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Abstract. We introduce resilient logic programs that couple a non-
monotonic logic program and a first-order theory or description logic
(DL) ontology. Unlike previous hybrid languages, where the interaction
between the program and the theory is limited to consistency or query
entailment tests, in RLPs answers must be ‘resilient’ to the models of
the ontology, allowing non-output predicates to respond differently to
different models. RLPs can elegantly express ∃∀∃-QBFs, disjunctive ASP,
and configuration problems under incompleteness of information. To
guarantee decidability, we use a novel relaxation of DL-safeness that
safeguards rules via predicates whose extensions can be inferred to have
a finite bound. We present algorithms and tight complexity results for
the case where ontologies are written in some prototypical DLs.

1 Introduction

Description Logics (DLs) [2,3] and rule-based languages—especially the ones
supporting (non-monotonic) default negation—offer complementary modeling
and reasoning capabilities. Most DLs are syntactic variants of first-order logic that
are suitable for open-world reasoning, especially for reasoning about anonymous
objects, i.e. objects whose identity is unknown but whose existence is implied by do-
main knowledge. In contrast, rule-based languages like Answer Set Programming
(ASP)[9] are tailored to provide powerful closed-world reasoning about known
objects, and features like the default negation are important when modeling
dynamic domains, e.g., in reasoning about actions and change.

Motivated by this complementarity, combining DLs and rule-based languages
into the so-called Hybrid Knowledge Bases (HKBs) is a well-established re-
search topic in KR&R [21,22,10,17,14]. Despite the existence of several different
languages for expressing HKBs, they can be divided into two classes: the model-
centric and the entailment-centric approaches. The languages in [21,22,4] have
model-centric semantics because an intended structure (i.e., an answer set or
stable model) is a single first-order structure that is “acceptable” both to the
rule and to the DL component of the input HKB. That is, the rules base their
inferences on a given model of the DL component, and consistency with that
model is the only very coarse way in which they access the knowledge captured in
the DL part. The entailment-centric approaches like [10,17] are the other extreme:
the rules do ontological reasoning by accessing the logical consequences of the
DL component, but have basically no access to its different models.
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For many KR problems both extremes are inadequate. We thus study HKBs
that blur the lines between the model-centric and the entailment-centric ap-
proaches: different models of the input ontology may be processed in different
ways, in the model-centric spirit, but the intended answer sets are defined via
universal quantification over the models of the ontology, as in entailment-centric
approaches. For a simple (synthetic) example, assume we want to generate a
directed graph G from a given set of nodes n1, . . . , nk, so that removing one node
from the graph will always lead to graph that is strongly connected. Intuitively,
here selecting which edges to include in G depends on the universal quantification
over all induced subgraphs G′ obtained by removing a single node from G, while
the reachability relation in G′ is different for different choices of G′.

In our formalism, resilient logic programs (RLPs), a standard ASP program
P is paired with a first-order theory (or a DL ontology) T that challenges it.
Predicates are divided into output, response, and open-world predicates. The
semantics is defined via a “negotiation” between P and T : the two components
need to agree on answer sets I over the output signature, so that no matter
how I is extended into a model of T (by interpreting the open-world predicates),
the program P can give a matching and justified interpretation to the response
predicates. Both ∃∀∃-QBFs and disjunctive ASP are naturally captured by
RLPs, and in fact, the QBF reduction shows that reasoning is ΣP

3 -hard in data
complexity, setting RLPs apart form previous hybrid languages. We illustrate
that RLPs are powerful for solving incompletely specified configuration problems.

Inevitably, reasoning in RLPs is undecidable unless restrictions are imposed on
how rules are allowed to manipulate anonymous objects. While the usual notion
of DL-safeness can be used [18,21], we instead propose a significant relaxation
based on the following intuition. Assume that each employee of a company can
take part in at most 5 projects, and that all projects have at least one employee;
this is expressed in DLs as Empl v≤ 5 assgdTo.Proj and Proj v ∃assgdTo−.Empl.
If we happen to know that the company has n employees, we can infer that there
are at most 5n projects. Our relaxed safeness uses the ontology to identify concept
names whose extension is forced to be relatively small, and lets the rules access
their extensions as ordinary individuals, even if they may contain anonymous
objects. E.g., if Empl is assumed to be complete, the rules can treat projects
as safe. This idea of safeness is novel to the best of our knowledge, and seems
useful in many settings. For the case where ontologies are in the DLs ALCHOIQ,
ALCHI and DL-LiteF , we provide algorithms and complexity results.

