
t-, ∃-, ∀-, and ∀+-rule—remain just as they are in [7], Section 5, Figure 5.

choose- If 1. �R.C ∈ L(x), x is not indirectly blocked, and
rule: 2. there is an R-neighbour y of x with {C,∼C} ∩ L(y) = ∅

then L(y)→ L(y) ∪ {E} for some E ∈ {C,∼C}
>-rule: If 1. > nR.C ∈ L(x), x is not blocked, and

2.]RT(x,C) < n
then create a new successor y of x with L(〈x, y〉) = {R} and L(y) = {C}

6-rule: If 1. 6 nR.C ∈ L(x), x is not indirectly blocked, and
2.]RT(x,C) > n and there are two R-neighbours y and z of x with

C ∈ L(y), C ∈ L(z), L(〈x, y〉) ∩ L(〈x, z〉) = ∅, and
y is not a predecessor of x

then 1. L(z)→ L(z) ∪ L(y),
2. If z is a predecessor of x

then L(〈z, x〉)→ L(〈z, x〉) ∪ {Inv(S)|S ∈ L(〈x, y〉)}
else L(〈x, z〉)→ L(〈x, z〉) ∪ L(〈x, y〉)

3. L(〈x, y〉)→ ∅
M -rule: If 1. MrR.C ∈ L(x), x is not blocked, and

2.]RT(x,C) ≤ r.]RT(x) then calculate BANx, and if
3.]RT(x) < BANx

then create a new successor y of x with L(〈x, y〉) = {R} and L(y) = {C}
W -rule: If 1. WrR.C ∈ L(x), x is not blocked, and

2.]RT(x,∼C) > r.]RT(x) then calculate BANx, and if
3.]RT(x) < BANx

then create a new successor y of x with L(〈x, y〉) = {R} and L(y) = {C}

Fig. 1. The new and the modified completion rules

We impose a rule application strategy : any generating rule can be applied
only if all non-generating rules (i.e., u-, t-, ∀-, ∀+-, choose- and 6-rule) are
inapplicable. Anyway, the generation process is non-deterministic in both which
rule (from the group of non-generating or generating ones) to be applied, and
which concept(s) to be chosen in the non-deterministic t-, choose-, and 6-rule.

The rule application strategy is essential for the successful ‘work’ of 6-rule,
and for the part rules. It ensures that a) all concepts ‘talking’ about neighbours
are already present in L(x), and b) all possible (re)labelling of neighbours of x
is done before the application of a part rule. Both are necessary for applying
the indices technique for the correct generation of successors, caused by part
restrictions. The check-up in part rules (in 3.) for not reaching the border amount
of neighbours for the current node x (BANx) is a kind of ‘horizontal blocking’ of
the generation process, used to ensure inapplicability of part rules after a given
moment. The notion is crucial for the termination of the algorithm, and its use
is based on Lemma 6, which is the upshot of the indices technique.

5 Indices Technique

We develop a specific technique, which we call indices technique, to cope with
the presence of part restrictions. This technique permits to extend appropriately
the definition of a clash, to design completion rules, dealing with part restriction,
and to give an adequate rule application strategy, as they are presented in the
previous section, all to guarantee the correctness of the tableaux algorithm.

5.1 The clashes with part restrictions

CL3 and CL4, which are also conditions for applicability of part rules, are dy-
namic. Applied consecutively, part rules can ‘repair’ one clash, and, at the same
time, provoke another. Thus, instances of CL3 and CL4 can appear and dis-
appear, in some cases infinitely, during the c.t. generation, even if the initial
concept is satisfiable. So, we have to take special care both to ensure the termi-
nation of part rules application, and not to leave avoidable ‘part’ clashes in the
completion tree. That turns out to be the main difficulty in designing the algo-
rithm. We overcome it by proving that if it is possible to unfold part restrictions
at a given node avoiding simultaneously both kinds of clashes, it can be done
within some number of neighbours. As clashes are always connected with a single
node, talking about its label and its neighbours, that is enough to guarantee the
termination. The following subsection presents the technique in details.

