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Abstract. We present some initial results on ontology-based query an-
swering with description logic ontologies that may employ temporal and
probabilistic operators on concepts and axioms. Specifically, we consider
description logics extended with operators from linear temporal logic
(LTL), as well as subjective probability operators, and an extended query
language in which conjunctive queries can be combined using these op-
erators. We first show some complexity results for the setting in which
either only temporal operators or only probabilistic operators may be
used, both in the ontology and in the query, and then show a 2Exp-
Space lower bound for the setting in which both types of operators can
be used together.
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1 Introduction

Ontology-Based Query Answering (OBQA) received considerable attention in
the past, as it allows to query incomplete data in the presence of an ontology pro-
viding background knowledge about the data domain. While classically, OBQA
considers a setting where the data is both static and certain, there are many ap-
plications where this assumption does not hold, which lead to the development
of temporal query languages for OBQA [10,33,11,5], and research on OBQA for
probabilistic data [21,8,9,7]. Temporal OBQA has been proposed as a technique
for querying historical data and to detect situations in streams of data. To de-
scribe temporal patterns in a query, temporal queries as in [10,11,5] extend con-
junctive queries (CQs) with operators from linear temporal logic (LTL). Proba-
bilistic OBQA is motivated by data sets obtained using uncertain methods such
as language and image recognition, or uncertain sensor measurements. In this
setting, query answers hold true with a certain probability, which may be part of
the query result. As historical data can be obtained using language recognition,
and situation recognition is often applied in applications that involve temporal
data based on uncertain sensor measurements, there exist applications in which

? Supported by the DFG in the CRC 912 (HAEC) and in the TRR 248 (CPEC).



2 P. Koopmann

we want to query data that is both temporal and probabilistic in nature. Moti-
vated by this, recently, temporal probabilistic OBQA has been investigated [23],
where the temporal query language from [11] is extended with probability oper-
ators, and data are considered sequences of probabilistic ABoxes as in [21]. As
an example for a probabilistic temporal query, consider a health supervision app
on a smartphone which operates on a sequence of data obtained using motion
and blood pressure sensors. The following query then detects situations in which
the patient was, during the last 10 time units, with a low probability exercising,
until with a high probability he had a high blood pressure, in which case the
app might issue a warning:

q(x)←©−10
(
P<0.2Excercising(x)UP>0.7HighBloodPressure(x)

)
.

While the mentioned works allow for an extended expressivity in the query
language, they only consider ontologies that are formulated using a classical
(atemporal and non-probabilistic) DL. Since the role of the ontology in OBQA
is to provide additional background knowledge, temporal and/or probabilistic
OBQA would benefit from ontology languages that provide both temporal and
probabilistic language constructs. To stay with the current example, this could
for instance be used to express that if a patient starts exercising, his blood
pressure is likely to remain increased until the patient takes a break:

StartsExcercising v (P>0.7IncreasedBloodPressure)UStopsExcercising,

where StartsExcercising and StopsExcercising are defined in further axioms using
temporal concept operators.

Temporal DLs have been well investigated in the literature, and may extend
classical DLs with LTL-operators on axioms and concepts [29,6], with MTL-
operators [3,36,20], Halpern and Shoham’s interval logic [1,34], or temporal at-
tributes [32]. Similarly, several probabilistic extensions to DLs have been sug-
gested, such as the non-monotonic DL P-SHIF(D)/P-SHOIN (D) [26], the
DLs Prob-ALC/Prob-EL for expressing subjective probabilities [19], DLs using
log-linear probabilities [31] and the Bayesian DLs BEL and BALC [14,12]. There
is also research on ontology languages that combine temporal and probabilistic
aspects: these consider temporal probabilistic Datalog programs [15], dynamic
Bayesian DL networks [13], and temporal extensions of DL-Lite [25], but do not
consider expressive query languages, or the full expressivity of temporal DLs
such as LTL-ALC and Prob-ALC. There is some research on answering unions
of conjunctive queries in temporal DL-Lite [2], and instance retrieval in temporal
extensions of EL [18], but not on answering temporal queries, and to the best
of our knowledge, there is no research on OBQA with ontology languages that
employ probabilistic concept operators.

