
Probably Approximately Correct Completion of
Description Logic Knowledge Bases

Sergei Obiedkov1, Barış Sertkaya2, and Denis Zolotukhin1

1 National Research University Higher School of Economics, Moscow, Russia
sergei.obj@gmail.com, ddzolotukhin@edu.hse.ru,
2 Frankfurt University of Applied Sciences, Germany

sertkaya@fb2.fra-uas.de

Abstract. We propose an approach for approximately completing a
TBox w.r.t. a fixed model. By asking implication questions to a domain
expert, our method approximates the subsumption relationships that
hold in expert’s model and enriches the TBox with the newly discov-
ered relationships between a given set of concept names. Our approach
is based on Angluin’s exact learning framework and on the attribute ex-
ploration method from Formal Concept Analysis. It brings together the
best of both approaches to ask only polynomially many questions to the
domain expert.

1 Introduction

Ontology development is an error-prone and time consuming task that is faced
in various application domains. As the number and the size of the ontologies
used in practice grow, methods for maintaining their quality become more and
more important. Several methods have been proposed to this purpose. Detecting
inconsistencies and inferring new consequences have been of major interest since
the early days of the DL-research [4, 6]. There are also promising approaches that
help to pinpoint the axioms in a knowledge base that cause inconsistency or other
unwanted consequences [20, 11, 21, 16, 18, 17, 19]. These approaches address the
quality dimension of soundness of an ontology. In [5], the other quality dimension,
namely completeness of an ontology was addressed.

There the problem of completing a DL knowledge base w.r.t. an intended
model has been considered. The aim of the presented approach there is to capture
all relationships between a fixed set of interesting concepts that hold in the
intended model of a domain expert. The notion of completeness that was used
is the following:

– If an implication holds in the intended model, then it should follow from the
TBox, and

– if it does not hold in this model, then the ABox should contain a counterex-
ample to this implication.

To this purpose, a method from Formal Concept Analysis (FCA) [10] called
attribute exploration was employed. Attribute exploration [8] is an interactive



knowledge acquisition method that acquires complete knowledge about an appli-
cation domain via querying an expert of this domain. The queries are of type “Do
all objects that have attributes a1, a2, . . . , an also have attributes b1, b2, . . . , bm?”.
If the expert confirms such a query, then an implication has been found that was
missing and the current knowledge is extended with this new implication. If the
expert rejects the query, then he is asked to provide a counterexample, i.e., an
object that has all the attributes a1, a2, . . . , an, but does not have at least one
of the attributes b1, b2, . . . , bm. In this case, the knowledge is extended with the
new object. The method terminates when all such queries are answered.

However, the downside of this method is that, in the worst case, the number
of queries issued to the expert can be exponential not only in the number of
the attributes, but also in the size of the smallest logically complete set of valid
implications (implication basis) [9]. In order to overcome this problem, a proba-
bly approximately correct (PAC) version of the attribute exploration algorithm
based on Angluin’s exact learning framework [1, 2] has been proposed in [7, 15].
This version of the algorithm computes an approximation of the implication ba-
sis of the domain being learnt by issuing only polynomially many queries to the
domain expert. The queries used there are implication queries just like in the
classical attribute exploration algorithm.

In the present work, we apply the approach developed in [7] in the context of
knowledge base completion. We use this approach for approximately completing
a knowledge base w.r.t. a fixed model, which represents the expert’s view of
the application domain. Our aim is to approximate this view via issuing only
polynomially many implication queries to the expert and enriching the knowledge
base with the implications that are discovered. The resulting knowledge base is,
with a specified probability, an approximation of this view within a specified
error bound. Most of our results easily transfer from [7].

