
Exhaustive Query Answering via
Referring Expressions

David Toman and Grant Weddell

Cheriton School of Computer Science
University of Waterloo, Canada
{david,gweddell}@uwaterloo.ca

Abstract. Earlier work has considered how concepts can replace indi-
vidual names as referring expressions in both instance retrieval and in
more general query answering over knowledge bases with an underlying
description logic. This earlier work, however, relied on this logic being
able to express functionality, and also relied on syntactic typing restric-
tions on referring expressions to ensure that the number of query answers
was finite. Here, we introduce a variety of referring expression concepts
that extend query answering with respect to Horn-ALC and EL⊥, de-
scription logics that are not able to express functionality, and techniques
necessary to finitely describe all entailed answers to queries expressed in
terms of such concepts.

1 Introduction

Usually, individual names occurring in a knowledge base K expressed in terms
of an underlying DL serve the role of referring expressions in query answering.
However, earlier work has considered how concepts in the DL can replace indi-
vidual names as referring expressions in instance retrieval [6] and, more recently,
in the case of conjunctive queries [2, 7]. The more recent work, however, relied on
two things. First, the underlying DL needed to be able to express functionality
in order to ensure a concept serving the role of a referring expression satisfied a
strong singularity property. This property required the denotation of the concept
to be a singleton set for any interpretation of K. And second, this recent work
relied on syntactic typing restrictions on referring expressions to ensure that the
number of query answers was finite.

In this paper, we introduce a variety of referring expression concepts that
extend query answering with respect to Horn-ALC and EL⊥, description logics
that are not able to express functionality, and techniques necessary to finitely
describe all entailed answers to queries expressed in terms of such concepts.
Fundamentally, this involves weakening the strong notion of singularity, requiring
instead, that the denotation of a referring concept is a singleton set for some tree
interpretation of K. Also, our preliminary focus on Horn-ALC and EL⊥ enables
a more transparent development since a knowledge base over these dialects will
have a unique tree interpretation.

The remainder of the paper is organized as follows: Section 2 gives the nec-
essary general definitions, Section 3 studies the problem of instance retrieval in
Horn-ALC and EL⊥, and Section 3.3 discusses a finite representation of sets of
answers. The development for instance retrieval is then extended, in Section 4.2,
to conjunctive queries. Section 5 summarizes and outlines directions for further
research.

2 Background and Definitions

We begin by defining a space of concept descriptions for the function free DL
dialects that will concern us, including the concept descriptions that replace
individual names in the role of referring expressions in query answering:

Definition 1 (Concept Language)
Let R, PC and IN be disjoint sets of role names, primitive concept names and
individual names respectively. Derived concept descriptions and their semantics
are defined as follows:

Syntax Semantics: Defn of “·I”
C ::=A AI ⊆ 4 (primitive concept; A ∈ PC)
| C1 u C2 CI1 ∩ CI2 (conjunction)
| ⊥ {} (bottom)
| ∀R.C {x | ∀y : (x, y) ∈ RI → y ∈ CI} (value restriction; R ∈ R)
| ∃R.C {x | ∃y : (x, y) ∈ RI ∧ y ∈ CI} (existential restriction; R ∈ R)
| ∃R−.C {x | ∃y : (y, x) ∈ RI ∧ y ∈ CI} (inverse existential restriction)
| {a} {aI} (nominal; a ∈ IN)

The semantics is with respect to a structure I = (4, ·I) in which 4 is a domain
of “objects” and ·I an interpretation function seeded by fixing the interpretations
of primitive concept names A to be subsets of 4 (as indicated), role names R
to be subsets of 4 × 4, and individual names a to be elements of 4 (and is
extended to derived concept descriptions C as also indicated). 2

The DL dialects EL⊥ and Horn-ALC are given as follows:

Definition 2 (Horn-ALC and EL⊥ TBoxes and Knowledge Bases)
A Horn-ALC or EL⊥ knowledge base K consists of a TBox T and ABox A,
where T consists of a finite set of subsumptions of the form C v D in which

– C is a conjunction of primitive concepts A and existential restrictions of the
form ∃R.A, and

– D is one of ⊥, A, ∃R.A, and, in the case of Horn-ALC, ∀R.A,

and where A consists of a finite set of assertions of the form a : A and R(a, b).