Due to space limitations some constructions and proofs are provided the
extended version of this paper 1.

2 Logic Programming Preliminaries

We assume countably infinite and mutually disjoint sets Sconst, Svar, and Spred

of constants, variables, and predicate symbols, respectively. Each p ∈ Spred is
associated with a non-negative arity, denoted by art(p). A term is a variable or

1 https://dbai.tuwien.ac.at/staff/simkus/papers/dl2019-long.pdf
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a constant, and an atom is an expression p(t1, . . . , tn), where p ∈ Spred has arity
n, and t1, . . . , tn are terms. A program is a set of rules of the form

r : h← b1, . . . , bn,not bn+1, . . . ,not bm

where n,m ≥ 0, h, b1, . . . , bm are atoms, and each variable that occurs in
h, bn+1, . . . bm must occur in some b1, . . . , bn. We let head(r) = {h}, body+(r) =
{b1, . . . , bn}, and body−(r) = {bn+1, . . . , bm}. If p is an atom, we call an expres-
sion of the form not p a negated atom. A literal is an atom or a negated atom. A
rule r is positive if |body−(r)| = 0. A program is positive if all its rules are positive.
We call an atom, a rule, or a program ground if it contains no variables. Facts
are ground rules of the form h←, where “← ” is often omitted. We let adom(P)
be the set of constants in P. Given a set of constants C ⊆ Sconst, the grounding
of a rule w.r.t. C, in symbols ground(r, C), is a set of rules obtained from r by
uniformly replacing variables in r by all possible elements from C. The grounding
of a program w.r.t. C is then given as ground(P, C) =

⋃
r∈P ground(r, C).

An (Herbrand) interpretation over Σ ⊆ Spred is a set of ground atoms using
only predicates from Σ (if Σ is not specified we assume Σ = Spred). Given an
interpretation I and a set Σ ⊆ Spred, we let I|Σ = {p(u) | p(u) ∈ I and p ∈ Σ}.

An interpretation I is a model of a ground positive program P if body+(r) ⊆ I
implies head(r) ∩ I 6= ∅, for each rule r ∈ P . Further, I is a minimal model of P
if there exists no J ⊂ I that is a model of P. The semantics to programs with
negation is given using a program transformation due to Gelfond and Lifschitz [12].
Given an interpretation I and a program P, we define a reduct of P w.r.t. I as
PI = {head(r) ← body+(r) | body−(r) ∩ I = ∅, r ∈ ground(P,Sconst)}. We say
that I is a stable model (or an answer set) of P if I is a minimal model of PI .

3 Resilient Logic Programs

We introduce our formalism. Syntactically, it pairs a program with a function-free
first order logic (FO) theory—as usual in hybrid languages—and also defines a
partition of the signature, which is relevant for our resilient semantics.

Given a program P and a theory T , we use sig(P) and sig(T ) to denote sets
of predicate symbols that occur in P and T , respectively.

Definition 1 (Syntax). A resilient logic program (RLP) is a tuple Π =
(P, T , Σout, Σowa, Σre) where P is a program, T is an FO theory, and the sets
Σout, Σowa, Σre are a partition of sig(P) ∪ sig(T ) with Σre ∩ sig(T ) = ∅. We call
Σout the set of output predicates, Σowa the open predicates, and Σre the response
predicates of Π. The predicates in Σout ∪Σre are called closed predicates of Π.

Our semantics uses the following generalized definition of a reduct. It is
inherited from Clopen KBs [4], which in turn borrow from r-hybrid KBs [21].

Given a program P, an interpretation I, and Σ ⊆ Spred, the reduct PI,Σ of
P w.r.t. I and Σ is the positive program obtained from ground(P,Sconst) by:

1. Deleting every rule r that contains a literal p(u) such that



(a) p(u) ∈ body+(r), p(u) 6∈ I, and p ∈ Σ,

(b) p(u) ∈ head(r), p(u) ∈ I, and p ∈ Σ, or

(c) p(u) ∈ body−(r) and p(u) ∈ I.