More precisely, our setting is the following. The domain expert has perfect
knowledge of the application domain and has a TBox representing this domain,
which is possibly incomplete, i.e., there are some subsumption relationships that
hold in the expert’s model but do not follow from the TBox. The domain expert
is not able to formulate these subsumption relationships, but he is able to answer
questions of the form “Are all instances of the concepts C1 . . . Cn also instances
of the concepts D1 . . . Dm?” with “yes” or “no”. In such a setting, our aim is to
compute an approximation of the expert’s model and complete the TBox with
the missing subsumption relationships we have detected. The quality measure of
our approximation is defined as in [7]. It is based on the difference between the set
of models of the implications detected so far and the set of models of the actual
implications that hold in the application domain. Note that, as the approach
from [5], the approach presented here applies to an arbitrary description logic,
provided it allows for the conjunction and negation constructors.

Angluin’s exact learning framework has already been employed in the con-
text of DLs in [13, 14]. There the authors investigate the computational com-
plexity of exact learning of lightweight DL ontologies. They identify the frag-
ments of EL and DL-Lite that allow for learnability of ontologies formulated



in these fragments with polynomially many queries to a domain expert. Our
approach is based on the same framework with a different aim. We want to
approximately learn the implications holding in the expert’s model using only
implication queries. Giving up on exactness allows us to do this issuing only
polynomially many queries.

We proceed as follows. In Section 2, we introduce the basic notions related
to implications and the exact learning framework. In Section 3, we provide a
PAC learning algorithm that computes an approximation of the subsumption
relationships that hold in the model of a domain expert. In Section 4 we modify
this algorithm to compute an approximate completion of a TBox.

2 Preliminaries

In Angluin’s exact learning framework [1], an algorithm for learning a Horn
formula via querying an oracle has been presented [2]. This algorithm issues two
types of queries to the oracle, namely membership queries, which ask whether a
specific truth assignment is a model of the formula being learnt, and equivalence
queries, which ask whether the hypothesis is logically equivalent to the formula
that is being learnt. A negative answer to an equivalence query is supported by
a counterexample, either positive (a model of the target formula contradicting
the hypothesis), or negative (an assignment satisfying the hypothesis, but not
the target formula). It has been shown that, in the presence of these two types
of queries, this algorithm learns the target formula with only polynomially many
queries.

It is easy to see that exact learning of a Horn formula with polynomial num-
ber of queries is not possible if only membership queries are allowed. However,
in real-world applications, finding domain experts that can answer equivalence
queries is very unlikely because such an expert should be able to produce a nega-
tive counterexample if the equivalence query does not hold. In order to overcome
this difficulty and still issue only polynomially many queries to the domain ex-
pert, an approach for approximating a set of implications using only implication
queries has been presented in [7]. It is based on the idea of transforming an ex-
act learning algorithm with equivalence queries into a probably approximately
correct (PAC) algorithm without equivalence queries presented in [2]. In this
approach, a random sampling strategy to search for a counterexample is used
instead of relying on equivalence queries for obtaining such counterexamples.

In the context of FCA, propositional variables are called attributes and Horn
formulas are called implications. In the following, these notions will sometimes
be used interchangeably.

Definition 1. Let M be a set of attributes and A → B be an implication over
M with A ⊆ M and B ⊆ M or B = ⊥. We say that a set X ⊆ M models
A → B (is its model) if A 6⊆ X or B ⊆ X. We denote it as X |= A → B. We
say that X models a set of implications L over M if X models every implication
in L.



In terms of propositional logic, one would say that X is a truth assignment
and A→ B is a Horn formula. Note that, according to Definition 1, X is a model
of A→ ⊥ if and only if A 6⊆ X.

Definition 2. For a set of implications L over M and a set X ⊆ M , the im-
plicational closure of X under L, denoted by L(X) is the smallest Y ⊆M such
that

– X ⊆ Y , and
– A→ B ∈ L and A ⊆ Y imply ⊥ 6= B ⊆ Y .

If no such Y exists, then we say that the closure of X is ⊥. We also say that X
is closed under L if X = L(X).

Next we transfer this terminology to the DL context. For basic notions and
notation of description logics, please refer to [4].

Definition 3. For a given finite set of concept descriptions M and an impli-
cation A → B over M , we say that A → B holds in I if (uA)I ⊆ (uB)I for
B ⊆M or (uA)I = ∅ for B = ⊥.