An interpretation I is called a model of K if CI ⊆ DI for all C v D ∈ T ,
aI ∈ CI for all a : C ∈ A, and (aI , bI) ∈ RI for all R(a, b) ∈ A.

Consistency, logical implication, and other reasoning problems are defined in the
standard way. 2

Observe that we require TBoxes to be in a simple normal form. For more general
but expressively equivalent syntax, see [3].

Tree Models. Hereon, we rely on the fact that DL knowledge bases will usually
possess the tree model property : with the exception of the explicit ABox, sat-
isfiable knowledge bases have a tree-like model in which all anonymous objects
form a role-connected forest rooted by ABox individuals. Moreover, in the tree
parts of this model, no individuals are made equal unless forced to do so by
TBox assertions.

For Horn logics, one can also show that there is a unique tree-like model
commonly called the minimal or universal model that captures all the facts im-
plied by the knowledge base. Thus, many reasoning tasks, in particular, instance
retrieval, reduce to inspecting this model.

Queries and Referring Expressions. In the classical setting, instance retrieval
(resp. query answering) with respect to a knowledge base K and a concept C
(resp. query Q) is the task that determines for which individual names appearing
in K it holds that K |= a : C (resp. K |= Q(a1, . . . , ak)). Here, constant names
serve the role of referring expressions, and our concern is with replacing such
expressions by more general concept descriptions:

Definition 3 (Referring Expressions)
Referring expressions are simply concepts in (a subset of) the above concept
language. In the following, we use concept descriptions of the form

C1 u ∃R−1 .(C2 u ∃R−2 .(. . . ∃R
−
k .{a}))

where Ci are (conjunctions) of primitive concepts. 2

The intuition behind this choice of referring expressions lies in the tree model
property of our logics: every anonymous object can be reached by a role path
from an ABox individual. (Indeed, unreachable objects that may exist in some
models of our knowledge bases should not be considered since they fail to qualify
as certain answers.)

In order to use referring expressions in place of constant symbols, one should
ensure that they describe a single (certain) answer. Also note that, to account for
various DL dialects, both knowledge base subsumptions/assertions and referring
expressions will be restricted to appropriate subsets of the concept language in
Definition 1. The following definition of a singularity property of concepts serving
the role of referring expressions in instance checking, however, is independent of
the choice of DL dialect:

Definition 4 (Singular Certain Answers)
Let K be a knowledge base, D an instance query (i.e., a concept expression),
and C a referring expression. We say that C is a singular certain answer to D if

1. (certainty) K |= C v D and |CI | > 0 for all models I of K, and
2. (singularity) |CI | = 1 for at least one tree model I of K. 2

This constitutes a weakening of the singularity property defined in [2] in which
a referring expression was required to denote a singleton set in all models of the
knowledge base. Indeed, this is essential since DL dialects such as Horn-ALC and
EL⊥ are not sufficiently expressive to enforce the stronger requirement. In these
logics, it is always possible to replicate identical successors of objects in a model
without invalidating any TBox subsumptions. Doing this leads immediately to
a violation of the singularity property of [2]. However, in the setting of certain
answers, the weaker requirement seems sufficient: it guarantees that it is never
the case that the referring expression describes more than one answer in every
model of K. To illustrate, consider the following:

Example 5
T = {A v ∃R.C u ∃R.D,A v ∀R.B} and A = {a : A}. Then C u ∃R−.{a}
and D u ∃R−.{a} are singular certain answers for the instance query B(x),
but ∃R−.{a} is not since it fails the singularity requirement. (The description
contains at least two objects in every tree model of K.)

This seems to be in agreement with the usual entailment style of semantics for
certain answers in the database community that thinks of the results of a query
as an “intersection over all models”. The benefit of this weaker definition is that
results can now apply to logics that are unable to express functionality, such as
Horn-ALC or EL⊥, which were excluded from consideration in [2].