2. In the remaining rules, deleting all negated atoms and atoms p(u) with p∈Σ.

Intuitively, PI,Σ is the result of partially evaluating P according to the facts in
I, under the open-world assumption for the predicates in Σ.

Now we can define the semantics of RLPs. For convenience, we adopt the
standard Herbrand semantics of FO theories.

Definition 2 (Semantics). Let Π = (P, T , Σout, Σowa, Σre) be an RLP, and let
I be an interpretation over Σout. Then I is an answer set of Π if

(i) there exists some model J of T such that I|Σout
= J|Σout

, and

(ii) for each model J of T with I|Σout
= J|Σout

, there is an interpretation H such
that J|Σout∪Σowa

= H|Σout∪Σowa
and H|Σout∪Σre

is a minimal model of PH,Σowa .

We call H a response to J w.r.t. I and Π.

The main reasoning task for RLPs is answer set existence, i.e., given an RLP
Π, does there exist an answer set I of Π. Other common reasoning problems like
skeptical (resp., brave) entailment can be easily reduced to checking non-existence
(resp., existence) of an answer set. In particular, a ground atom p(c) is true
in all answer sets of Π (i.e. p(c) is a skeptical consequence) iff the result of
adding ← p(c) to (the program component of) Π does not have an answer set.2

Similarly, a ground atom p(c) is true in some answer set of Π (i.e. p(c) is a brave
consequence) iff Π augmented with ← not p(c) does have an answer set.

We illustrate RLPs. For brevity, we use h1| · · · |hk ← β as a shorthand for the
set of rules {hi ← β,not h1, . . .not hi−1,not hi+1, . . . ,not hk | 1 ≤ i ≤ k}. This
choice rule tells us that at least one of h1, · · · , hk must be true in case β is true.

Example 1. We show how to express the graph problem from the introduction as
an RLP. Given nodes n1, . . . , nk, let Π = (P, T , {V,E}, {E,R}, {in, out}), where
T = {∀x(V (x)→ in(x)∨out(x)),∀x(V (x)→ ¬in(x)∨¬out(x)),∃xout(x),∀x∀y
out(x) ∧ out(y)→ x = y} and the program P consists of the following rules:

V (n1), · · ·V (nk), E(x, y)|E(x, y)←, R(x, z)← R(x, y), R(y, z),

R(x, y)← E(x, y),not out(x),not out(y)
← V (x), V (y), x 6= y,not out(x),not out(y),not R(x, y)

Then each answer set of Π defines a directed graph G such that the following
is true for all nodes ni, 1 ≤ i ≤ k: if ni is removed from G, the remaining graph
is still strongly connected.

2 The constraint ‘← β’ is a shorthand for ‘p← β,not p’, where p is a fresh atom.



Example 2. Consider the evaluation problem for quantified Boolean formulas
(QBFs) of the form Φ = ∃X1, . . . , Xn∀Y1, . . . , Ym,∃Z1, . . . , Zkϕ., where ϕ is in 3-
CNF. The quantifier alternation resembles the semantics of our RLPs, as reflected
in the following RLP Π, which has an answer set iff Φ evaluates to true.

We let Π = (P, T , {VX , VY , VZ , TX , FX}, {TY , FY }, {TZ , FZ}) with

T = { ∀x(VY (x)→ TY (x) ∨ FY (x)), ∀x(VY (x) ∧ TY (x) ∧ FY (x)→ ⊥)}

P = { VX(cX1 ), . . . , VX(cXn ), VY (cY1 ), . . . , VY (cYm), VZ(cZ1 ), . . . , VZ(cZk )

TX(x)|FX(x)← VX(x), TZ(x)|FZ(x)← VZ(x),

← σ(Li,1), σ(Li,2), σ(Li,3), for each clause Ci in ϕ}

where, given a literal l, σ(l) is defined as:

σ(l) =

{
Tα(cαi ) if l = ¬αi, i = 1, . . . , nα

Fα(cαi ) if l = αi, i = 1, . . . , nα

where α ∈ {X,Y, Z}, nX = n, nY = m, and nZ = k.