Here and in the following, uA stands for the conjunction of concept descriptions
from A.

Definition 4. Let T be a consistent TBox, M be a finite set of concept descrip-
tions, and I be a model of T . Then T is complete w.r.t. I and M if the following
are equivalent for all implications A→ B over M :

i) A→ B holds in I.
ii) uA v uB follows from T .

Note that here we are interested only in the completeness of the TBox, unlike
in [5], where the completeness of the TBox together with the ABox was consid-
ered. For a fixed set of interesting concepts, we say that the TBox is complete if
it contains all relevant knowledge about implications between these concepts.

Definition 5. For a given set of concept descriptions M , a model I, and a set
A ⊆ M , we say that A is closed under subsumption relationships over M if A
is closed under the set of implications over M that hold in I.

3 Horn Approximations

For measuring the quality of an approximation, we use the notion of ε-Horn
approximation from [7], which was initially proposed in [12]. It is based on the
difference between the set of models of the implications detected so far and the
set of models of the actual implications that hold in the application domain.



Algorithm 1 IsMember(A, is valid(·), T )

Input: A set A ⊆ M , an implication oracle is valid() for some I, TBox T with
model I.
Output: true if A is closed under the subsumption relationships over M that hold
in I, false otherwise.

1: if uA vT ⊥ then
2: return false
3: for all c ∈M \A do
4: if uA vT c then
5: return false
6: if is valid(A→ ⊥) then
7: return false
8: for all c ∈M \A do
9: if is valid(A→ {c}) then

10: return false
11: return true

Definition 6. Let M be a set of concept descriptions, L be a set of implications
over M , and L̂ be the set of implications over M that hold in an interpreta-
tion I. Then we say that L is an ε-Horn approximation of L̂ and an ε-Horn
approximation of I w.r.t. M if

|Mod(L) M Mod(L̂)|
2|M | ≤ ε

where Mod(L) stands for the set of models of L and A M B is the symmetric
difference between sets A and B.

Our approach needs only membership queries. However, in the classical at-
tribute exploration method, the queries asked to the expert are so-called impli-
cation queries, as mentioned in Section 1. In fact, a membership query can be
simulated by a polynomial number of implication queries. Let L̂ be the set of
implications over M that hold in the expert’s model I. It is easy to see that a
set A ⊆ M is a member of Mod(L̂) iff the implication A → {c} holds in I for
no c ∈M \A [3, 7].

Algorithm 2 implements this idea. Additionally, before making a query to the
expert, it first checks whether the query already follows from the TBox, which
would spare the expert answering this query.

Next we simulate equivalence queries by using a stochastic procedure. We
sample a certain number of subsets of M and check whether any of them is a
counterexample. More precisely, we check if it is a model of the already com-
puted set of implications L, but is not closed under the set of implications that
hold in the expert’s application domain I, or vice versa. If one of these is the
case, then we return this subset as counterexample. Otherwise, we say that L
is approximately equivalent to the set of implications that hold in I. This gives
us the Algorithm 1 for approximately checking equivalence originating from [1].
The only modification is in the subprocedure IsMember, which, as explained



Algorithm 2 IsApproximatelyEquivalent(L, is valid(·), T , ε, δ, i)

Input: A set of implications L over M , an implication oracle is valid(·) for some
I, TBox T with model I, 0 < ε ≤ 1, 0 < δ ≤ 1, and i ∈ N.
Output: A counterexample to L if found; true otherwise.

1: for i := 1 to d 1
ε
· (i+ ln 1

δ
)e do

2: generate X ⊆M uniformly at random
3: if (X |= L) 6= (IsMember(X, is valid(·), T ) then
4: return X
5: return true

above, first checks whether the implication under consideration already follows
from the TBox.