Conversely, we require the weaker singularity condition to hold in a tree
model of the knowledge base. This avoids models that equate objects without
a need to do so. Allowing such models in our definition of singularity would
incorrectly allow for concepts to be considered referring expressions for singular
certain answers even though there could be two or more referring expressions
that also describe singular answers and imply the expression in question. The
following illustrates this case:

Example 6
Consider again the situation in Example 5. Without restricting the singularity
requirement to tree models, we could use an interpretation I that maps the R
successors of aI to the same anonymous object. That interpretation is a model
of K since C and D are not mandated to be disjoint. Hence, ∃R−.{a} would be
incorrectly considered to be a singular certain answer even though two distinct
singular certain answers referring to two distinct objects (as in Example 5) are
subsumed by this description. Hence, this expression should not be considered
singular.

Note that the above example presents a situation in which ∃R−.{a} refers to
two distinct certain answers. However, note that aliases, that is, alternative
referring expressions that refer to the same single answer, are still possible.
This is natural and similar to standard approaches in which distinct constants
may be interpreted as the same individual.

3 Instance Retrieval and Unit ABox

We first consider the problem of generalized instance retrieval. In the classical
setting, this task deals only with ABox individuals. However, in our setting,
referring expressions can describe certain answers that can be arbitrarily far
from ABox individuals denoted by constant symbols.

The two DLs that we consider, Horn-ALC and EL⊥, do not possess the capa-
bility of expressing the functionality of roles. A slightly surprising result is that
Horn-ALC or EL⊥ TBoxes are not able to enforce the existence of objects that
are indistinguishable by appropriate referring expressions. Hence, all possible
answers can in principle be described by such expressions as singular certain
answers.

To simplify the exposition and focus on the issues connected with referring
expressions, we first assume that the ABox in a knowledge base contains a sin-
gle assertion a : A. (We relax this restriction later.) Initially, we only consider
instance retrieval queries of the form B(x) for B a primitive concept; instance
queries for more complex concepts can be reduced to this case by introducing
appropriate subsumptions in the TBox.

3.1 The Horn-ALC Case

In principle, testing whether a concept is an answer to an instance query reduces
to a simple logical implication problem (perhaps in an extension of Horn-ALC).
The main questions we answer here are what concepts should qualify as referring
expressions, and how one guarantees singularity for these expressions.

To answer these questions, we utilize a construction similar to the standard
construction of a tree automaton for recognizing tree models of the knowledge
base.1 We generate a transition relation from our instance checking problem as
follows:

Definition 7
Let K = (T , {a : A}) be a Horn-ALC knowledge base (in normal form) and
Concepts(K) the set of all concepts and subconcepts appearing in K.

We define Implied(S) = {C ∈ Concepts(K) | T |=
d

A∈S A v C}, where S is a
set of primitive concepts, and define SK = {S | S ⊆ PC ∩ Concepts(K)}.
We say that an existential restriction ∃R.C ∈ Implied(S) is independent if it is
minimal among existential restrictions in Implied(S) with respect to subsump-
tion. For mutually equivalent restrictions, we chose one representative to be
independent.

A matching tuple for S ∈ SK is a tuple

(S, {C0, D0,0, . . . , D0,k0
}, . . . , {Ck, Dk,0, . . . , Dk,kk

})
1 In the standard construction, the Hintikka sets are generated syntactically by an-

alyzing concepts present in a TBox. Here, to simplify the presentation, we rely on
logical implication algorithms already developed for the underlying logics.

where ∃R0.C0, . . . ,∃Rk.Ck are all independent existential restrictions that ap-
pear in Implied(S) and ∀R0.D0,0, . . . ,∀R0.D0,k0

, . . . ,∀Rk.Dk,0, . . . ,∀Rk.Dk,kk
are

all value restrictions that appear in Implied(S). We say that {Ci, Di,0, . . . , Di,ki}
belongs to S’s matching tuple for the existential restriction ∃Ri.Ci.

This construction is similar to the looping automaton construction for K with
an initial state {A}. However, note that the transitions are deterministic for
Horn-ALC. A similar construction also yields an optimal EXPTIME upper
bound for satisfiability of Horn-ALC knowledge bases since the number of the
sets in the construction is at most exponential in |K| (as is the size of the tree
automaton), and testing for the emptiness of a looping tree automaton can be
done in time polynomial in the number of states as follows:

Set S ∈ SK is feasible if
1. ⊥ 6∈ Implied(S), and
2. for the matching tuple (S, S0, . . . , Sk) all Si are feasible.