5.2 Counteracting part restrictions. Clusters

We start our analysis with the simplest case when, for a node x of the c.t. T,
there are in L(x) only part restrictions, and they all are with the same role R,
and with sub-concepts which are either a fixed concept C, or its negation ∼C,
and x is not an Inv(R)-successor. All such part restrictions form the set:

{Mr1R.C, Mr2R.∼C, Wr3R.C, Wr4R.∼C} (1)

We call the subset of (1) which is in L(x) a cluster of R and C at x in T,
and we denote it ClTx (R,C). It is obvious, that during the generation of (R-)
successors of x (if it is necessary) instances of CL3 and CL4 can appear only if
two contradicting part restrictions are in that cluster.

Definition 3. A part restriction which is in the label of a node x in a c.t. T is
T-satisfied (at x) if there is no clash with it at x.

A cluster is T-satisfied if all part restrictions in it are T-satisfied.
A part restriction (a cluster) is c.t.-satisfiable if it can be T-satisfied, for

some c.t. T.

In fact, in (1) there can be more than one part restriction of any of the four
types. But note that, if MrR.C is T-satisfied, then that is the case with Mr′R.C
(being in the label of the same node), for any r′ < r. So, we can take r1 and r2 to
be the maximums, and, by analogues reasons, r3 and r4 to be the minimums of
the r-s in part restrictions of the corresponding types. Thus we obtain the upper,
representative for the c.t.-satisfiability of all part restrictions in the node’s label,
set with only four ones.

The idea behind the c.t.-satisfiability is that if a cluster, and more general, the
set of all part restrictions labelling a node, is c.t.-satisfiable, then a c.t. without
clashes with part restrictions at that node can be non-deterministically gener-
ated, while the part rules become inapplicable for this node (as the inequality
in condition 2 or 3 in part rules becomes false). So, concerning part restrictions,
c.t.-satisfiability is a sufficient condition for obtaining a clash-free complete c.t.

Our next observation is that both Mr1R.C and Wr3R.C act in the same di-
rection concerning c.t. generation, as the former forces the addition of enough R-
successors of x labelled with C, and the latter limits the number of R-successors
of x labelled with ∼C. The same holds for Mr2R.∼C and Wr4R.∼C with
respect to ∼C. At that time, as Mr1R.C, so Wr3R.C counteract with any of
Mr2R.∼C and Wr4R.∼C. This leads to two main possibilities for ClTx (R,C):

A. The cluster contains only part restrictions, acting in the same direction
(or just a single one)—we call it cluster of type A, or A-cluster. In the absence
of counteracting part restrictions these clusters are always c.t.-satisfiable.

B. The cluster contains at least two counteracting part restrictions—we call
it cluster of type B, or B-cluster.

In order the c.t. generation process to be able to c.t.-satisfy a B-cluster, and
to avoid CL3 and CL4 clashes, the next inequalities between the r-s in the cluster
(or between the indices, from where we take the name of indices technique) must
be fulfilled—follows directly from the semantics of part restrictions, the above
remarks about counteractions, and the definition of c.t.-satisfiability:

1◦ r1 + r2 < 1 4◦ r3 + r4 ≥ 1, what is
2◦ r1 < r4 (a) r3 + r4 > 1, or
3◦ r2 < r3 (b) r3 + r4 = 1

If any of the inequalities 1◦–4◦ does not hold, any complete c.t. will contain
a clash, as it is impossible to c.t.-satisfy simultaneously (at the same node) the
part restrictions in which are the indices, taking part in the failed inequality.

We can combine that four inequalities in just one taking into account the
kind of interaction between part restrictions. Wr3R.C means that ∼C has to
label not greater than r3 part of all R-neighbours of x, i.e., that C has to label
at least (1 − r3) part of them. We set ř = max

(
{r1, 1 − r3}

)
(or, if the part

restriction with r1 or r3 is not in the cluster, ř is just the expression with the

other). Now, it is obvious that if C labels greater than ř part of all R-neighbours
of x, then both Mr1R.C and Wr3R.C are (or the single one from the couple
which is in the cluster, is) c.t.-satisfied. Analogues reasonings go with the other
couple of part restrictions, acting in the same direction (the ones with Mr2 and
Wr4), and (a part smaller than) r̂ = min

(
{1− r2, r4}

)
.

We call dominating the part restrictions which determine ř and r̂.
It is important to note that r3 + r4 = 1 does not spoil the c.t.-satisfiability

(unlike r1 + r2 = 1). We exclude that case from the general examination, as a
special sub-case, and discuss it separately. Thus, B divides into two sub-cases:
B(a). The cluster contains no counteracting W part restrictions, or r3 + r4 6= 1.
B(b). The cluster contains counteracting W part restrictions and r3 + r4 = 1.