The aim of this paper is to theoretically investigate a setting where tem-
poral operators, as well as operators expressing subjective probability, can be
used both as part of the ontology language and as part of the query language.
While some complexity bounds are still open at this point, we present initial
results towards understanding the complexity in such a setting. Specifically, our
contributions are the following.
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1. In Section 2, we combine the languages studied in [11,29,19] to define the
syntax and semantics of temporal probabilistic DL formulae (TPDFs), which
generalise temporal probabilistic knowledge bases and queries.

2. In Section 3, we give tight complexity bounds for TPDFs with only temporal
operators.

3. In Section 4, we give upper bounds for TPDFs with only probability opera-
tors.

4. In Section 5, we show that for TPDFs that use both temporal and probability
operators, satisfiability is 2ExpSpace-hard.

Details of proofs and definitions can be found in the extended version of the
paper [22].

2 Temporal Probabilistic Description Logic Formulae

2.1 Preliminaries

We assume basic knowledge about expressive DLs. Our results concern DLs
ranging from ALC to ALCOQ and ALCOI. Details about the DLs relevant for
this paper, as well as on query answering, can be found in the extended version
of the paper. We assume DL concepts to be composed using the operators of the
respective DL based on the pair-wise disjoint, countably infinite sets NC, NR and
NI of respectively concept names, role names and individual names. We assume
DL axioms to be either general class inclusions (GCIs) of the form C v D,
or assertions of the forms C(a), r(a, b) with C and D being concepts in the
respective DL, r, s role names, and a, b individual names. We use C ≡ D as
abbreviation for the two GCIs C v D and D v C. Satisfiability of sets K of
axioms is defined in terms of interpretations I = 〈∆I , ·I〉, where ∆I is a set
of domain elements and ·I is a function mapping individual names to domain
elements, concepts to subsets of ∆I and roles to subsets of ∆I×∆I . Conjunctive
queries (CQs) and entailment of Boolean CQs are defined as usual (eg., see [28]):
specifically, CQs can contain free variables called answer variables, and a Boolean
CQ is a CQ without free variables. A query answer to a CQ φ in a DL KB K
is an assignment of individual names to the free variables in φ such that the
resulting Boolean CQ is entailed by K.

To distinguish between different intervals relevant in this paper, we use the
notation [i, j] to denote closed intervals over the reals, and the notation Ji, jK to
denote closed intervals over the integers. A probability measure over a (possibly
infinite) set W is a function P : W → [0, 1], where W ⊆ 2W is a σ-algebra (it
contains W is is closed under complement and countable union), s.t. P (∅) = 0,
P (W ) = 1, and for any countable setW ′ ⊆ W of pairwise disjoint sets W ′ ⊆W ,
we have P (

⋃
W ′∈WW ′) =

∑
W ′∈W P (W ′).

2.2 Syntax

We consider extensions of classical DLs which additionally allow temporal con-
cepts of the form ©C (next) and CUD (until), and probabilistic concepts of
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the form P~pC, where ~ ∈ {<,=, >}, p ∈ [0, 1] and C, D are concepts. These
concepts may be used at any place within a concept, and we call the resulting
concepts temporal probabilistic concepts. Here, we do not fix a particular DL as
basis, but may refer to the underlying DL which is extended by these operators.
While classically, a DL knowledge base is build using DL axioms, against which
queries are evaluated, it will be convenient to study queries and DL axioms not
in separation, but to allow for an integrated language in which DL axioms and
CQs can be arbitrarily mixed within a formula. This further expressivity can for
instance be used to specify that a certain DL axiom holds until a Boolean CQ
becomes satisfied. For this reason, we collectively call DL axioms and CQs gen-
eralised axioms. Temporal probabilistic DL formulae (TPDFs) α are then built
according to the following syntax rule, where X is a generalised axiom that may
use temporal probabilistic concepts, ~ ∈ {<,=, >} and p ∈ [0, 1]:

α ::= X | ¬α | α ∧ α | ©α | αUα | P~pα.

The operators ¬, ∧,© and U are called temporal operators, while the operators
P~p are called probability operators. We define further operators as the usual
abbreviations, that is, for TPDFs φ and ψ, we denote true := ψ ∨¬φ (for some
φ), φ ∨ ψ := ¬(¬φ ∧ ¬ψ), ♦φ := trueUφ and �φ := ¬♦¬φ, φ → ψ := ¬φ ∨ ψ
and φ ↔ ψ := (φ → ψ) ∧ (ψ → φ), and similar for concepts. A TPDF is called
Boolean if every CQ in it is Boolean.

