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Abstract. The task of similarity search in image databases has been
studied for decades, while there have been many feature extraction tech-
niques proposed. Among the mass of low-level techniques dealing with
color, texture, layout, etc., an extraction of shapes provides better se-
mantic description of the content in raster image. However, even such
specific task as shape extraction is very complex, so the mere knowledge
of particular raster transformation and shape-extraction techniques does
not give us an answer what methods should be preferred and how to
combine them, in order to achieve the desired effect in similarity search.
In this paper we propose a framework consisting of low-level intercon-
nectable components, which allows the user to easily configure the flow
of transformations leading to shape extraction. Based on experiments,
we also propose typical scenarios of transformation flow, with respect to
the best shape-based description of the image content.

1 Introduction

Similarity search in image databases [10] is becoming increasingly important, due
to rapidly growing volumes of available image data. Simultaneously, the text-
based image retrieval systems become useless, since the requirements on manual
annotation exceed human possibilities and resources. The metadata-based search
systems are of similar kind, we need an additional explicit information to effec-
tively describe multimedia objects (e.g. structured semantic description, as class
hierarchies or ontologies), which is not available in most cases.1 The only practi-
cable way how to search the vast volumes of raw image data is the content-based
similarity search, i.e. we consider the real content of each particular raster image
(e.g. a photography), where the images are ranked according to similarity to a
query image (the example). Only such images are retrieved, which have been
ranked as sufficiently similar to the query image. The similarity measure returns
a real-valued similarity score for any two models of multimedia objects.

Unlike other similarity search applications, the task of highly semantic content-
based search in image/video databases is extremely difficult. Because of gener-
ally unrestricted origination of a particular raster image, its visual content is
1 The image search at images.google.com is a successful example of metadata-based

engine, where the metadata are extracted from web pages referencing the images.

J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 89–102, ISBN 80-7378-002-X.
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not structured and, on the other side, hides rich semantics (as perceived by hu-
man). The most general techniques providing extraction of distinguished features
from an image are based on processing of low-level characteristics, like color his-
tograms, texture correlograms, color moments, color layout (possibly considered
under spatial segmentation). Unfortunately, the low-level features emphasize just
local/global relationships between pixels (their colors, respectively), hence, they
do not capture high-level (semantic) features. In turn, usage of the low-level
features in similarity search tasks leads to poor retrieval results, which is often
referred to as the ”semantic gap” [10].

In real-world applications, a design of high-level feature extraction is re-
stricted to the domain-specific image databases. For instance, images of human
faces can be processed so that biometric features (like eyes, nose, chin, etc.) are
identified and properly represented. Although domain-specific image retrieval
systems reach high effectiveness in precision/recall, they cannot be used to man-
age heterogeneous collections, e.g. images on web.

1.1 Shape Extraction

The shapes (contours, bounded surfaces) in an image could be understood as
a medium-level feature, since shape is an entity recognized also by human’s
perception (unlike low-level features). Moreover, shape is a practical feature for
query-by-sketch support (i.e. a query-by-example where the ”example” consists
of user-drawn strokes), where extraction of colors or textures is meaningless.

Shape Reconstruction. The most common technique is to vectorize the con-
tiguous lines or areas in the raster image. Prior to this, the image has to be pre-
processed still on the raster basis (edge detection [17], smoothing, morphologic
operations, skeletonization, etc.). The subsequent raster-to-vector transforma-
tion step follows (e.g. a binary mask is vectorized into a set of (poly)lines).

Naturally, we are not done at this moment, the hardest task is to filter and
combine the ”tangle” of short lines (as typically produced) into several (or even
single) distinguished major shapes (polylines/polygons). This involves polyline
simplification [11], removal of artifacts, line connection, etc. The most complex
but invaluable part of shape reconstruction should derive the prototypical shape
which is approximated by the vectorized information obtained so far.

Shape Representation & Similarity Measuring. Once we have sufficiently
simplified shapes found in an image, we have to represent them in order to
support measuring of similar shapes. The polygonal representation itself is not
very suitable for similarity measuring, because of high sensitivity to translation,
scale, rotation, orientation, noise, distortion, skew, vertex spacing/offset, etc.
More likely, the raw shape is often transformed into a single vector or time series
[5, 7, 9], where the shape characteristics are preserved but the transformation
non-invariant characteristics are removed. The time series representations are
usually measured by Euclidean distance, Dynamic time warping [4, 7], Longest
common subsequence [15].
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1.2 Motivation & Paper Contributions

As overviewed above, the process of shape extraction (starting from the raster
image and producing a vector or time series) is very complex task, where there do
not exist general recommendations about particular transformation/extraction
steps. In this paper, we propose a component-based framework allowing to en-
capsulate and connect various image/vector-processing algorithms. Hence, a net-
work consisting of many components can be easily created, through which a
particular shape extraction scenario is configured. Following this framework, we
have also implemented a catalogue of basic components which, when properly
connected, can provide an effective environment for shape extraction experimen-
tation. Finally, we present several domain scenarios for shape-extraction based
on experimental results.

