
Decidability and Complexity of ALCOIF with
Transitive Closure (and More)

Jean Christoph Jung1 and Carsten Lutz1 and Thomas Zeume2

1 Universität Bremen, Germany, {jeanjung,clu}@uni-bremen.de
2 TU Dortmund, Germany, thomas.zeume@cs.tu-dortmund.de

Abstract. We prove that satisfiability and finite satisfiability in the de-
scription logic ALCOIFreg are NExpTime-complete when every regular
role expression of the form α∗ contains either no functional role or only
a single role name (and possibly its inverse). Notably, this encompasses
the extension of ALCOIF with transitive closure of roles and the modal
logic of linear orders and successor, with converse.

1 Introduction

There has been a long quest for description logics (DLs) that are as expressive
as possible while still being decidable. This has resulted in a prominent family
of very expressive DLs such as ALCOIF and SHOIQ that support nominals,
inverse roles, and functional roles or generalizations thereof. The combination
of these three expressive means is technically challenging but also conceived as
being very useful in applications. In fact, the member SROIQ of this family of
DLs has been standardized as the OWL 2 DL ontology language by the W3C
[15, 22].

A natural feature of DLs that has not been included in OWL 2 is a transitive
closure operator on roles and, more generally, regular expressions over roles [1,
2, 5]. The decidability status of very expressive DLs with transitive closure is
somewhat unclear. Decidability of the extension of SHOIQ with transitive clo-
sure has been claimed in [8], but according to personal communication with
the authors there are problems in the construction and a corrected version has
not yet been published. In this paper, we prove that satisfiability in the exten-
sion of ALCOIF with transitive closure is decidable where ‘F ’ refers to global
functionality restrictions, that is, roles can be declared to be partial functions
in the TBox. We establish the same result for finite satisfiability (which does
not coincide with the unrestricted case) and show that both problems are in
NExpTime, thus NExpTime-complete and not harder than in the case without
transitive closure. Our decision procedures are based on a decomposition of the
TBox into parts that are only loosely related, and on reductions to satisfiabil-
ity in ALCOI with regular role expressions and to the existential fragment of
Presburger arithmetic.

We also make a step towards regular role expressions in ALCOIF . In the
results stated above, we in fact admit such expressions under the restriction that
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every regular role expression of the form α∗ contains either no functional role
or only a single role name (and possibly its inverse). While this certainly is a
strong restriction, the extension still provides non-trivial expressive power. For
example, it makes it possible to speak about the length of role paths modulo a
constant and to express the until operator of temporal logic. The decidability of
unrestricted ALCOIF with regular role expressions remains an open problem.
One may take it as an indication of being close to undecidability that satisfiability
in ALCOIF extended with ω-regular expressions is undecidable [28].

Apart from the DL view, there are other interesting perspectives on our re-
sults. One is related to propositional dynamic logic (PDL). It is known that
satisfiability is decidable and ExpTime-complete in the extension of PDL with
any two of nominals, converse, and functional relations [6, 10, 11]. For the com-
bination of all three, decidability is open. Our result can be viewed as showing
decidability in a special case, that is, under the syntactic restriction given above.
A related frontier of undecidability is that satisfiability in the µ-calculus is un-
decidable when nominals, converse, and functional relations are added [4].

Another interesting perspective is provided by the fact that ALCOIF is an
expressive fragment of C2 [12, 23, 24], two variable first-order logic with counting
quantifiers, and in fact even of the guarded fragment GC2 of C2 [25]. It is
known that C2 easily becomes undecidable when (an unrestricted number of)
relations can be declared to have special semantic properties such as being a
linear order [21], a transitive relation [13], or an equivalence relation [18]; see
also [19] for an overview. In fact, the same is true for GC2. For example, GC2