In the extended version, we use a slightly modified reduction to show that answer
set existence is Σ3

p-hard in data-complexity for many classes of RLPs.
We note that there is a strong connection between RLPs and disjunctive logic

programs with negation under the answer set semantics [8]. In particular, there
is a polynomial time translation from the latter programs into RLPs, which not
only preserves the answer sets, but is also data-independent, i.e. a disjunctive
program P is converted into an RLP Π such that P and Π have the same answer
sets under any addition of facts. This translation, which further demonstrates
the power of RLPs, is presented in the extended version.

4 Resilient Logic Programs with DL Theories

This section focuses on RLPs whose theory is a DL TBox. We consider ALCHI,
ALCHOIQ, and DL-LiteF , defined as usual. We assume Scn ∪ Srn ⊆Spred and
Sin ⊆ Sconst where Scn, Srn, and Sin denote respectively the set of concept names,
the set of role names, and the set of individual names. As for FO theories, also for
DLs we use Herbrand interpretations. Recall that an Herbrand interpretation I
can be viewed as an ordinary DL interpretation I = (∆I , ·I), where ∆I = Sconst

and pI = {c | p(c) ∈ I} for each p ∈ Scn ∪ Srn.
RLPs in their general form are undecidable. This is not hard to show adapting

analogous results for some well-known hybrid languages [15,23]. In order to regain
decidability, we introduce a safeness condition that ensures that variables in the
program range only over a finite number of constants, which is one of the key
pieces for devising a terminating algorithm for answer set existence for RLPs
(see Section 5). To this end, we use the notion of safeness presented in [4] which
was inspired by the well-known DL-safeness [18,21]:



Definition 3. A resilient logic program Π = (P, T , Σout, Σowa, Σre) fulfills the
safeness condition if for each rule r ∈ P: each variable x that occurs in r must
occur in some atom p(u) ∈ body+(r) where p is a closed predicate.

This restriction ensures that variables only take on those constants that are ex-
plicitly mentioned in P . However, this is often too strong. We relax it by safeguard-
ing variables with positive literals whose predicate is a bounded concept name.

Definition 4. Let T be an ALCHOIQ TBox, Σ ⊆ Spred be a finite set of
predicate symbols, and N = {{c} | c occurs in T }. The set Bcn(T , Σ) of bounded
concept names in T w.r.t. Σ is the smallest set such that:

1. if A is a concept name in Σ ∩ sig(T ) then A ∈ Bcn(T , Σ)

2. if A is a concept name in sig(T ) and there is a role name P in sig(T )∩Σ s.t.
T � A v ∃P.> or T � A v ∃P−.>, then A ∈ Bcn(T , Σ)

3. ifA is a concept name in sig(T ) and T � A v
⊔
B∈B∪N B, thenA ∈ Bcn(T , Σ)

4. if A is a concept name in sig(T ) and there exists B ∈ Bcn(T , Σ) ∪ N , a
role R occurring in T , and integers n,m ≥ 0 s.t. T � A v≥ mR.B and
T � B v≤ nR−.A, then A ∈ Bcn(T , Σ)

If T is in ALCHI, item 4. in the definition above is omitted and N = ∅. Similarly,
if T is in DL-LiteF , item 3. is omitted and item 4. is replaced by the following:

4a. if A is a concept name in sig(T ) and there exists B ∈ Bcn(T , Σ) and a role
R occurring in T s.t. T � A v ∃R−, T � ∃R v B, and (funct R) ∈ T , then
A ∈ Bcn(T , Σ).

Note that, given T and Σ, computing the set Bcn(T , Σ) requires a polynomial
number of steps, some of which use an entailment test as an oracle. A similar
computation for bounded concepts is done in [11] for DL-LiteF . The idea behind
bounded concept names is as follows. Assume we know which elements are in
the extensions of predicates in Σ, these predicates are interpreted under the
closed-world view and thus uniquely fixed once an interpretation I is given. For
any concept name in Bcn(T , Σ) we can compute a relatively small upper bound
on the number of possible elements in the extension of this concept name in any
model of T that agrees with I on Σ. Hence, although we might not know the
exact constants that occur in the extensions of bounded concept names in such
models, we know that there is finitely many of them. Thus, safeguarding rule
variables with positive literals using bounded concept names still results in the
variables ranging only over a finite amount of constants.