Otherwise, S is infeasible.

It is easy to see that the above definition of (in)feasible states can be implemented
by an algorithm that marks all infeasible states in |SK| rounds. Consequently,
K is satisfiable if and only if the initial state {A} is feasible since the structure
finitely encodes the universal (minimal) model of K: the model corresponds to
the unfolding of the structure starting from {A} (i.e., a run of the automaton).
We use the feasible states and the structure defined over them by the matching
tuples (a.k.a., the transition relation of the looping automaton) to define referring
expressions that will serve as our singular certain answers:

Definition 8 (Certain Paths and Referring Expressions)
A certain path for a query B(x) and knowledge base K is a sequence of role and
concept pairs R1A1 . . . RkAk such that there are feasible S0, . . . , Sk ∈ SK and

1. S0 = {A},
2. B ∈ Implied(Sk), and
3. Si+1 belongs to Si’s matching tuple for the existential restriction ∃Ri.Ai.

Observe that we consider all such paths in the above (i.e., not just paths that
are simple). Also note that, unlike satisfiability, we need to make certain that
the referring expression concept works in all models of K. Here we again take
advantage of the logic being Horn and rely on the (universal) tree model captured
by the above construction.

Theorem 9
Every certain path R1A1 . . . RkAk for B and K corresponds to a singular certain

answer Ak u ∃R−k .(. . . A1 u ∃R−1 .{a}). Moreover, every B object common to all
models of K will be reached by a certain path and will be returned as an answer.

Proof (sketch): The construction guarantees that the referring expressions con-
structed from certain paths satisfy the certainty condition of our definition: the

end object of every certain path for B(x) and K is in the interpretation of the
B concept in the minimal model and thus in all models of K. The objects at
the ends of these paths are referred to by the referring expression concept con-
structed from such paths.

Requiring only independent existential restrictions to be parts of matching tuples
guarantees singularity of the certain answers witnessed by the tree model of K.

3.2 The EL⊥ Case

We use the same construction. However, in the absence of value restrictions, ob-
serve that only the sets Implied({A}), where A ∈ PC, are needed. There are only
polynomially many of these, all of which can now be constructed in PTIME.2

3.3 Finite Representation of Answers

Our focus so far has been on problems of determining if a referring expression
is a singular certain answer to an instance query B(x) over a knowledge base
K. However, in practical information systems, one is often faced with the task
of reporting all certain answers. This is easy in the standard case: we simply
consider the available constant symbols one-by-one. The following examples show
that this is not so simple for referring expressions.

In the case of acyclic TBoxes (even in EL⊥), the number of singular cer-
tain answers can be easily exponential (and doubly exponential in the case of
Horn-ALC):

Example 10
Consider a knowledge base with unit ABox and an EL⊥ TBox of the form

T = {A v ∃R.B0 u ∃S.B0, . . . , Bk−1 v ∃R.Bk u ∃S.Bk}

for k > 0. Our construction gives k matching tuples ({Bi}, {Bi+1}, {Bi+1}) (plus
a tuple ({Bk})). This, however, leads to exponentially many certain paths that
are witnessed by the tree model of this TBox that contains 2k leaves.

The situation is even worse in the case of Horn-ALC since one can force paths
of exponential length using value restrictions and auxiliary concepts that stand

for counters. Hence, one can force 22
k

certain paths (and in turn singular certain
answers).

For cyclic TBoxes, it is easy to construct examples in which the number of
singular certain answers is infinite:

Example 11
Let T = {A v ∃R.A}, and A = {a : A}. Then {a}, ∃R−.{a}, ∃R−.∃R−.{a},
∃R−.∃R−.∃R−.{a}, etc., are all singular certain answers to A(x).

2 This construction is essentially the same as the construction of the so called canonical
model for EL⊥ [1, 5].

One can represent all these answers as simple regular expression-based extensions
of our language of referring expressions, stating that the singular certain answers
can be reached, for example, by R1 . . . Ri−1[Ri . . . Rk]∗ paths. When transformed
to the concept language embellished by a Kleene star-like construct, such a
referring expression would appear as follows:

[Ck u ∃R−k .(. . . Ci u ∃R−i .(]
∗Ci−1 u ∃R−i−1.(. . . ∃R

−
1 .{a}))).