As typical for temporal reasoning with DLs, we assume a set Nrig ⊆ NC ∪NR

of rigid names, composed of a set NCrig = Nrig ∩NC of rigid concepts and a set
NRrig = Nrig ∩ NR of rigid roles, which denote concept and role names whose
interpretation does not change over time.

2.3 Semantics

To define the semantics of TPDFs, we have to take into consideration two dimen-
sions: the temporal dimension and the probabilistic dimension. A temporal inter-
pretation is a sequence (Ii)i≥0 of interpretations Ii = 〈∆, ·Ii〉 sharing the same
domain ∆J , such that for any rigid name X ∈ Nrig and i, j ≥ 0, XIi = XIj . A
probabilistic temporal interpretation is then a probability measure ι : J→ [0, 1],
over a set J of temporal interpretations (Ii)i≥0 sharing the same set ∆ι of do-
main elements (J ⊆ 2J is then a sigma algebra). We call J the possible worlds
of ι.

To define the semantics of temporal and probabilistic operators, we define
the function ·Ii,ι on concepts, where (Ij)j≥0 ∈ J and i ≥ 0. ·Ii,ι is defined as ·Ii
for the concept operators of the underlying DL, and for the remaining operators
by

(©C)Ii,ι = CIi+1,ι

(CUD)Ii,ι = {d ∈ ∆ι | ∃j ≥ i : d ∈ DIi,ι,∀k ∈ Ji, j − 1K : d ∈ CIk,ι}

(P~pC)Ii,ι = {d ∈ ∆ι | ι({(I ′j)j≥0 ∈ J | d ∈ CI
′
i,ι})~ p}.

Satisfaction of Boolean TPDFs is defined by:
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1. Ii, ι |= α iff Ii |= α, where α is a Boolean CQ or a role assertion,
2. Ii, ι |= C v D iff CIi,ι ⊆ DIi,ι,
3. Ii, ι |= C(a) iff aIi ∈ CIi,ι,
4. Ii, ι |=©φ iff Ii+1, ι |= ψ,
5. Ii, ι |= φUψ iff there exists j ≥ i s.t. Ij , ι |= ψ and for all k ∈ Jj, i − 1K,
Ik, ι |= φ, and

6. Ii, ι |= P~pφ iff ι({(I ′j)j≥0 ∈ J | I ′i, ι |= φ})~ p.1

We say that ι satisfies a Boolean TPDF φ, in symbols ι |= φ, if for all
(Ii)i≥0 ∈ J , I0, ι |= φ, in which case ι is a model of φ. A Boolean TPDF is
satisfiable iff it has a model.

The paper focusses on showing complexity bounds for Boolean TPDF satisfi-
ability. Note that other reasoning tasks that are more related to classical OBQA
can be easily reduced to TPDF satisfiability. For instance, for the problem of
temporal probabilistic query answering, we are given a Boolean TPDF φ, and a
non-Boolean TPDF ψ that contains only CQs and no DL axioms (a temporal
probabilistic query), and we want to find an assignment of individual names to
the answer variables in ψ so that the resulting TPDF is logically entailed by φ.
This problem can be reduced to deciding the unsatisfiability of Boolean TPDFs
of the form φ ∧ ¬ψ′, where ψ′ is obtained from ψ by replacing answer variables
by individual names. As from now on, we focus on Boolean TPDFs only, we will
omit the “Boolean” and just call them TPDFs in the following.

Remark. There is a subtle difference between our semantics and that of Prob-
ALC/Prob-EL as introduced in [19], in that we do not require the set of possible
worlds to be countable. We believe that, especially if we add a temporal dimen-
sion, considering only countable sets of possible worlds is too restrictive. For
instance, if we allow a domain element to arbitrarily switch betweeing satisfying
a concept A and not satisfying it there are uncountably many possible sequences
for this, each corresponding to a real number in between 0 and 1. There is no
real reason why some of these sequences should be excluded. As we show in
the extended version of the paper, there are TPDFs even without temporal op-
erators that are only satisfiable in interpretations with an uncountable set of
possible worlds, which means that our results do not directly transfer to the
setting considered in [19].

3 Only Temporal Operators

We first consider the purely temporal case of TPDFs without probability op-
erators. This problem has so far only been studied for temporal queries and
temporal DLs, but not for the combination of both. Our first result concerns
TPDFs without temporal concepts, that is, temporal operators can be used on
CQs and on axioms, but not within concepts. Here, complexity upper bounds

1 Note that we implicitly require that J contains all subsets of 2J relevant to these
definitions.
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directly follow from the complexity of temporal query entailment with classical
ontologies, as studied in [11,5,4] .