Proposition 1. Let T be a TBox in one of the considered DLs, Σ ⊆ Spred, and
b ≥ 0. Then, we can compute b′ ≥ 0 s.t. |{c | A(c) ∈ J,A ∈ Bcn(T , Σ)}| ≤ b′

holds in every model J of T in which |{c | p(c) ∈ J, p ∈ Σ, c occurs in c}| ≤ b.
If T is in ALCHOIQ, b′ is at most exponential in the size of T . For ALCHI
and DL-LiteF , b′ is polynomial in the size of T .



We remark that the definition above is incomplete, in the sense that Bcn(T , Σ)
need not contain all concept names for which a bound exists. Nonetheless, it is
sufficient to relax our previous notion of safeness. To this end, given a program
P, for each p ∈ sig(P) and 1 ≤ i ≤ art(p), we define a position p[i]. Given a set
of predicates Σ, the set ap(P, Σ) of affected positions (see [7]) in P w.r.t. Σ is
inductively defined as follows: (i) p[i] ∈ ap(P, Σ), for p ∈ Σ and 1 ≤ i ≤ art(p),
and (ii) if there exists a rule r ∈ P s.t. a variable x appears in body+(r) only in
affected positions and x appears in head(r) in position π, then π ∈ ap(P, Σ).

A predicate symbol occurring in an RLP Π = (P, T , Σout, Σowa, Σre) is called
a bounded predicate if it is (i) a closed predicate or (ii) in Bcn(T , Σout). We now
relax the safeness condition from Definition 3 as follows:

Definition 5. An RLP Π = (P, T , Σout, Σowa, Σre) fulfills the relaxed safeness
condition if the following holds for each rule r ∈ P: each variable in r must also
occur in some atom p(u) ∈ body+(r) where p is a bounded predicate in Π and,
additionally, q[i] 6∈ ap(P,Bcn(T , Σout) \Σout), for all q ∈ Σout and 1 ≤ i ≤ art(q).

Example 3. Assume a company wants to process a certain amount of customer
orders per day. Incoming orders will consist of tasks, and the tasks will be
associated with services that are offered by the company (active services). The
company needs to decide which services it should offer, so that for all the possible
configurations of received orders (including the tasks they comprise and the
services they require, which are not yet known), they can schedule tasks to
employees in such a way that all tasks are finished in the working day.

This problem is solved by an RLP where the models of the theory correspond
to possible configurations of received orders, and the models of the program
define viable schedules of tasks. Its answer sets correspond to sets of services
that, if activated, guarantee that for any configuration of received orders there is
a schedule in which each task will be completed before the end of the working
day. We first model the time line of a work day as follows:

P1 = {Next(0 , 1 ),Next(1 , 2 ), . . . ,Next(tmax − 1 , tmax )

Time(x)← Next(x, y), Time(y)← Next(x, y),

Earlier(x, y)← Next(x, y), Earlier(x, z)← Earlier(x, y),Earlier(y, z),

less10 (x0, xn)← Next(x0, x1), . . . ,Next(xn−1, xn), for 0 ≤ n < 10}

P1 also contains rules for less30 and less60 , defined similarly as for less10 .
Assuming that employees work eight hours per day and that the granularity of
Next is one minute, we set tmax = 480.

As facts, we store our employees (Employee), the services that could be offered
(Service), as well as which employee can provide which service (Provides). We
also store the length of each service. For simplicity reasons we consider three
types of services: short, medium, and long, captured by unary relations Short ,
Medium, and Long , respectively. Short services take ten minutes, medium-length
services 30 minutes, and long services takes 60 minutes to be completed. Assume
our company receives two orders per day. We also encode this information using
facts. Finally, it is reasonable to assume that for a given order there might be
services that need to be completed before other services can be performed. We



store this information using a binary relation ServiceBefore and once again, facts.
Consider, for demonstration purposes, the following set of facts:

P2 = {Service(s1),Service(s2),Service(s3),Employee(e1),Employee(e2),

Provides(e1, s1),Provides(e1, s2),Provides(e2, s1),Provides(e2, s3),

Short(s1),Medium(s2),Long(s3),Order(o1),Order(o2),Before(s1, s3)}

We do not know how orders will comprise tasks, and which services these tasks
will require. We only know that orders consist of at least one and at most five
tasks (Task), each belonging to exactly one order and requiring (Req) one service.
The possible configurations of orders are given by the models of this theory:

T = {Order v ≥ 1hasTask .>u ≤ 5hasTask .>, ≥ 1Req−.> v ActiveService

Task v = 1hasTask−.Order Task v = 1Req .>, ≥ 1hasTask−.> v Task},

The rules that select services to be provided are defined as follows:

P3 = {ActiveService(x)|InactiveService(x)← Service(x)}

We look for schedules (Sched) consisting of tuples (x, y, z), assigning task y to
employee x to be performed starting at time point z. These rules populate the
response predicates, trying to find viable schedules for the different models of
the theory. Due to space restrictions, we show only the rules for short services.

P4 = {Sched(x, y, z)← Task(y),Req(y, u),Provides(x, u),Time(z),not Illegal(x, y, z)

Illegal(x, y, z)← Task(y),Req(y, u),Short(u),Time(z), less10 (z, tmax),Employee(x)

Illegal(x, y, z)← Sched(x′, y, z′), less10 (z′, z),Req(y , u),Short(u),Employee(x), x 6= x′

Illegal(x, y, z)← Sched(x, y, z′), less10 (z′, z),Req(y , u),Short(u), z 6= z′

Illegal(x, y, z)← Task(y),Sched(x, y′, z′), less10 (z′, z),Req(y ′, u),Short(u), y 6= y′

FaultyServ(x′)← Order(z),Task(y),Task(y′), hasTask(z, y), hasTask(z, y′),Req(y, x),
Req(y′, x′),Before(x, x′)Sched(w, y, t),Sched(w′, y′, t′),Earlier(t′, t)

FaultyServ(x′)← Order(z),Task(y),Task(y′), hasTask(z, y), hasTask(z, y′),
Sched(w, y, t),Sched(w′, y′, t′),Req(y, x),
Short(x),Req(y′, x′),Before(x, x′), less10 (t, t′)

OKService(x)← not FaultyServ(x),Service(x) OKTask(y)←Sched(x, y, z)

← not OKService(x),ActiveService(x) ←not OKTask(y), Task(y)}

Let P = P1 ∪ P2 ∪ P3 ∪ P4 and Σout = {Order ,ActiveService}. The RLP Π =
(P, T , Σout, sig(T ) \Σout, sig(P) \ (Σout ∪Σowa)) fulfills the relaxed safeness condi-
tion and its answer sets represent sets of services that can be offered and completed
within the given time constraint regardless of the type of received orders. E.g.,
I = {ActiveService(s1),ActiveService(s2), Order(o1),Order(o2)} is an answer
set of Π. In the worst case, both orders consist of five tasks each that in turn re-
quire a medium-length service s2. A valid schedule in this case is: Sched(e1, y1, 0),
Sched(e1, y2, 20) . . . ,Sched(e1, y10, 180). Note that, unlike traditional ASP, we
can have comparable answer sets, e.g., {ActiveService(s1),Order(o1),Order(o2)}
is also an answer set of Π.

Consider J = {ActiveService(s3),Order(o1),Order(o2)} and a model of T in
which each order consist of five tasks associated with the long service s3. Since



only employee e2 can perform s3, she would have to perform it ten times, thus
taking more than 480 minutes. Hence, there is no valid schedule and J is not an

5 Decidability and Complexity Results

Algorithm 1 decides answer set existence for a given Π = (P, T , Σout, Σowa, Σre).
In a nutshell, it guesses a candidate interpretation I and subsequently uses two
oracle calls to check whether I is an answer set of Π. The first call checks whether
there are any models of T that agree with I on Σout. The second call tries to
verify whether each such model of T has a response w.r.t. I and Π by attempting
to guess a model J of T for which this does not hold. In order to check that J
has no response, another oracle call is made which attempts to find a response
by guessing it. If this fails, J is a counter example to I being an answer set of Π.