Algorithm 1 samples d 1ε · (i+ ln 1
δ )e subsets of M to simulate the ith equiva-

lence query asked by Algorithm 3 below, where 1−δ is the pre-specified probabil-
ity that Algorithm 3 computes an ε-Horn approximation of valid subsumption
relationships over M . For each generated subset X, Algorithm 1 checks if X
models the set L of implications so far computed in Algorithm 3. (In the context
of exact learning, this set of implications is called the hypothesis). Additionally,
it checks whether X is closed under the subsumption relationships that hold in
I. If the answers to these two tests are different, then X is a counterexample to
L. If none of the generated subsets is a counterexample, Algorithm 1 concludes
that L is an ε-approximation of the implications that hold in I.

We are now ready to formulate an algorithm that, with a given probability
and within a given error bound, approximates the subsumption relationships
that hold in the expert’s model I. Based on the exact learning algorithm in [2]
and its PAC version in [7], it starts with the empty set of implications L and
proceeds until a positive answer is obtained from an approximate equivalence
query. If a negative counterexample X is received instead, the algorithm uses
membership queries to find an implication A → B in L such that A 6⊆ X and
A ∩X is not closed under the subsumption relationships that hold in I. If such
an implication is found, the implication A→ B is replaced by A∩X → B, which
ensures that X is no longer a model of L; otherwise, the implication X → ⊥ is
added to L. When a positive counterexample X is obtained from an approximate
equivalence query, every implication A→ B of which X is not a model is relaxed
in a conservative way: given that X is a model of the target formula, A→ B is
replaced by A→ B ∩X if B 6= ⊥ and by A→ X if B = ⊥. When the algorithm
terminates, the set of implications L is, with probability at least 1−δ, an ε-Horn
approximation of the implications that hold in the expert’s model I.

The termination and correctness of Algorithm 3 easily follow from the re-
sults in [2, 7]. Essentially, the only difference from the algorithm in [7] is in the
subprocedure IsApproximatelyEquivalent. It validates the generated coun-
terexamples not only with the expert, but also with the TBox by calling the
procedure IsMember with T as a parameter.



Algorithm 3 PAC-HornApproximation(M , is valid(·), T , ε, δ)

Input: A set M of concept descriptions, an implication oracle is valid() for some
interpretation I, a TBox T with model I, 0 ≤ ε ≤ 1, and 0 ≤ δ ≤ 1.
Output: A set of implications L that, with probability at least 1 − δ, is an ε-
approximation of subsumption relations over M that hold in I.

1: L := []
2: i := 1
3: while IsApproximatelyEquivalent(L, is valid(·), T , ε, δ, i) returns a counterex-

ample X do
4: if X |= L then . negative counterexample
5: found := false
6: for all A→ B ∈ L do
7: C := A ∩X
8: if A 6= C and not IsMember(C, is valid(·), T ) then
9: replace A→ B in L with C → B

10: found := true

11: if not found then
12: add X → ⊥ to the end of L
13: else . positive counterexample
14: for all A→ B ∈ L s.t. X 6|= A→ B do
15: if B = ⊥ then
16: replace A→ B with A→ X
17: else
18: replace A→ B with A→ B ∩X
19: i := i+ 1

20: return L

4 Approximate Completion of TBoxes

Algorithm 3 computes the set of implications that approximate the expert’s
model I. However, our goal is not only to compute this set of implications, but
also to extend the TBox with the GCIs corresponding to these implications. If
we do it in a näıve way, we might end up with an inconsistent TBox. The reason
is that L, being an approximation of I, might contain implications that do not
hold in I.

In order to overcome this problem, we do the following modification to the
algorithm: before adding an implication to L or replacing an implication in L, we
query the validity of the implications of the form X → {c} for c ∈M \X, where
X is the premise of the new implication (see Algorithm 4). Those c for which
the answer is positive together with the concept descriptions from X form the
closure of X under the subsumption relations valid in I. We set the conclusion
of the new implication equal to this closure. With this modification, I |= T
and I |= L always hold and our sampling procedure in Algorithm 1 returns
only negative counterexamples. Therefore, the part of Algorithm 3 that deals
with positive counterexamples is left out in the modified version presented in
Algorithm 5.