Theorem 1. Satisfiability of TPDFs without probability operators and temporal
concepts, and with underlying DL L, is

– PSpace-complete for L = EL and NCrig = NRrig = ∅,
– ExpTime-complete for L ∈ {ALC,ALCQ} and NCrig = NRrig = ∅,
– NExpTime-complete for L ∈ {EL,ALC,ALCQ} and NRrig = ∅,
– NExpTime-complete L = EL and NRrig 6= ∅,
– 2ExpTime-complete for L ∈ {ALCI,ALCIQ,ALCOQ,ALCOI}, and
– decidable for ALCOIQ.

If we also allow for temporal concept operators, we have to do a bit more. We
first note that with rigid roles, using temporal operators on the level of concepts
leads to undecidability already if the underlying DL is EL [29]. We thus only
have to consider the case where NRrig = ∅. To show upper bounds for this case,
we extend the method from [37] for temporal DLs based on quasimodels to also
incorporate CQs. Namely, we abstract temporal interpretations using sequences
of quasistates, which each contain a set of CQs and GCIs that hold or do not
hold at the corresponding time point, together with a set of concept types, which
represent the current states of domain elements.

Given a TPDF φ, let con(φ) denote the set of (sub-)concepts occurring in φ,
form(φ) denote the set of sub-formulae of φ, and ind(φ) denote the set of in-
dividual names occurring in φ. Furthermore, define tc(φ) = {C,¬C | C ∈
con(φ)} ∪ {{a} | a ∈ ind(φ)} and tf(φ) = {ψ,¬ψ | ψ ∈ form(φ)}. A concept
type is then a subset t ⊆ tc(φ) s.t.

C1 for every ¬C ∈ tc(φ), ¬C ∈ t iff C 6∈ t, and
C2 for every C uD ∈ tc(φ), C uD ∈ t iff C,D ∈ t.

If a concept type t contains a concept of the form {a}, we call t a nominal type.
A formula type is a subset t ⊆ tf(φ) s.t.

F1 for every ¬ψ ∈ tc(φ), ¬ψ ∈ t iff ψ 6∈ t, and
F2 for every ψ1 ∧ ψ2 ∈ tc(φ), ψ1 ∧ ψ2 ∈ t iff ψ1, ψ2 ∈ t.

A quasistate is a set S of formula and concept types s.t. S contains exactly one
formula type tS .

If the formula type only contains GCIs and their negation, there are easy
syntactic conditions for when a quasistate can correspond to an element of a
temporal interpretation. This becomes however more difficult when it can also
contain CQs, which is why we instead formulate a semantic admissibility condi-
tion for quasistates. We first introduce the notion of a conceptual abstraction.
Since quasistates will also be used in Section 4, we define them here more gen-
eral for quasistates that may also contain probability operators. Given a concept
or TPDF X, its conceptual abstraction Xca is obtained by replacing every out-
ermost concept C of the forms ©D, D1UD2, and P~pD by the fresh concept
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name AC , and every outermost TPDF ψ of the forms ©ψ1, ψ1Uψ2 and P~pψ1

by Aψ(a), where Aψ is fresh. A quasistate S is then admissible iff there exists a
(classical) interpretation I s.t.

S1 for every TPDF α ∈ form(φ), I |= αca iff α ∈ tS , and
S2 for every concept type t ⊆ tc(φ),

⋂
C∈t(C

ca)I 6= ∅ iff t ∈ S.

While a quasistate can contain up to exponentially many concept types, we can
show that for ALCOQ and ALCOI, it can still be decided in 2ExpTime wrt.
to the input formula whether a given quasistate is admissible, while this can be
done in ExpTime for ALCQ.

It remains to represent the temporal dimension, which we do in terms of runs
and temporal quasimodels.

A concept/formula run is a sequence σ : N→ tc(φ)/tf(φ) of concept/formula
types s.t. for all i ≥ 0,

R1 for every ©α ∈ tc(φ)/tf(φ), ©α ∈ σ(i) iff α ∈ σ(i+ 1),
R2 for every αUβ ∈ tc(φ)/tf(φ), αUβ ∈ σ(i) iff there exists j ≥ i s.t. β ∈ σ(i)

and for all k ∈ Ji, j − 1K, α ∈ σ(i),
R3 for every j ∈ N, σ(i) ∩ NCrig = σ(j) ∩ NCrig, and
R4 for every j ∈ N and a ∈ NI, {a} ∈ σ(i) iff {a} ∈ σ(j).