Note that the regular-like concept description corresponds to the certain path
written backward, hence the cycle is syntactically at the beginning of this ex-
pression. Such expressions can be extracted from our construction of matching
tuples as concatenations of simple paths from A to B followed by B to B cycles.
However, while this solves our problems with the finiteness of (the presentation
of) all answers, issues connected with the number of answers raised in Exam-
ple 10 remain. Similarly, the number of distinct simple cycles can be bounded by
a factorial function from below. The representations consisting of sets of match-
ing tuples (essentially the transition relation of a tree automaton) are vastly
more succinct, but may not be appropriate as an end user feedback. Indeed, a
succinct and user-friendly representation remains a topic for further research.

4 Extensions

This section considers relaxing the various restrictions that we have assumed
in addressing the problem of exhaustive query answering via referring expres-
sions (restrictions that enabled a simpler exposition of what we believe are the
principle issues).

4.1 General ABoxes

One can use a standard approach to extend an explicitly given ABox to a tree
model (represented again using matching tuples). One issue that needs to be
addressed is guaranteeing the singularity of answers. This is not an issue for the
ABox individuals, but roles in the ABox can make certain existential restric-
tions redundant and break our independence requirement, as illustrated in the
following:

Example 12
Consider knowledge base K with an ABox A = {A(a), R(a, b), B(b)} and a TBox
T = {A v ∃R.B}. Considering the TBox alone, we generate a matching tuple
({A}, {B}) that is used to generate (anonymous) R successors for As. However,
were this tuple used for the a object, it would lead to a certain answer ∃R−.{a}
no longer being singular (in the constructed model). Extending the independence
requirement to eliminate redundant existential restrictions by generating addi-
tional matching tuples for ABox objects solves this problem. In this particular
case, one would generate a tuple ({A, {a}}) with no successors.

The above approach can be applied to all ABox objects leading to at most |A|
increase in the number of matching tuples and hence preserving our complexity
bounds.

4.2 Conjunctive Queries

One simply reduces conjunctive query (CQ) answering to existing approaches
that deal with queries whose answer variables match ABox individuals [4, 5].
Note that such approaches require slight extensions to account for anonymous
objects in the |CQ|-neighborhood of the ABox that can now be described by
referring expressions. What remains is to introduce additional cases for a CQ that
can be folded to concept descriptions for which our instance retrieval approach
can then be applied, in particular, when:

1. the whole query matches in the knowledge base’s ABox,
2. part of the query matches in the ABox and part in the implied part of

models, and
3. the whole query (folding) matches in the implied part (in all models).

Observe with the standard setting for open queries that only cases (1) and (2),
where all answer variables match in the ABox, will apply. This is no longer
the case when referring expressions can be used: in cases (2) and (3) referring
expressions can provide bindings for variables that match outside of an ABox.
However, such matches only apply to those portions of the given conjunctive
query that can be folded to a tree-shaped concept description since models of
description logic knowledge bases have the tree model property for the anony-
mous parts. This implies in turn that matches for inherently non-tree-shaped
conjunctive queries are not possible. However, whenever referring expressions
are used as parts of the answer tuples, they will always satisfy our singularity
condition jointly (i.e., in the same model of the knowledge base) as witnessed by
the tree model.

The latter two cases need to make certain allowances for free variables of
the queries that can now match anonymous objects referred to by our referring
expressions in the answer tuples. This requires simple, but slightly tedious house-
keeping to be added to the process to track the variable matches, in particular
in case (3).

4.3 Logics with Number Restrictions

When quantified role restrictions of the form (≥ 2 R.C) are present in the lan-
guage, it may not be possible to describe all answers as singular certain answers
since such at-least restrictions can force multiple certain answers that cannot
be distinguished by referring expressions (without the loss of singularity). Note,
however, that genuine at-least restrictions can be modeled by existential restric-
tions and auxiliary disjoint primitive concepts. Then, however, those concepts
will guarantee singularity in the tree model.