is undecidable when two equivalence relations are added [26] and also when
three linear orders are added that can only be used in guards [17]. Decidability
can sometimes be achieved when only a limited number of special relations is
admitted. For example, finite satisfiability is decidable in C2 extended with a
single equivalence relation [26] and in the two variable fragment without counting
when two linear orders are added [29, 34]. In the logic studied in this paper, it
is possible to express that a role is transitive, an equivalence relation, a linear
order, or a forest, respectively, possibly using fresh auxiliary symbols. Thus, our
results show that (finite) satisfiability of ALCOIF remains decidable when we
admit that an unbounded number of relations is declared to have any of the
mentioned semantic properties, in marked contrast to C2 and GC2. We remark
that finite satisfiability in ALCOIQ extended with forests has been shown in
[20]. Our results capture the ALCOIF fragment of this DL, reprove decidability
in NExpTime of finite satisfiability and establish the same upper bound for
unrestricted satisfiability.

2 Preliminaries

Let NC, NR, and NI be countably infinite sets of concept, role, and individual
names. In ALCOIreg, concepts C and (regular) roles α are defined by

C ::= > | A | {a} | ¬C | C u C | ∃α.C α ::= C? | r | r− | α∗ | α · α | α+ α
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where A ranges over NC, a over NI, and r over NR. We use C tD to abbreviate
¬(¬C u ¬D), refer to a concept of the form {a} as a nominal, and to a role of
the form C? as a test. An ALCOIFreg-TBox is a finite set of concept inclusions
C v D with C,D ALCOIreg-concepts and functionality assertions func(R) with
R a role name or of the form r− with r a role name. A concept definition takes
the form A ≡ C with A a concept name and C an ALCOIreg-concept, and it
is an abbreviation for the concept inclusion > v (¬A t C) u (¬C t A). We use
RNf(T ) to denote the set of role names r such that func(r) ∈ T or func(r−) ∈ T .
For the semantics, we refer to [2]. When speaking about (finite) satisfiability, we
generally mean the satisfiability of a TBox.

Throughout the paper, we adopt a syntactic restriction on roles that is essen-
tial for our approach to work. An ALCOIF−reg-TBox T is an ALCOIFreg-TBox
that satisfies the following condition:

(∗) if the role α∗ occurs in T and the role name r ∈ RNf(T ) occurs in α outside
of tests, then no other role name occurs in α outside of tests.

Note that ALCOIF−reg contains the natural extension ALCOIF+ of ALCOIF
with transitive closure of roles, without any syntactic restrictions on the latter.
We give some examples that further illustrate the expressive power ofALCOIF−reg.

Example 1. (1) A v ∃(r · r · r)∗.B expresses that every A can reach a B along
some r-path of length divisible by 3. Adding func(r) does not violate (∗).

(2) A v ∃(C? · r)∗.B expresses that every A can reach a B along an r-path
on which C is true at every node, similar to the until operator of temporal logic.
Adding func(r) does not violate (∗).

(3) A v ∃(r+r−)∗.B expresses that whenever A is true, then B is true some-
where in the same maximal connected component of the role name r. Adding
func(r) does not violate (∗)

(4) An ALCOIF−reg-TBox T is finitely satisfiable iff T ∪ {> v ∃(r−)∗.{a} u
∃r∗.{b}, func(r)} is satisfiable, where the role name r and individual names a, b
are fresh. Thus, finite satisfiability can be reduced to unrestricted satisfiability
in polynomial time.

(5) We can simulate a transitive relation by the regular role r · r∗ and an
equivalence relation by the regular role (r− + r)∗. We can enforce that the
role name r is interpreted as a forest (of potentially infinite trees) by > v
∃(r−)∗.∀r−.⊥, func(r−).

(6) > v ∃r∗.{a}t∃(r−)∗.{a}, {a} v ¬∃r.∃r∗.{a}, func(r), func(r−) enforces
that r · r∗ is a (strict) linear order with successor relation r.