Clusters of type B(a). Our first claim is:

Lemma 2. For a B(a)-cluster ClTx (R,C), the inequalities 1◦, 2◦, 3◦, and 4◦(a),
with the corresponding part restrictions being in the cluster, hold iff ř < r̂.

Corollary 1. ř < r̂ is a necessary condition for the c.t.-satisfiability of a B(a)-
cluster ClTx (R,C).

The upper inequality is also a sufficient condition for a cluster’s c.t.-satisfi-
ability. Indeed, if ř < r̂, and the number of R-neighbours of x labelled with C—
|RT(x,C)|—is strongly (due to the strong inequality for M) between ř.|RT(x)|
and r̂.|RT(x)|, then the dominating part restrictions are c.t.-satisfied, and so
are the rest of the part restrictions in the cluster, if any. This shows that ř < r̂
guarantees the c.t.-satisfiability; practical c.t.-satisfaction of a cluster depends
on the number of neighbours, and, of course, their appropriate labelling.

Note also that even though ř < r̂ holds, we can have instable c.t.-satisfaction,
as it can be seen from the next example. Let the dominating part restrictions be
M 2

3R.C and M 1
4R.∼C. They can be T-satisfied if RT(x) has 10 nodes (with C

labelling 7, and ∼C—3 of them), and also 11 nodes (with labelling C :∼C—
8 : 3), while if RT(x) has 12 nodes, there is no way these part restrictions to be
T-satisfied, as the first wants C to label at least 9, and the second—∼C to label
at least 4 R-neighbours of x. In case of 13 R-neighbours of x the part restrictions
again can be simultaneously T-satisfied.

Definition 4. A cluster ClTx (R,C) is n-satisfiable, where n ≥ 0, if it can be
c.t.-satisfied when x has exactly n R-neighbours.

A cluster is stably n-satisfiable, if it is n-satisfiable, and for any natural
number n′ > n it is also n′-satisfiable.

A cluster is stably c.t.-satisfiable, if it is stably n-satisfiable for some n ≥ 0.

Note that from the above definition it follows that if a cluster is stably n-
satisfiable, it is also stably n′-satisfiable, for any natural number n′ > n.

In the example above the cluster is 10-, and 11-satisfiable, it is not 12-
satisfiable, and it is (in fact—stably) 13-satisfiable.

So, if we have a sufficient condition for stable n-satisfiability of B(a)-clusters,
we will know exactly when, in the non-deterministic c.t. generation process,

stable c.t.-satisfaction of such a cluster will be achieved in at least one non-
deterministic generation (we call it a successful generation). Then we will be able
to key at that moment the part rules with respect to the part restrictions of that
cluster, thus avoiding infinite rules application in the unsuccessful generations.

Lemma 3. Let, for a B(a)-cluster ClTx (R,C), ř < r̂ hold. Then a sufficient
condition for the non-deterministic |RT(x)|-satisfiability of the cluster is:

|RT(x)| > 1
r̂−ř (])

Lemma 4. Let, for a B(a)-cluster ClTx (R,C), ř < r̂ and (]) hold, and the
dominating part restrictions in the cluster be T-satisfied. Then any generating
rule can always be applied in a way to yield T′ such that the cluster to be T′-
satisfied.

Lemma 4 shows that (]) also guarantees the stability of the non-deterministic
c.t.-satisfiability, namely stable

(⌊
1

r̂−ř
⌋

+1
)
-satisfiability. Being once fulfilled, (])

holds for any greater number of R-neighbours of x, and so c.t.-satisfying of the
dominating part restrictions can be preserved as RT(x) grows.

Thus, Lemma 3 and Lemma 4 guarantee for a c.t.-satisfiable (with ř < r̂)
B(a)-cluster ClTx (R,C) that, having the number of R-neighbours of x equal to,
or greater than

⌊
1

r̂−ř
⌋

+ 1 (what we will call the border amount of neighbours of
x, BANx, for that cluster), the cluster can be non-deterministically c.t.-satisfied.
Then, the termination of application of rules, triggered by (the part restrictions
in) that cluster, is ensured by the check-up for |RT(x)|.