Assuming RLPs fulfill (relaxed) safeness condition, we have the following:

Proposition 2. Let Π = (P, T , Σout, Σowa, Σre) be an RLP and let I be an
answer set of Π. For every c ∈ Sconst occurring in I, c ∈ adom(P) holds.

Proposition 3. Let Π = (P, T , Σout, Σowa, Σre) be an RLP , I and J be inter-
pretations over Σ and sig(T ), resp. Let J ′ = {p(c) ∈ J | p ∈ Σowa ∩ sig(P), c ∈
∆art(p)}, where ∆ is the set of constants that occur in P or in some q(a) ∈ J
with q ∈ Bcn(T , Σout). Then J and J ′ have the same responses w.r.t. I and Π.

Due to Proposition 2, the maximum number of different constants occurring
in some answer set of Π is bounded by |adom(P)|. In view of Proposition 1, we
can thus compute an integer b that limits the amount of different constants that
can be in the extension of any concept name in Bcn(T , Σout) in any model of T
that agrees with some answer set of Π on Σout, referred to as a relevant model of
T . We construct a set ∆ of size b consisting of adom(P), constants occurring in T
and additionally of fresh constants giving a name to each anonymous element that
could hypothetically occur in the extension of some A ∈ Bcn(T , Σout) in some
relevant model of T . Checking whether there are models of T that agree with I
on Σout is a well-known problem in the literature and it boils down to checking
the consistency of a description logic knowledge base (T , I) in the presence of
closed predicates from Σout, where I is seen as an ABox. In view of Proposition 3,
to find a model of T with no response we only guess the extensions of open
predicates that occur in P using the constants from ∆. We next check whether
our partial guess J actually corresponds to some model of T and if so, we check
whether there is a response H to J . Due to our safeness condition, for this guess
it suffices to consider only the constants from J and adom(P). Note that to
verify whether H is a response to J , we need not fully compute the possibly
infinite reduct PH,Σowa . Instead, we use the reduct ground(P, ∆)H,Σowa which is
guaranteed to be finite and has the same minimal model as the original reduct.

As reasoning in the considered logics in the presence of closed predicate is
decidable [24,19], it is easy to verify that Algorithm 1 terminates. Moreover, by
analysis of the algorithm we can obtain the complexity bounds listed in Table 1.



Algorithm hasAnswerSet(Π)
Input :An RLP Π = (P, T , Σout, Σowa, Σre)
Output : true iff Π has an answer
Guess an interpretation I over Σout using constants from adom(P)
B ← Bcn(T , Σout)
b← max number of different const. in extensions of bounded concept names
∆← adom(P) ∪ {c | c occurs in T } ∪ {a1, . . . , ab−b′}, where
b′ = |adom(P)|+ |{c | c occurs in T }|

return isConsistent(T , I, Σout) and not hasCE(I,Π,∆,B)

Subroutine hasCE(I,Π,∆,B)
Input :An interpretation I, an RLP Π = (P, T , Σout, Σowa, Σre),

∆ ⊆ Sconst, and B ⊆ sig(T )
Output : true iff there is a counter example to I being an answer set of Π
Guess an interpretation J over sig(P) ∩ sig(T ) ∪Σout and constants from ∆
s.t. J|Σout = I|Σout

J ′ ← J ∪ {¬p(c) | c ∈ ∆art(p), p ∈ sig(P) ∩ (sig(T ) \ B), and p(c) 6∈ J}
return isConsistent(T , J ′,B) and not hasResp(J,Π)

Subroutine hasResp(J,Π)
Input :An interpretation J and an RLP Π = (P, T , Σout, Σowa, Σre)
Output : true iff there is a response for J w.r.t. J|Σout and Π
Guess an interpretation H over sig(P) and the constants from J and
adom(P) s.t. H|Σout∪Σowa = J

if H|Σout∪Σre is a min. model of PH,Σowa then return true
else return false

Algorithm 1: Answer set existence of RLPs. Here isConsistent(T , I, Σ)
checks consistency of DL KB (T , I) with closed predicates Σ.