1.3 Related Work

Although we are aware of many existing image processing libraries, most of them
lack support for end-user dataflow configuration or vector processing.

“Filters” [1] is a library of image, video and vector processing functions, based
on idea of configurable filters that perform various tasks. Dataflow configuration
is obtained by hardcoding or via python scripts.

“JaGrLib” [12] is a 2D/3D graphics library primarily aimed for educational
purposes. JaGrLib offers both XML and GUI oriented dataflow configuration,
but currently has limited shape extraction capabilities.

2 IVP Framework

The idea of Image and Vector Processing Framework [2] is to separate objects
that usually figure in image processing (color bitmaps, grayscale bitmaps, binary
bitmaps, gradient maps, vectors, polylines, etc.) and algorithms which work with
these objects on an input→ output basis. Each algorithm can be considered as a
black box that expects certain input data and produces a defined kind of output
data. With this point of view the whole shape extraction application reduces to
a network of algorithms that send data to each other. An example of the idea is
depicted in Figure 1.

This gives a view into the IVPF design: it’s advantageous to code and store
algorithms separately, the role of the client application is to allow user to specify
which algorithms should be used, and also their output→ input dependence. In
the final effect, many specialized applications can be implemented (configured
respectively) at high application level, just by specifying the algorithms, their
settings and mutual dependencies.

2.1 Interface & Components

Each particular component class encapsulating2 an algorithm (as mentioned
above) must implement the IIVPFComponent interface in such a fashion that all
2 The framework has been implemented in .NET framework 2.0.
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Fig. 1. Algorithms as black boxes: The example shows algorithms A-G which form
an application with arrows representing their output → input dependence. A is an
input algorithm that vectorizes the input image and sends the resulting vectors into
the network. B-C and E-F-G are branches that transform their vector input somehow.
D takes two vectorial inputs and chooses one, based on certain criteria. Then both D
and G save their outputs in specified formats (to a file/stream/anything else).

public component features are accessible in a simple and transparent way. In
particular, using IIVPFComponent interface the components are interconnected
(port registration), and checked for compatibility.

Higher Level Functionality. At a higher application level, the components
are just configured and their ports connected together to create a network. This
can be done either via GUI or by loading configuration/connections from an
XML file. During the whole network execution, all components are run starting
from pure output components (no input ports) and propagating the intermediate
data through the entire network to pure input components (no output ports).
The whole approach enables to change the behavior of the network in two ways:

– by changing component(s) configuration
– by changing the structure of the entire component network
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3 Component Catalogue

In this section we propose several components already implemented in the IVP
framework. In order to ease the understanding, we use the following formal
declaration of a component:

type of input → component name (parameters) → type of output

where the type of input/output we distinguish either bitmap (any 2D bitmap of
color, intensity, gradient, etc.) or vectors (collection of polygons/polylines). The
single arrow ’→’ means there is just a single type of connection to input/output
supported, while the double arrow ’⇒’ supports several types of input/output3.
The parameters declared in parentheses are component-specific, thus they have
to be configured by the user.

3.1 Image Processing Components

The first class provides components serving as the basic-processing tools, which
do eliminate resolution dependencies, filter the noise, and separate pixels within
a specified range of colors.

Image Loader Component
ImageFromFile (FileName) ⇒ bitmap (of colors) + bitmap (of intensities)

To process an image, it must be loaded from a file first. During this phase
grayscale image representation is computed and offered simultaneously.

Image Resample Component
bitmap (colors)→ ImageResample (ResamplingType, DesiredSize) ⇒ bitmap (col-
ors) + bitmap (intensities)
The input image might be either too small or very large for the sake of further
processing. With this component it’s easy to resize it suitably using Nearest
Point, Bilinear and Biquadratic resampling.

Thresholding Component
bitmap (colors) → ImageThresholding (RGBUpper, RGBLower) → bitmap (binary)

There exist special types of images like maps or drawings where it makes little
sense to do full edge detection. Instead, certain parts of interest can be extracted
by simple interval thresholding.

Gaussian Smoothing Component
bitmap(intensity)→GaussianIntensityFilter(WindowSize,Sigma)→bitmap(intensity)

In noisy images where one would expect problematic edge detection, smoothing
step is required. Gaussian smoothing is a well-established method and the im-
plementation allows to configure both the Sigma parameter of the Gaussian
function and the window size.
3 Naturally, an output port of one component can be connected to input ports of

multiple components (providing we obey port compatibility).
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3.2 Edge Detection Components

For edge detection, the Canny operator [8] was chosen as a main approach, as it is
acceptably stable and configurable. The edge detection is performed in multiple
stages, starting on an intensity (grayscale) bitmap, which usually involve

1. Source image smoothing (typically by Gaussian convolution)
2. Gradient approximation using first derivative operator
3. Non-maximum suppression
4. Hysteresis thresholding to identify edge pixels

The Canny operator is formed by a chain of components (the latter described
below): GaussianIntensityFilter → GradientOperator → NonMaximaSuppression

→ HysteresisThresholding. For an example of the dataflow see Figure 2.

Fig. 2. An example showing input image, image’s gradient map and marked edge pixels.