A temporal quasimodel for φ is a tuple 〈Q,R〉, where Q is a sequence mapping
each natural number to an admissible quasistate Q(i), and R is a set of runs s.t.

Q1 φ ∈ tQ(0),
Q2 for each i ≥ 0 and t ∈ Q(i) , there exists a run σ ∈ R s.t. σ(i) = t, and
Q3 for each run σ ∈ R, and i ≥ 0, σ(i) ∈ Q(i).

Temporal quasimodels witness the satisfiability of TPDFs without probabil-
ity operators. Furthermore, we can use a regularity argument as in [35] to limit
the shape of these quasimodels. This is summarized in the following lemma.

Lemma 1. If the underlying DL is ALCOQ or ALCOI, then φ is satisfiable iff
there exists a quasimodel 〈Q,R〉 for φ where Q is of the form

Q(0) . . . Q(n)
(
Q(n+ 1) . . . Q(n+m)

)ω
,

with n and m double exponentially bounded in the size of φ.

The proof of the lemma makes use of the fact that, in a classical DL inter-
pretation, if the underlying DL is ALCOQ or ALCOI, we can arbitrarily extend
the set of domain elements that belong to a given concept type without affecting
entailment of CQs or the extension of other types. This is not so easily possible
for DLs that support both inverse roles and counting quantifiers, which is why
we do not have results for ALCIQ. Using lower bounds for CQ entailment in
ALCI [27] and ALCO [30], and for TPDFs with temporal operators only on
concepts and GCIs [37], we obtain the following completeness results.

Theorem 2. Satisfiability of TPDFs without probability operators is undecid-
able if NRrig 6= ∅. Otherwise, it is 2ExpTime-complete if the underlying DL
is ALCO, ALCI or ALCOI, and ExpSpace-complete if the underlying DL is
ALC or ALCQ.
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4 Only Probability Operators

We next consider the purely probabilistic case, that is, we allow probability op-
erators on the level of concepts, axioms and queries, but no temporal operators.
While [19] consider extensions of ALC and EL with probability operators on con-
cepts and assertions, they do not consider these operators on GCIs. We extend
this setting by allowing probability operators also on GCIs, and additionally
allowing CQs.

Our method for deciding entailment of those TPDFs is again based on qua-
sistates and types, over which we this time define probability measures.

A probabilistic quasistate is a probability measure PS : 2S → [0, 1] over a
set S of quasistates. It is admissible iff for every quasistate S ∈ S:

PS1 S is admissible, and
PS2 for every P~pψ ∈ tf(φ), P~ψ ∈ tS iff PS({S ∈ S | ψ ∈ tS})~ p.

While every quasistate contains a set of concept types, we might need a more
fine-grained probability measure for each concept type to verify the probabilistic
concepts in them. For this, we define probabilistic concept types. A probabilistic
concept type pt : 2T → [0, 1] is a probability measure over a set T of concept
types s.t

PT for every P~pC ∈ tc(φ) and t ∈ T , P~pC ∈ t iff pt({t ∈ T | C ∈ t})~ p.

It is compatible to a probabilistic quasistate PS : 2S → [0, 1] iff there exists a
probability measure PPS,pt : 2WPS,pt → [0, 1] over some set WPS,pt ⊆ S× T s.t.

PC1 〈S, t〉 ∈WPS,pt implies t ∈ S,
PC2 for every S ∈ S, PPS,pt({〈S′, t〉 ∈WPS,pt | S′ = S}) = PS({S}), and
PC3 for every t ∈ T , PPS,pt({〈S, t′〉 ∈WPS,pt | t′ = t}) = pt({t}).

We call PPS,pt a joined probability measure for PS and pt. A probabilistic quasi-
model for φ is now a tuple 〈PS,PT〉 of a probabilistic quasistate PS : 2S → [0, 1]
and a set PT of probabilistic concept types s.t.

PQ1 for every S ∈ S, φ ∈ tS ,
PQ2 every probabilistic concept type pt ∈ PT is compatible to PS, and
PQ3 for every quasistate S ∈ S and concept type t ∈ S, there exists a joined

probability measure for PS and some pt ∈ PT s.t. 〈S, t〉 ∈WPS,pt.