In the remainder of the paper, it will be convenient to work with TBoxes T
in normal form, meaning that T is a finite set of concept definitions of the form

A ≡ {a} A ≡ ¬B A ≡ B tB′ A ≡ B uB′ A ≡ ∃α.B

where A,B,B′ are concept names and of functionality assertions such that
func(r−) ∈ T implies func(r) ∈ T and every concept equation A ≡ ∃α.B ∈ T
satisfies the following conditions:
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(i) if α contains a role name r ∈ RNf(T ), then it contains no other role name;
(ii) for every test C? that occurs in α, C is a concept name;
(iii) if α = β + β′, then T contains A1 ≡ ∃β.B, A2 ≡ ∃β′.B, A ≡ A1 t A2 for

some A1, A2;
(iv) if α = β · β′, then T contains A ≡ ∃β.A1, A1 ≡ ∃β′.B, for some A1;
(v) if α = β∗, then T contains A ≡ B tA1, A1 ≡ ∃β.A, for some A1.

Conditions (iii)-(v) are inspired by the Fischer-Ladner closure in PDL [9]. The
following lemma shows that we can work with TBoxes in normal form without
loss of generality.

Lemma 1. Every ALCOIF−reg-TBox T can be converted in polynomial time
into a TBox T ′ in normal form such that T is (finitely) satisfiable iff T ′ is
(finitely) satisfiable.

Presburger Arithmetic. Presburger arithmetic is the first-order (FO) theory of
the non-negative integers with addition Th(N, 0, 1,+) [14, 27]. More precisely,
a term is a constant 0 or 1, a variable, or the sum t1 + t2 of terms t1, t2. A
Presburger formula is an FO formula over atoms of the form t1 = t2 with t1, t2
terms. An existential Presburger formula is a Presburger formula of the shape
∃xϕ(x,y) where ϕ is quantifier-free, and x,y are tuples of variables. If ϕ(y) is
a Presburger formula with free variables y and a ∈ N has the same arity as y,
then a is a model of ϕ if N |= ϕ(a). We use Mod(ϕ) to denote the set of all
models of ϕ and say that ϕ is satisfiable if Mod(ϕ) 6= ∅.

3 Decomposing TBoxes

As a foundation for our decision procedures, we show that (finite) satisfiability
of an ALCOIF−reg-TBox T can be decided by checking the (finite) satisfiability
of certain subsets of T while ensuring a rather modest form of synchronization
via the multiplicity of types. An important feature of this decomposition is that
each of the subsets is either an ALCOIreg-TBox or an ALCOIF−reg-TBox that
contains only a single role name.

Let T be an ALCOIF−reg-TBox in normal form. Let

– Tbool denote all concept definitions in T that are not of the form A ≡ ∃α.B,
– Treg denote the set of all concept definitions A ≡ ∃α.B in T such that no
r ∈ RNf(T ) occurs in α, and

– Tr denote the set of all A ≡ ∃α.B such that r ∈ RNf(T ) is the only role
name that occurs in α, plus T ∩ {func(r), func(r−)}.

Then Tbool ∪ Treg is an ALCOIreg-TBox and every TBox Tbool ∪ Tr contains no
role name other than r.

A type for T is a set t of concept names used in T . For an interpretation I
and d ∈ ∆I , the type realized by d is tpI(d) = {A used in T | d ∈ AI}. We say
that I realizes the set of types Γ if Γ = {tpI(d) | d ∈ ∆I}. For each type t,
we denote with #t(I) the cardinality of the set {d ∈ ∆I | tpI(d) = t}, writing
#t(I) =∞ if t is realized infinitely often in I.
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Proposition 1. An ALCOIF−reg-TBox T is (finitely) satisfiable iff there is a
set Γ of types for T such that

1. there is a model Ireg of Tbool ∪ Treg that realizes Γ ;

2. there are (finite) interpretations Ir, r ∈ RNf(T ) such that, for all r, s ∈
RNf(T ):

(a) Ir |= Tbool ∪ Tr;
(b) Ir realizes Γ ;

(c) #t(Ir) = #t(Is) for all t ∈ Γ .