Algorithm 4 Close(A, is valid(·))
Input: A set A ⊆M and an implication oracle is valid(·) for an interpretation I.
Output: The closure of A under the subsumption relations over M that hold in
I.

1: if is valid(A→ ⊥) then
2: return ⊥
3: B := A
4: for all c ∈M \A do
5: if is valid(A→ {c}) then
6: B := B ∪ {c}
7: return B

The following result follows from Theorem 2 in [7] assuming that T is for-
mulated in a DL where reasoning is in polynomial time.

Theorem 1. Algorithm 5 runs in time polynomial in |M |, 1
ε , 1

δ , and the min-
imal size of the logically complete set of subsumption relationships over M that
hold in I. It outputs a TBox T that, with probability at least 1− δ, is an ε-Horn
approximation of I w.r.t. M .

5 Conclusion and future work

We have provided an algorithm for approximately computing the subsumption
relationships (over a fixed set of concept descriptions) that hold in the model of a
domain expert via asking implication questions to this expert. The implications
that are detected in this way to be missing from the TBox are added to the
TBox until the TBox approximately represents the view of the domain expert.
Our method is based on the exact learning algorithm by Angluin et al. [2] and
a PAC learning variant of this algorithm [7].

As future work, we are going to implement this approach as a prototype and
test its usefulness in real-world application domains. One idea might be to extend
the Protégé plugin OntoComP that was presented in [22] for completing
knowledge bases using the approach in [5].

In our approach, we do not take into account background knowledge that
can be derived from our choice of concept descriptions, such as {C,¬C} → ⊥
for a concept description C. It would be interesting to define the notion of
approximation relative to explicitly or implicitly given background knowledge
and to design an algorithm for computing such approximations.

The other direction of our future work will be employing PAC learning for
approximate learning of DL ontologies. The exact learning version of this prob-
lem has already been studied in detail in [13] and relevant fragments of EL
and DL-Lite have been identified that allow for learnability of ontologies with
polynomial number of queries. Similar to this, we are going to investigate how
these results can be leveraged if approximate learning is aimed instead of exact
learning.



Algorithm 5 PAC-TBox-Completion(M , is valid(·), T , ε, δ)

Input: A set M of concept descriptions, an implication oracle is valid() for some
interpretation I, a TBox T with model I, 0 ≤ ε ≤ 1, and 0 ≤ δ ≤ 1.
Output: A TBox T that, with probability at least 1−δ, is an ε-Horn approximation
of I.

1: L := []
2: i := 1
3: while IsApproximatelyEquivalent(L, is valid(·), T , ε, δ, i) returns a negative

counterexample X do
4: found := false
5: for all A→ B ∈ L do
6: C := A ∩X
7: if A 6= C and not IsMember(C, is valid(·), T ) then
8: D := Close(C, is valid(·))
9: replace A→ B in L with C → D

10: replace uA v uB in T with uC v uD
11: found := true

12: if not found then
13: Y := Close(X, is valid(·))
14: add X → Y to the end L
15: add uX v uY to T
16: i := i+ 1

17: return T

Acknowledgements

Sergei Obiedkov is supported by the Russian Science Foundation (grant 17-11-
01294).

References

1. D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987.
2. D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of horn clauses. Machine

Learning, 9:147–164, 1992.
3. M. Arias, J. L. Balcázar, and C. Tirnăucă. Learning definite horn formulas from

closure queries. Theor. Comput. Sci., 658:346–356, 2017.
4. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-

tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

5. F. Baader, B. Ganter, B. Sertkaya, and U. Sattler. Completing description logic
knowledge bases using formal concept analysis. In M. M. Veloso, editor, Pro-
ceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI’07), pages 230–235. AAAI Press, 2007.

6. F. Baader, I. Horrocks, C. Lutz, and U. Sattler, editors. An Introduction to De-
scription Logic. Cambridge University Press, 2017.