Note that in Condition PQ3, we only require 〈S, t〉 ∈ WPS,pt, but not
PPS,pt({〈S, t〉}) > 0. This is still sufficient to ensure that the type t can be
instantiated in every possible world corresponding to S, and in fact necessary to
ensure completeness, because we allow for uncountable sets of possible worlds in
our semantics.

Lemma 2. A TPDF φ without temporal operators, with underlying DL ALCOQ
or ALCOI, is satisfiable iff there exists a probabilistic quasimodel 〈PT,PT〉
for φ.
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Probabilistic quasimodels are similar to temporal quasimodels, where instead
of sequences, we use probability measures. For some DLs, this difference in struc-
ture can be exploited to gain better complexity bounds. While there can be in
general double exponentially many quasistates and probabilistic concept types,
if the underlying DL is ALCQ, only exponentially many of each are needed. In
contrast to the temporal quasimodels in Section 3, which indeed may always
require a double exponential number of quasistates, probabilistic quasimodels
benefit from a lack of order : this allows us to merge quasistates that agree on
their formula type and nominal types, which is the reason why we can bound
the size of probabilistic quasimodels for ALCQ.

Our decision procedure for TPDF satisfiability consists of guessing and veri-
fying a probabilistic quasimodel of the appropriate size. Here, we make use of a
result from [17], which is also used in [19] to provide the complexity bounds of
Prob-ALC, to limit the required precision used in the probability measures.

Theorem 3. Satisfiability of TPDFs without temporal operators is in NExp-
Time if the underlying DL is ALCQ, and in N2ExpTime if the underlying DL
is ALCOQ or ALCOI.

Since satisfiability of Prob-ALC is still in ExpTime [19], the only known
complexity lower bounds stem from the complexity of Boolean query entailment.
We leave it as future work to investigate whether our complexity bounds can be
optimised.

5 Temporal and Probability Operators

If we allow both temporal and probability operators, satisfiability of TPDFs
becomes 2ExpSpace-hard, even if we disallow rigid names. We show this by
a reduction of the double-exponential corridor tiling problem. This problem is
formalised as follows. We are given a set T of tiles containing an initial tile type
t0 ∈ T and a final tile type tf ∈ T , two sets H ⊆ T × T and V ⊆ T × T
of respectively horizontal and vertical tiling conditions, and a natural number
n. The problem is then to decide whether there exists a natural number m
and a tiling t : J1, 22

n

K × J1,mK → T s.t. t(1, 1) = t0, t(1,m) = tf , for every
i ∈ J1, 22

n − 1K and j ∈ J1,mK, we have 〈t(i, j), t(i + 1, j)〉 ∈ H, and for every
i ∈ J1, 22

n

K and j ∈ J1,m−1K, we have 〈t(i, j), t(i, j+1)〉 ∈ V . It follows from the
relationship between corridor-tilings and space-bounded Turing machines shown
in [16] that the double-exponential tiling problem is 2ExpSpace-complete.

While the full reduction is shown in the extended version of the paper, we
sketch the main ideas here. We use 22

n

domain elements to represent the vertical
dimension of the tiling, and the time line to represent the horizontal dimension.
The probabilistic dimension is used to implement a double exponential counter
on each domain element, which is used to identify which row of the tiling it rep-
resents. Here, we use temporal and probabilistic concepts to force the existence
of exponentially many possible worlds per domain element, which at each time
point store the different bit values of the double exponential counter using a
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Fig. 1. Illustration of how counters are used to identify neighbouring possible worlds.

concept Bit. Specifically, the individual satisfies Bit in the ith possible world iff
the ith bit of the double exponential counter has the value 1.

A main challenge in the construction is the lack of order in temporal prob-
abilistic models. The set of possible worlds in an interpretation is unordered,
which means we cannot directly refer to the “ith” or “next” possible world. This
is however neccessary to implement a double exponential counter, since we have
to transfer information about carrier bits from one possible world to another.
Furthermore, since we do not allow rigid roles, we cannot keep the relationship
between the different domain elements stable throughout the time line. As a
result, we cannot directly refer to the domain element that refers to the next
row in order to test the vertical tiling conditions. For both challenges, we use a
similar trick.