4 Finite Satisfiability

The characterization provided in Proposition 1 gives rise to a transparent deci-
sion procedure for finite satisfiability via a reduction to satisfiability inALCOIreg
(to check Condition 1) and to satisfiability in the existential fragment of Pres-
burger arithmetic (to check the finite version of Condition 2). This reduction
yields a NExpTime upper bound and since finite satisfiability in ALCOIF is
NExpTime-hard [31], we obtain the following.

Theorem 1. Finite satisfiability in ALCOIF−reg is NExpTime-complete.

The central observation for checking Condition 2 via Presburger arithmetic is
the following.

Lemma 2. Let {t1, . . . , tn} be the set of all types for T . For every r ∈ RNf(T ),
one can construct in time single exponential in T an existential Presburger for-
mula ϕT ,r with n free variables such that, for all a = (a1, . . . , an) ∈ Nn, the
following are equivalent:

1. a ∈ Mod(ϕT ,r);

2. there is a model I of Tbool ∪ Tr such that #ti(I) = ai, for all i ∈ {1, . . . , n}.

Before proving Lemma 2, let us first summarize how it yields the upper bound in
Theorem 1. We guess a set Γ of types for T and verify Conditions 1 and 2 from
Proposition 1. Condition 1 is equivalent to satisfiability of the ALCOIreg-TBox

T̂ = Tbool ∪ Treg ∪ {> v t
t∈Γ
u t} ∪ {> v ∃r̂.u t | t ∈ Γ},

where r̂ is a fresh role name and u t denotes the conjunction of all A ∈ t and
¬A for all A /∈ t that occur in T . Satisfiability in ALCOIreg is ExpTime-

complete [3], but we have to be careful since T̂ is of size (single) exponential in
the size of T . Fortunately, a slight modification of the algorithm in [3] achieves
that the runtime is single exponential only in the number of concept names and
concepts of the form ∃r.C in the input TBox, and the number of such concepts
in T̂ is polynomial in the size of T .
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Shape A: Shape B:

Fig. 1. Possible shapes of connected components of functional relations.

To verify Condition 2, for every r ∈ RNf(T ) we construct the existential
Presburger formula ϕT ,r(x1, . . . , xn) from Lemma 2. Then, the sentence

ϕ = ∃x
∧

r∈RNf(T )

ϕT ,r(x1, . . . , xn) ∧
∧
ti∈Γ

(xi > 0) ∧
∧
ti /∈Γ

(xi = 0)

is satisfiable iff Condition 2 is true. It remains to note that satisfiability of
existential Presburger formulas is NP-complete [33, 14].

The rest of the section is devoted to the proof of Lemma 2. A crucial ob-
servation is that if func(r) ∈ T , then according to the semantics rI must have
a rather restricted form in every model I of T . More precisely, every maximal
connected component of the directed graph (∆I , rI) takes one of the two forms
depicted in Figure 1, that is, it is a tree after reversing the edges (Shape A), pos-
sibly with a single additional outgoing edge at the root (Shape B). This enables
the construction of an automaton on finite trees whose language is the set of all
finite models of Tbool ∪ Tr, under a suitable encoding that (among other things)
only implicitly represents the extra outgoing edge of the root in components of
Shape B. Having these tree automata in place, we then exploit the close con-
nection between tree automata and context free languages and the fact that the
Parikh image of any context free language (which under our encoding describes
type multiplicities) can be described by a Presburger formula [33].

Trees and Tree Automata. A tree is a prefix-closed subset T ⊆ (N \ {0})∗. A
node w ∈ T is a successor of v ∈ T and v is a predecessor of w if w = v · i for
some i ∈ N. A tree is binary if every inner node has exactly two successors. Let
Σ be a finite alphabet. A Σ-labeled tree is a pair (T, τ) where T is a tree and
τ : T → Σ assigns a letter from Σ to each node in T . We will sometimes write
only τ for the Σ-labeled tree (T, τ) if T is understood. By (Tn, τn), we denote
the subtree of (T, τ) rooted at n ∈ T .