Shortly said, any c.t.-satisfiable B(a)-cluster can be non-deterministically
stably c.t.-satisfied when the node has enough many neighbours on the role in
the cluster. We will rate that in the general case for all (possibly counteracting)
part restrictions, to preserve from infinite application of part rules.

Clusters of type B(b). B(b)-clusters are determined by the equality 4◦(b)
r3+r4 = 1 for the indices in W part restrictions. These clusters are c.t.-satisfiable
if 2◦ r1 < r4 and 3◦ r2 < r3 hold (in case that the corresponding M part
restrictions are in the cluster; in that case 1◦ obviously also holds). Thus, if 2◦

and 3◦ hold, or some M part restriction is missing, 4◦(b) can be considered as
a sufficient condition for the c.t.-satisfiability of a B(b)-cluster.

Lemma 5. Let, for a B(b)-cluster ClTx (R,C), r1 < r4 and r2 < r3 hold, in
case the corresponding M part restrictions are in the cluster. Then the cluster
is c.t.-satisfiable, and the sufficient condition it to be non-deterministically c.t.-
satisfied is the number of R-neighbours of x to be devisable by the denominator
of r3 and r4.

The general case. Let us recall that the application of a part rule requires
all possible applications of non-generating rules for the current node to be al-
ready done, what ensures all possible (at the moment) concepts, including part
restrictions, to be already present in the node’s label. Generalizing the consider-
ations for counteracting in clusters, also taking into account the other concepts,
triggering generating rules, and using the indices technique, we prove:

Lemma 6. Let x be a node of a completion tree T, and let all possible applica-
tions of non-generating rules for x be done. Then it can be calculated a natural
number BANx ≥ 1, depending on the concepts in L(x), and if x is a successor
of u, possibly also depending on the concepts in L(u), and having the following
property: all part restrictions in L(x) which are simultaneously T-satisfiable can
be non-deterministically simultaneously T-satisfied when the number of neigh-
bours of x on any role at the uppermost level in these part restrictions becomes
equal to BANx.

Lemma 6 both legitimates the use of BANx in the part rules applicabi-
lity check-up, thus ensuring termination, and guarantees that all simultaneously
c.t.-satisfiable part restrictions will be non-deterministically c.t.-satisfied, so that
there would not be clashes with them in the complete c.t.

Note that the border amount of neighbours can change only if L(x) or L(u)
be changed, for example by adding of some concept to any of them caused
by an application of a rule for a successor. As the number of such possible
changes is limited by the number of concepts in clos(D), after finite number of
recalculations we will obtain the final for the node x BANx.

6 Correctness of the Algorithm

As usual with tableaux algorithms we prove lemmas that the algorithm al-
ways terminates, and that it is sound and complete. The termination is ensured
by pair-wise blocking, and by BAN -checkup which guarantees finite (at most
exponential—in case of the usual binary coding of numbers) branching at a node.
The build of a tableau from the completion tree and the reverse follows the con-
structions from [7], Section 5.4, Lemmas 16 and 17. Since the internalization of
terminologies [1] is still possible in the presence of part restrictions, following
the technique presented in [7], Section 3.1, we obtain finally:

Theorem 1. The presented tableaux algorithm is a decision procedure for the
satisfiability and subsumption of ALCQPIHR+-concepts with respect to role hi-
erarchies and terminologies.

7 Conclusion

DL ALCQPIHR+ augments ALCQIHR+ with the ability to express rational
grading. We showed that the decision procedure for the latter logic can be nat-
urally extended to capture the new one. This indicates that the approach which
realizes rational grading independently from integer grading is fruitful, and can
be applied even to expressive description logics to give in a convenient way their
rational grading extensions, still keeping the decidability.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable questions,
remarks and suggestions.

References

1. F. Baader. Augmenting concept languages by transitive closure of roles: An alter-
native to terminological cycles. DFKI Research Report RR-90-13, DFKI, Kaiser-
slautern, 1990.

2. F. Baader. A new description logic with set constraints and cardinality constraints
on role successors. In FroCoS, pages 43–59, 2017.

3. S. Demri and D. Lugiez. Presburger modal logic is PSPACE-complete. In LNCS
4130, Automated Reasoning (IJCAR 2006), London, UK, 2006. Springer-Verlag.