We briefly guide the reader through the entries in this table. Observe that for
predicates of arbitrary arities, I is at most exponential in |P|, and consider the
logic ALCHI. In view of Proposition 1, ∆ is polynomial in |Π| and thus there are
only exponentially many different guesses for J . As ALCHI with closed predicates
is ExpTime-complete [24,25], we modify the algorithm to do the following in
exponential time: guess I, compute Bcn(T , Σout), construct ∆ and check whether
there is a model of T that agrees with I on Σout. If so, iterate through possible
guesses for J and check for each whether it corresponds to some model. If so, call
an oracle to determine whether there is a response H to J . Due to unbounded
predicate arities, both H and the grounding ground(P, ∆) may be at most of
exponential size. Thus, we can guess H, compute the corresponding reduct and
verify whether H|Σout∪Σre

is its minimal model in exponential time. Observe that,
by the standard padding argument [20,1], this oracle can be implemented as an
NP oracle, and so the overall complexity of the algorithm is NExpTimeNP. If
predicate arities are bounded, instead of guessing I and H we simply iterate
through all the possibilities. The ExpTime upper bound follows. Data complexity
follows from the fact that consistency checking in ALCHI with closed predicates
is in NP in terms of data complexity [16]. Hence, each part of the original
algorithm can be implemented as an NP oracle and the complexity result is



ALCHI DL-LiteF ALCHOIQ
combined complexity NExpTimeNP- c NExpTimeNP- c NExpTimeNExpTime

combined complexity with
bounded predicate arities

ExpTime - c ΣP
3 - c NPNExpTime

data complexity ΣP
3 - c ΣP

3 - c NPNExpTime

Table 1. Complexity of answer set existence for RLPs (c denotes completeness results).

immediate. As DL-LiteF with closed predicates is in NP both in data and in
combined complexity [11,13], arguments for DL-LiteF are virtually the same as
for ALCHI. The difference is that in the case of bounded predicate arities, we
obtain the ΣP

3 upper bound due to lower combined complexity of DL-LiteF with
closed predicates. For ALCHOIQ, the constructed set of constants ∆ is at most
exponential in |T |, and consistency checking of ALCHOIQ knowledge bases
(with closed predicates) is NExpTime-complete [25], it suffices to iterate through
possible guesses for J (exponentially many in |Π|) and have a single NExpTime
oracle to check for consistency and the existence of response to J . The upper
bound follows. Similar reasoning is used for the other two ALCHOIQ bounds.

All bounds for DL-LiteF and ALCHI are tight. ExpTime-hardness for
ALCHI in the case of bounded predicate arities is due to the same hardness of
ALCHI with closed predicates. NExpTimeNP-hardness in the case of unbounded
predicate arities is obtained by a reduction from answer set existence problem for
disjunctive datalog which is complete for this class. Finally, Σ3

p-hardness is shown
by a reduction from ∃∀∃-QBFs to RLPs with ALCHI/DL-LiteF theories, given
in the extended version. The presented data complexity bound for ALCHOIQ is
inherited from the combined complexity, as the data complexity of ALCHOIQ
with closed predicates is unknown, and it is likely that it is not optimal.

6 Discussion

We note that the decidability of the answer set existence problem under plain
safety (see Definition 3) easily generalizes from DLs to other fragments of first-
order logic. The only requirement for such fragments is the decidability of theories
in the presence of closed predicates, which is enjoyed, e.g., by the guarded negation
fragment (GNFO) [5] (see [6,4] for the treatment of closed predicates in GNFO).

In this paper, DL ontologies are interpreted over Herbrand interpretations
(whose domain is a fixed infinite set of constants). This was done for mathematical
clarity of the semantics of RLPs, but it has some side-effects, e.g., by ruling
out ontology models with a finite domain. This can be easily fixed using a
more complicated definition that handles two kinds of interpretations: Herbrand
interpretations for rules, and ordinary first-order structures for DL ontologies.

The are several questions for future research. We plan to investigate the
complexity of RLPs under various restrictions on rules. In particular, we believe
that disallowing default negation in front of response predicates will often lead
to lower computational complexity. We also plan to study rewritability of RLPs
into standard disjunctive ASP, for which efficient implementations exist.
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