As our main automata model, we use two-way alternating parity tree au-
tomata (2APTA) over finite Σ-labeled binary trees [30, 32]. Note that there is
no a priori bound on the degree of the structures in Figure 1. For the automata
construction, however, we prefer to work with binary trees, relying on our en-
coding of interpretations as trees to bridge the gap. If both func(r) ∈ T and
func(r−) ∈ T , then the components are actually paths or cycles rather than
trees. To achieve a uniform construction, we also encode those as binary trees.

Formally, a 2APTA is a tuple A = (Q,Σ, q0, δ, ρ) where Q is a set of states,
q0 ∈ Q is the initial state, δ is a transition function, and ρ : Q→ N is a priority
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function that assigns a priority to each state. The transition function δ maps
each state q and input letter σ ∈ Σ to a positive Boolean formula δ(q, σ) over
the truth constants true and false and transitions of the form p,♦p,�p,♦−p with
p ∈ Q. We use L(A) to denote the set of Σ-labeled trees that are accepted by A,
see the appendix for details.

Automata Construction. Let func(r) ∈ T . We show how to construct a 2APTA
that accepts precisely the models of Tbool ∪ Tr, suitably encoded.

We first describe how interpretations that consist of disjoint components of
Shape A or B can be represented as binary Σ-labeled trees, for a suitable Σ.
Ideally, we would like to make the root of each component a successor of the
root of the Σ-labeled tree and use a marker to represent the end point of the
extra edge of components of Shape B. Since we work with binary trees, however,
we have to introduce intermediate nodes labeled with a dummy symbol “◦” to
fit all components beneath the root and to fit all successors beneath any node
inside a component. We use the alphabet

Σ = {◦} ∪ {(t,M) | t a type for T and M ∈ {−, root, loop, src, tgt}}.

We use root to mark the root of components of Shape A, and loop and src to mark
the root of components of Shape B, depending on whether the edge outgoing
from the root also ends at the root or not. In the latter case, we use tgt to mark
the target of the edge outgoing from the root.

A Σ-labeled tree (T, τ) is well-formed if (i) for every nominal {a} in T , there
is a unique node na such that τ(na) = (t,M) and A ∈ t for some A ≡ {a} ∈ Tbool,
(ii) there is some n ∈ T with τ(n) = (t,M) for some M , and (iii) for all n ∈ T :

1. if τ(n) = (t,M) with M ∈ {root, loop}, then for all nodes n′ below n, τ(n′)
has the form ◦ or (t′,−);

2. if τ(n) = (t, src), then for all nodes n′ below n, τ(n′) has the form ◦, (t′,−),
or (t′, tgt), and there is a unique node n′ below n with τ(n′) of the form
(t′, tgt);

3. if τ(n) = (t,M) with M ∈ {−, tgt}, then there is a node n′ above n with
τ(n′) of the form (t′,M), M ∈ {root, loop, src}.

A well-formed tree τ represents the following interpretation Iτ :

– ∆Iτ = {n ∈ T | τ(n) 6= ◦};
– aIτ = na for all nominals {a};
– AIτ = {n ∈ T | τ(n) = (t,M) and A ∈ t} for all concept names A;
– (n, n′) ∈ rIτ if one of the following is satisfied:
• n 6= n′, n ∈ Tn′ , and all nodes on the path from n to n′ are labeled ◦,
• n is marked with src and n′ ∈ Tn is marked with tgt, or
• n = n′ and n is marked with loop.

Conversely, whenever I is a finite model of func(r), then there is a finite, well-
formed tree τ such that I and Iτ are isomorphic. Note in particular that if some
d ∈ ∆I has only a single r-predecessor e, then in τ the node that represents d
can have one successor representing e and another dummy successor labeled “◦”.
We next construct the desired 2APTAs.
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Lemma 3. For every r ∈ RNf(T ), one can construct in time polynomial in the
size of T a 2APTA Ar with polynomially many states such that

L(Ar) = {τ | τ is well-formed and Iτ |= Tbool ∪ Tr}.

Proof. (sketch) The automaton Ar is the intersection of a 2APTA A0 that
checks well-formedness of the input tree τ and a 2APTA A1 that assumes well-
formedness of τ and verifies that Iτ |= Tbool ∪ Tr. The 2APTA A0 is easy to
construct, details are omitted.