4. K. Fine. In so many possible worlds. Notre Dame Journal of formal logic,
13(4):516–520, 1972.

5. I. Horrocks. Optimisation techniques for expressive description logics. Technical
report, 1997.

6. I. Horrocks and G. Gough. Description logics with transitive roles. In M.-C.
Rousset, R. Brachman, F. Donini, E. Franconi, I. Horrocs, and A. Levy, editors,
Proc. of DL’97, DL’97, pages 25–28, 1997.

7. I. Horrocks, U. Sattler, and S. Tobies. A description logic with transitive and
converse roles, role hierarchies and qualifying number restrictions. LTCS-Report
99-08, LuFg Theoretical Computer Science, RWTH Aachen, Germany, 1999.

8. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In Proceedings of the 6th International Conference on Logic Programming
and Automated Reasoning, LPAR ’99, pages 161–180, London, UK, 1999. Springer-
Verlag.

9. T. Lai, J. Endrullis, and L. S. Moss. Majority Digraphs. ArXiv e-print 1509.07567,
September 2015.

10. E. Pacuit and S. Salame. Majority logic. In Book of Abstracts, Principles of
Knowledge Representation and Reasoning (KR 2004), pages 598–605, 2004.

11. U. Sattler. A concept language extended with different kinds of transitive roles.
In G. Görz and S. Hölldobler, editors, 20. Deutsche Jahrestagung für Künstliche
Intelligenz, number 1137 in Lecture Notes in Artificial Intelligence. Springer Verlag,
1996.

12. T. Tinchev and M. Yanchev. Modal operators for rational grading. In Book of
Abstracts, International Conference Pioneers of Bulgarian Mathematics, pages 123–
124, Sofia, Bulgaria, 2006.

13. M. Yanchev. Part restrictions: adding new expressiveness in description log-
ics. In Abstracts of Informal Presentations, CiE 2012, page 144, 2012. Avail-
able online at http://www.mathcomp.leeds.ac.uk/turing2012/WScie12/Images/
abstracts-booklet.pdf.

14. M. Yanchev. Part restrictions in description logics: reasoning in polynomial time
complexity. In Contributed Talk Abstracts, LC 2012, pages 38–39, 2012. Avail-
able online at http://www.mims.manchester.ac.uk/events/workshops/LC2012/

abs/contrib.pdf.
15. M. Yanchev. Part restrictions in description logics with union and counting con-

structors. In Collection of Abstracts, CiE 2013, page 43, 2013. Available online at
https://cie2013.wordpress.com/2013/06/29/downloadable-material/.

16. M. Yanchev. Complexity of generalized grading with inverse relations and intersec-
tion of relations, 2014. Presented at LC 2014. Abstract available online at http://
www.easychair.org/smart-program/VSL2014/LC-2014-07-15.html#talk:2053.

17. M. Yanchev. A description logic with part restrictions: PSPACE-complete expres-
siveness. In A. Beckmann, E. Csuhaj-Varjú, and K. Meer, editors, Collection of

http://www.mathcomp.leeds.ac.uk/turing2012/WScie12/Images/abstracts-booklet.pdf
http://www.mathcomp.leeds.ac.uk/turing2012/WScie12/Images/abstracts-booklet.pdf
http://www.mims.manchester.ac.uk/events/workshops/LC2012/abs/contrib.pdf
http://www.mims.manchester.ac.uk/events/workshops/LC2012/abs/contrib.pdf
https://cie2013.wordpress.com/2013/06/29/downloadable-material/
http://www.easychair.org/smart-program/VSL2014/LC-2014-07-15.html#talk:2053
http://www.easychair.org/smart-program/VSL2014/LC-2014-07-15.html#talk:2053

Unpublished Abstracts, CiE 2014, pages 261–270, Budapest, Hungary, 2014. Avail-
able online at https://www.fmi.uni-sofia.bg/about/lio/yanchev/ct_cie2014.

18. M. Yanchev. PSPACE reasoning in an expressive description logic with ratio-
nal grading. In Proceedings, 11th Panhellenic Logic Symposium, pages 102–107,
Delphi, Greece, 2017.

19. M. Yanchev. Decidability of an expressive description logic with rational grading,
2019. arXiv:1905.10338 [cs.LO].

https://www.fmi.uni-sofia.bg/about/lio/yanchev/ct_cie2014

	Rational Grading inan Expressive Description Logic