Results are better with only functionality or at-most restrictions, although
there remains some dependence on the way such restrictions are realized in the
TBox or concept language, for example, as (func R) constraints or as (≤ 1 R.C)
concepts. Indeed, negations in the latter case can lead to at-least restrictions and
non-singularity of certain answers.

4.4 Non-Horn Logics

The situation for non-Horn logics is even more complex: we can certainly extend
our construction to full ALC, but we face the following issue in the presence
of disjunctions, in particular, when such disjunctions are allowed in referring
expressions:

Example 13
According to our definition of singularity, given a TBox {A v ∃R.Bt∃S.B}, an
ABox {a : A}, and a query B(x), a singular certain answer could be ∃R−.{a} t
∃S−.{a} since the two (minimal) tree models will contain {R(a, o), B(o)} and
{S(a, o), B(o)}.
Even worse, where the TBox given instead as {A v (∃R.Bu∃S.B)t∃T.B}, one
could have two certain answers, both singular: ∃R−.{a}t∃T−.{a} and ∃S−.{a}t
∃T−.{a}, that seem to reuse the second part of the disjunction. This not only
leads to combinatorial problems but also renders answers that are unintuitive.

Also, observe in the first case that the anonymous object o, indeed the answer we
are trying to refer to, need not be the same object in the two models. However,
this isn’t too different from interpreting a constant symbol by varying domain
elements in different models of a knowledge base. The downside of this arrange-
ment is that such a system will be reporting answers that contain (possibly large
numbers of) disjunctions may not be what users of such a system would expect.
Limiting what referring expressions are used in answers has been considered in
[2] where the idea of referring expression types was introduced.

5 Summary and Open Problems

We have presented an extension to instance retrieval and query answering tasks
that, with the help of referring expressions, allows one to return all singular
certain answers in Horn-ALC and EL⊥ knowledge bases. We have also shown that
this is no longer the case for logics endowed with at-least number restrictions,
even though additional answers are still possible when referring expressions can
be arbitrary concepts.

There are many directions for further research, in particular:

– Issues related to a more compact representation of answers; this direction is
related to discovering “small” regular expressions or devising other ways to
present all the singular certain answers over a knowledge base.

– Extensions to more powerful Horn description logics: what concept construc-
tors can be supported while maintaining the ability to report all answers?
What to do with at-least restrictions and (unlike functionality) do we really
need them?

– Extensions to non-Horn Description Logics: can the techniques be extended
to DLs with concept disjunction (see the discussion in Section 4.4)?

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope. In: Proc. Int. Joint
Conf. on Artificial Intelligence (IJCAI). pp. 364–369 (2005)

2. Borgida, A., Toman, D., Weddell, G.: On referring expressions in query answering
over first order knowledge bases. In: Proc. KR. pp. 319–328 (2016)

3. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive
description logics. In: Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI). pp.
466–471. Professional Book Center (2005)

4. Lutz, C., Seylan, I., Toman, D., Wolter, F.: The combined approach to OBDA:
Taming role hierarchies using filters. In: ISWC (1). pp. 314–330 (2013)

5. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic EL using a relational database system. In: Proc. IJCAI. pp. 2070–2075 (2009)

6. Pound, J., Toman, D., Weddell, G.E., Wu, J.: Concept projection in algebras for
computing certain answer descriptions. In: Grau, B.C., Horrocks, I., Motik, B.,
Sattler, U. (eds.) Proceedings of the 22nd International Workshop on Description
Logics (DL 2009), Oxford, UK, July 27-30, 2009. CEUR Workshop Proceedings,
vol. 477. CEUR-WS.org (2009), http://ceur-ws.org/Vol-477/paper 44.pdf

7. Toman, D., Weddell, G.E.: Identity resolution in conjunctive querying over dl-based
knowledge bases. In: Ortiz, M., Schneider, T. (eds.) Proceedings of the 31st Interna-
tional Workshop on Description Logics co-located with 16th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR 2018), Tempe,
Arizona, US, October 27th - to - 29th, 2018. CEUR Workshop Proceedings, vol.
2211. CEUR-WS.org (2018), http://ceur-ws.org/Vol-2211/paper-34.pdf