The automaton A1 sends a copy of itself to every node n of the input tree τ
and verifies that when τ(n) = (t,X) and A ≡ C ∈ Tbool ∪ Tr, then A ∈ t iff
n ∈ CIτ . For the definitions in Tbool, this only requires a ‘local’ check of t.
For concept definitions A ≡ ∃α.B ∈ Tr the automaton needs to verify the
(non-)existence of an α-path that starts at n and ends in a node whose type
includes B. This is implemented by representing α as a finite automaton B on
finite words and tracing runs of B through Iτ .

If func(r−) ∈ Tr, then A1 additionally ensures that every node has at least
one successor labeled with “◦”. ut

From 2APTAs to Presburger Arithmetic. It is well-known that every 2APTA A
can be translated to an equivalent non-deterministic top-down automaton on
finite trees (NTA) B, incurring at most a single exponential blow-up in the
number of states [30, 32]. Details on NTAs can be found in the appendix. Here, we
only recall that the transition relation contains tuples of the form (q, σ, q1 · · · qm),
meaning that when B is in state q and reads symbol σ, then it can send the
states q1, . . . , qm to the m successors of the current node. We can view B as
a context free grammar (CFG) G by interpreting the states as non-terminal
symbols with the initial state being the start symbol, the input symbols as
the terminal symbols, and each transition (q, σ, q1 · · · qm) as a grammar rule
q → σq1 . . . qm. Then for any tree τ accepted by B, there is a word accepted by
G in which all symbols have the same multiplicities as in τ , and vice versa. We
make use of the following result.

Theorem 2. [33, Theorem 4] Given a CFG G over alphabet Σ = {σ1, . . . , σk},
one can compute in linear time an existential Presburger formula ϕG(x1, . . . , xk)
such that for all a ∈ Nk, we have a ∈ Mod(ϕ) iff there is a word w ∈ L(G) such
that the number of occurrences of σi in w is ai, for all i ∈ {1, . . . , k}.

Recall that t1, . . . , tn are all types for T . For each r ∈ RNf(T ), let Gr be the
CFG obtained from Ar as described above, and let ϕGr (y) be the Presburger
formula from Theorem 2, where y is the sequence of all variables yσ with σ ∈ Σ
(assuming some fixed order). The formula ϕT ,r from Lemma 2 is then

ϕT ,r(x1, . . . , xn) := ∃y
(
ϕGr (y) ∧

n∧
i=1

xi =
∑

M∈{−,root,loop,src,tgt}

y(ti,M)

)
.
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5 Unrestricted Satisfiability

Unrestricted satisfiability can again be decided by Proposition 1, that is, by
guessing a set of types Γ for the input TBox T and then verifying that Condi-
tions 1 and 2 from that proposition are satisfied. For Condition 1, this amounts
to the same ALCOIreg satisfiability check as before. For Condition 2, the crucial
difference is that the components in Figure 1 can now be infinite. A natural way
to adapt the approach used in the previous section to check Condition 2 would
thus be to replace 2APTA on finite trees with 2APTA on infinite trees, and to
then translate the latter into existential sentences of the variant of Presburger
arithmetic that also admits the value ω. It is, however, not clear how such a
translation can be achieved. We thus pursue an alternative approach, based on
the following slight refinement of Proposition 1.

Proposition 2. An ALCOIF−reg-TBox T is satisfiable iff there are disjoint sets
Γfin, Γinf of types for T such that

1. there is a model Ireg of Tbool ∪ Treg that realizes Γfin ∪ Γinf ;
2. there are countable interpretations Ir, r ∈ RNf(T ), s.t., for all r, s ∈ RNf(T ):

(a) Ir |= Tbool ∪ Tr;
(b) Ir realizes Γfin ∪ Γinf ;
(c) #t(Ir) = #t(Is) for all t ∈ Γfin;
(d) #t(Ir) =∞ for all t ∈ Γinf .