7. D. Borchman, T. Hanika, and S. Obiedkov. Probably approximately correct learn-
ing of horn envelopes from queries. Discrete Applied Mathematics, 2019. To appear.



8. B. Ganter. Two basic algorithms in concept analysis. Technical Report Preprint-
Nr. 831, Technische Hochschule Darmstadt, Darmstadt, Germany, 1984.

9. B. Ganter and S. Obiedkov. Conceptual Exploration. Springer, Berlin/Heidelberg,
2016.

10. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, Berlin, Germany, 1999.

11. A. Kalyanpur, B. Parsia, E. Sirin, and B. C. Grau. Repairing unsatisfiable con-
cepts in OWL ontologies. In Y. Sure and J. Domingue, editors, The Semantic
Web: Research and Applications. Proceedings of the 3rd European Semantic Web
Conference (ESWC 2006), volume 4011 of Lecture Notes in Computer Science,
pages 170–184. Springer-Verlag, 2006.

12. H. A. Kautz, M. J. Kearns, and B. Selman. Horn approximations of empirical
data. Artificial Intelligence, 74(1):129–145, 1995.

13. B. Konev, C. Lutz, A. Ozaki, and F. Wolter. Exact learning of lightweight descrip-
tion logic ontologies. In C. Baral, G. De Giacomo, and T. Eiter, editors, Principles
of Knowledge Representation and Reasoning: Proceedings of the Fourteenth Inter-
national Conference, KR 2014, Vienna, Austria. AAAI Press, 2014.

14. B. Konev, C. Lutz, A. Ozaki, and F. Wolter. Exact learning of lightweight de-
scription logic ontologies. Journal of Machine Learning Research, 18:201:1–201:63,
2017.

15. S. Obiedkov. Learning implications from data and from queries. In D. Cristea, F. L.
Ber, and B. Sertkaya, editors, Proceedings of the 15th International Conference on
Formal Concept Analysis, (ICFCA 2019), Lecture Notes in Artificial Intelligence,
2019. To appear.

16. R. Peñaloza and B. Sertkaya. Axiom pinpointing is hard. In B. C. Grau, I. Hor-
rocks, B. Motik, and U. Sattler, editors, Proceedings of the 2009 International
Workshop on Description Logics (DL2009), volume 477 of CEUR-WS, 2009.

17. R. Peñaloza and B. Sertkaya. Complexity of axiom pinpointing in the DL-Lite
family of description logics. In H. Coelho, R. Studer, and M. Wooldridge, edi-
tors, Proceedings of the 19th European Conference on Artificial Intelligence (ECAI
2010), volume 215 of Frontiers in Artificial Intelligence and Applications, pages
29–34. IOS Press, 2010.

18. R. Peñaloza and B. Sertkaya. On the complexity of axiom pinpointing in the EL
family of Description Logics. In F. Lin, U. Sattler, and M. Truszczynski, editors,
Proceedings of the Twelfth International Conference on Principles of Knowledge
Representation and Reasoning, (KR 2010), pages 280,289. AAAI Press, 2010.

19. R. Peñaloza and B. Sertkaya. Understanding the complexity of axiom pinpointing
in lightweight description logics. Artif. Intell., 250:80–104, 2017.

20. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging
of description logic terminologies. In G. Gottlob and T. Walsh, editors, Proceed-
ings of the Eighteenth International Joint Conference on Artificial Intelligence (IJ-
CAI’03), pages 355–362. Morgan Kaufmann, 2003.

21. S. Schlobach, Z. Huang, R. Cornet, and F. Harmelen. Debugging incoherent ter-
minologies. Journal of Automated Reasoning, 39(3):317–349, 2007.

22. B. Sertkaya. Ontocomp: A protege plugin for completing owl ontologies. In
L. Aroyo and P. Traverso, editors, Proceedings of the 6th European Semantic Web
Conference, (ESWC 2009), volume 5554 of Lecture Notes in Computer Science,
pages 898–902. Springer-Verlag, 2009.