For the double-exponential counter, we need to be able to identify possible
worlds for the respective domain element that correspond to neighbouring bit
positions. To do this, we implement a single-exponential counter in each possible
world, which is incremented along the time line, so that in each world, the counter
has a different value. This is visualised in Figure 1. To implement these counters,
we use concept names A1, . . ., An representing the bit value at the positions 1
to n of this counter. At each time point, two neighbouring possible worlds can be
identified easily: the one with a counter value of 2n− 1 satisfies

d
i∈J1,nKAi, and

unless it corresponds to the last bit position, the next bit position corresponds
to the world with a counter value of 0, which satisfies

d
i∈J1,nK ¬Ai. Using this

mechanism, we can for instance transfer the information on whether the current
bit has to be flipped using the following GCIs:

l

i∈J1,nK

Ai u Flip u Bit v P=1((
l

i∈J1,nK

¬Ai)→ Flip)

(
l

i∈J1,nK

Ai) u (¬Flip t ¬Bit) v P=1((
l

i∈J1,nK

¬Ai)→ (FirstBit t ¬Flip)).

Using further axioms, this allows us to implement a double exponential counter
on each domain element, which is incremented every 2n time points.

The same technique is used on a different level to identify which domain
elements correspond to neighbouring rows in the ceiling. We make sure that
eventually, we have at each time point a different double exponential counter
value represented by some domain element. At each time point, we can then
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identify two neighbouring domain elements easily: the one with a counter value
of 0 satisfies P=1¬Bit, and the one with a counter value of 22

n−1 satisfies P=1Bit.
We can thus test the vertical tiling conditions with the following axiom:

�
∧
t∈T

(
¬(t u P=1Bit v ⊥)→

∨
〈t,t′〉∈V

(P=1¬Bit v t′)
)
.

The reduction allows us to establish the following theorem.

Theorem 4. Satisfiability of TPDFs is 2ExpSpace-hard. This already holds if

– no CQs are used,

– the underlying DL is ALC,

– probabilistic operators are only used on the level of concepts,

– NCrig = NRrig = ∅, and

– on the axiom level, we only use Boolean connectives and the operator �,
which does not occur under a negation operator.

6 Conclusion

In the context of description logics, temporal and probabilistic extensions have
mostly been investigated in isolation, and similarly, such extensions on DL lan-
guages and query languages have not been investigated in combination. In this
paper, we presented several results towards filling these gaps. First, we showed
tight complexity bounds for a setting where temporal operators are used on
the level of axioms and queries, as well as on queries, axioms and concepts in
combination, showing that the overall complexity does not increase by such a
combination for any DL between ALC and ALCOQ or ALCOI. Second, we
considered the setting where probability operators may be used on the level
of concepts, axioms and queries, obtaining an NExpTime upper bound if the
underlying DL is ALCQ, and an N2ExpTime upper bound if the underlying
DL is ALCOQ or ALCOI. Finally, we showed that the combination of both
temporal and probabilistic operators on concepts and axioms results in 2Exp-
Space-hardness. We believe that it might be possible to obtain matching upper
bounds by a combination of the structures we used in this paper to show our
upper bound.

While temporal ABoxes can be easily encoded into TPDFs, our results do
not generalise the settings with probabilistic ABoxes studied in [21], or in the
work in [23] on temporal probabilistic query answering, since these works assume
the probability measure on the possible worlds to be fixed, which is not the case
with our semantics. We believe however that extending to such settings does not
have an impact on the complexity, as our languages are all already ExpTime-
hard. Another possible direction is investigating special operators that are both
temporal and probabilistic in nature, such as the probabilistic diamond-operator
introduced in [24,25].
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Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M.,
Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) The
Semantic Web - ISWC 2012 - 11th International Semantic Web Conference, Boston,
MA, USA, November 11-15, 2012, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 7649, pp. 182–197. Springer (2012). https://doi.org/10.1007/978-3-
642-35176-1 12, https://doi.org/10.1007/978-3-642-35176-1_12

22. Koopmann, P.: Maybe eventually? Towards combining temporal and probabilistic
description logics and queries (extended version). LTCS-Report 19-03, Chair of Au-
tomata Theory, Institute of Theoretical Computer Science, Technische Universität
Dresden, Dresden, Germany (2019), https://tu-dresden.de/inf/lat/reports#
Kr-LTCS-19-03

23. Koopmann, P.: Ontology-based query answering for probabilistic temporal data.
In: Hentenryck, P.V., Zhou, Z.H. (eds.) Proceedings of the 33rd AAAI Confer-
ence on Artificial Intelligence (AAAI’19). AAAI Press, Honolulu, USA (2019), to
appear.
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