The requirement of Ir being countable in Point 2 is harmless since ALCOIF−reg
is a fragment of first-order logic with countably infinite conjunctions and disjunc-
tions, which enjoys the downwards Löwenheim-Skolem property [16]. Initially,
we thus guess two sets of types Γfin and Γinf instead of a single set Γ . The central
technical observation to deal with Condition 2 is as follows.

Lemma 4. Let Γfin = {t1, . . . , tn} and Γinf be disjoint sets of types for T . For
every r ∈ RNf(T ), there is a set PT ,r of existential Presburger formulas with n
free variables s.t., for all a = (a1, . . . , an) ∈ Nn, the following are equivalent:

1. a ∈ Mod(ϕ) for some ϕ ∈ PT ,r;
2. there is a model I of Tbool ∪ Tr that realizes exactly the types in Γfin ∪ Γinf

such that #ti(I) = ai for 1 ≤ i ≤ n and #t(I) =∞ for all t ∈ Γinf .

Moreover, there is a non-deterministic exponential time procedure that, given T ,
Γfin, Γinf , and r, generates exactly the formulas in PT ,r as possible outputs.

Before proving Lemma 4, we first observe that it yields the intended result.

Theorem 3. Satisfiability in ALCOIF−reg is NExpTime-complete.

Proof. The lower bound is inherited from ALCOIF [31]. For the upper bound,
we guess disjoint sets Γfin = {t1, . . . , tn}, Γinf and verify Conditions 1 and 2 from
Proposition 2. Condition 1 can be treated as in the proof of Theorem 1. Observe
that Condition 2 is satisfied iff there are formulas ϕr ∈ PT ,r, for r ∈ RNf(T )
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as in Lemma 4 such that the sentence ϕ = ∃x1 . . . ∃xn
∧
r∈RNf(T ) ϕr(x1, . . . , xn)

is satisfiable. It remains to note that these formulas can be ‘guessed’ using the
non-deterministic procedure from Lemma 4, and that satisfiability of ϕ can be
checked in non-deterministic exponential time. ut

Now for the proof of Lemma 4. We start by encoding (potentially infinite) models
Ir of Tbool ∪ Tr as infinite trees. The encoding is essentially the same as in the
previous section except that now we also have to deal with models Ir that do
not have a root, that is, in which some nodes have an infinite outgoing r-path.
Informally, these are represented by choosing an arbitrary element d that has an
infinite outgoing r-path, marking it with root, and ‘folding’ all nodes reachable
from d via r below d—the folded nodes are marked with an additional marker
fold. Formally, we use the extended alphabet Σ′ = Σ∪{(t, fold) | t a type for T }
where Σ is as in the previous section. Under the new encoding, a Σ′-labeled tree
is well-formed if it is well-formed in the sense of the previous section with the
exception that nodes marked with root are allowed to have a single outgoing path
marked with fold. The interpretation Iτ associated to a well-formed Σ′-labeled
tree τ is defined as in the previous section except that additionally (n, n′) ∈ rIτ if
n is the predecessor of n′ in T and n′ is marked with fold. Conversely, whenever I
is a countable model of func(r), then there is a well-formed tree τ such that I and
Iτ are isomorphic. One can construct a non-deterministic parity tree automaton
(NPTA) Ar that accepts exactly the encodings of models of Tbool ∪ Tr, by first
constructing a 2APTA over infinite trees essentially as in the proof of Lemma 3
and then converting it into an NPTA, which is possible in exponential time [32].

Lemma 5. For every r ∈ RNf(T ), one can construct in time single exponential
in the size of T an NPTA Ar over Σ′ with exponentially many states such that
L(Ar) = {τ | τ is well-formed and Iτ |= Tbool ∪ Tr}.

Parity Tree Automata and Presburger Arithmetic. We aim to construct the Pres-
burger formulas from Lemma 4 using the NPTAs from Lemma 5. The sets Γfin

and Γinf give rise to disjoint subsets Σfin and Σinf of Σ′, that is, Σfin = {(t,M) ∈
Σ′ | t ∈ Σfin} and likewise for Σinf .

Let A = (Q,Σ, q0, δ, ρ) be an NPTA and letΣfin, Σinf be disjoint subsets ofΣ′.
We denote with Aq the variant of A that has q as initial state. We are interested
in the multiplicities of the symbols from Σfin and Σinf in trees accepted by A. In
this context, it is convenient to think of the trees (T, τ) accepted by A as being
partitioned into several components. One component is the finite initial piece
of T that is minimal with the property of containing all occurrences of symbols
from Σfin and having only symbols from Σinf on the leaf nodes. Each leaf node is
then the root of another component that takes the form of a potentially infinite
tree and has only symbols from Σinf . Now, the initial piece can be described
by an NTA on finite trees and thus translated into an existential Presburger
formula as before while the multiplicity of all symbols in the other components
is already known to be ∞ (in the overall tree) and thus we only need to ensure
that these components exist.
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An A-obligation is a triple (q, σ, Ψ) ∈ Q × Σ′ × 2Σinf such that there is a
Σ′ \ Σfin-labeled tree τ ∈ L(Aq) with τ(ε) = σ and #σ′(τ) = ∞ for all σ′ ∈ Ψ .
Informally, an A-obligation describes a component of a tree that is not the initial
component, whose root is labeled with σ, and in which each symbol from Ψ occurs
infinitely often while there is no restriction on the number of occurrences of other
symbols from Σinf . Let OA be the set of all A-obligations. An A-obligation set
is a set S = {(q1, σ1, Ψ1), . . . , (qm, σm, Ψm)} ⊆ OA such that Ψ1, . . . , Ψm is a
partition of Σinf with possibly some Ψi being the empty set. Let SA denote the
set of all A-obligation sets. The number of obligations in each A-obligation set S
is at most single exponential in the size of T and S can be represented in single
exponential space. The number of A-obligation sets is at most double exponential
in the size of T .

Lemma 6. Let A = (Q,Σ′, q0, δ, ρ) be an NPTA and let Σfin = {σ1, . . . , σk}
and Σinf be disjoint subsets of Σ′. Then there is a family (ϕS)S∈SA of formulas
of existential Presburger arithmetic such that for every a = (a1, . . . , ak) ∈ Nk,
the following are equivalent:

1. a ∈ Mod(ϕS) for some S ∈ SA;
2. there is a τ ∈ L(A) such that

(a) #σi(τ) = ai for 1 ≤ i ≤ k and
(b) #σ(τ) =∞ for every σ ∈ Σinf .

Given A, Σinf , Σfin, and an S ∈ SA, ϕS can be constructed in polynomial time.

Given Lemma 6 it is not hard to provide the desired set of formulas PT ,r
from Lemma 4. Moreover, the existence of the non-deterministic exponential
time procedure that generates them is a consequence of (the last sentence in)
Lemma 6, the fact that we can generate all candidates for A-obligation sets
with a non-deterministic polynomial time procedure, and the fact proved in the
appendix that given a triple (q, σ, Ψ) ∈ Q × Σ′ × 2Σinf , it is decidable in NP
whether (q, σ, Ψ) is an A-obligation.

6 Conclusions

The most interesting question left open in this paper is whether satisfiability in
unrestricted ALCOIFreg (equivalently: in PDL extended with nominals, inverse
roles, and functional relations) is decidable. However, it even appears to be diffi-
cult to adapt the presented approach to more modest extensions of ALCOIF−reg
such as local (unqualified) functionality restrictions. Another interesting exten-
sion is with role hierarchies, transitioning from ALCOIFreg to SHOIFreg. It is
known that adding role hierarchies over regular roles leads to undecidability [7]
and it is not difficult to add to our approach role hierarchies restricted to role
names and their inverses subject to the additional condition that functional roles
do not have subroles. It is also interesting to note that adding guarded Boolean
operators on roles, as typically indicated by the letter b in DL names, results in
undecidability even when restricted to role names and their inverses [17].
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