Gradient Operator Component
bitmap (intensity) → GradientOperator (OperatorType) → bitmap (gradients)

Uses simple first derivative operators (Sobel, Prewitt, Roberts-Cross) to obtain
local gradient magnitudes and directions (in 45 degree steps) for each pixel.

Non Maximum Suppression Component
bitmap (gradients) → NonMaximaSuppression → bitmap (gradient)

Gradient map obtained by first derivative operator often contains thick regions
with high gradient magnitude but to extract edges one would like areas with high
gradient magnitude to be as much thin as possible. Non-maximum suppression
archives this by ignoring pixels where the gradient magnitude is not maximal in
the gradient direction.

Hysteresis Thresholding Component
bitmap (gradients)→ HysteresisThresholding (Lower, Upper) → bitmap (binary)

Based on two thresholds gradient map is traced and edge pixels are extracted.
Each pixel with gradient magnitude greater than the Upper threshold is marked
as edge immediately. Remaining pixels are marked as edges only if they have their
gradient magnitude greater than the Lower threshold and if they are connected
to some existing edge pixel chain.
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3.3 Binary Image Processing Components

The following components process binary bitmap inputs (e.g. obtained from the
edge detection). These components could be used to simplification of contours.

Erosion And Dilatation Component
bitmap(binary)→ErosionDilatation (OperationType, MaskType)→bitmap(binary)

Refinement of binary images is often needed (to close gaps, round curved ob-
jects, etc.). The operators of erosion, dilatation, opening and closing (combined
with a properly chosen mask) are usually a good choice to handle some input
image defects.

Thinning Component
bitmap (binary) → Thinning (ThinningType) → bitmap (binary)

Thinning components that implement Stendiford [14] and Zhang-Suen [16] thin-
ning algorithms are handy when it comes to polish results given by edge de-
tection, or when there is a need to turn thick objects into one pixel thin lines.
A staircase removal to refine lines contained within the binary image also fits
in this category of algorithms. An example of the thinning process is given in
Figure 3 (the first two images).

Fig. 3. Input binary image along with its thinned form and refined vector result con-
taining n = 18 polylines.

Contouring Component
bitmap (binary) → Contouring → bitmap (binary)

In some cases (when the binary image contains thick objects), an information about
contour is more valuable than the object’s thinned form. Implemented method is based
on approach found in [3] although it uses complete image matrix instead of run length
encoding as the binary image representation.

Vectorization Component
bitmap (binary) → Vectorization → vectors

The vectorization component is responsible to turn binary image with marked edge
pixels into a set of vectors (polylines). It is based on approach mentioned by [3] or [6].

First, the input binary mask is went through by shifting a 3x3 window over every
pixel in order to mark critical points. Those are either endpoints (pixels with only one
neighbor within the 3x3 window) or intersections (pixels with more than 2 neighbors).
In second phase all polylines between critical points are traced. Another pass through
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the image is needed then to identify closed polylines that were left untouched by the
previous step. The resulting pixel chains are turned immediately into polylines along
with junction and connectivity information (i.e. with the topology).

3.4 Vector Processing Components

Once we get a vectorized form of shape, we move to waters of geometry and graphs
algorithms. Although we got rid of the raster information, we now face a tangle of
(poly)lines to be meaningfully managed.

Polyline Simplification Component
vectors → PolylineSimplification(Type, Error) → vectors

The polylines obtained from vectorization usually carry much more information than
required. It also happens that there are undesired irregularities in polylines caused
by straightforward vectorization. Hence, a polyline simplification is needed. Multiple
approaches are implemented, including those of Douglas-Peucker [11] and Rosin-West
[13].
Artifact Removal Component
vectors→ShortVectorRemoval(ArtifactsType,ArtifactCharacteristics)→vectors

Aside from polyline simplification, the resulting vector image contains artifacts at
higher logical level. For a list list o typical artifacts see Figure 4. Artifact removal
component handles these artifacts based on configuration and produces result with
reduced noise and longer (more meaningful) vectors, as shown in Figure 4.

a

e

e

b

d

c

c

Fig. 4. The first picture gives example of the most typical small artifacts – a. uncon-
nected polylines b. insignificant cycles c. 1-connected polylines d. spurious loops e.
insignificant junction connections. The second picture shows an input vectorized image.
On the third picture there is output of the artifact removal component (configured to
ignore short artifacts) and Douglas-Peucker polyline simplification algorithm.

Iterative Pruning
vectors → IterativePruning (UpperBound) → vectors

One of the goals of vector processing is to find a given number of the most significant
vectors to represent the original image. With this component an experiment was made
to find if a metric based on vector length is a good criterion for selection the most
significant vectors.

The algorithm (our original design) works as follows: An upper bound is selected
by user that represents the maximum number of vectors to obtain. First, all vectors
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Fig. 5. The first picture shows line drawing containing n = 12, 617 polylines made of
m = 38, 433 line segments. In second picture is the result of vector removal component
(with upperbound = 20) combined with Douglas-Peucker simplification. The output
contains n = 19 polylines with m = 473 line segments.

are sorted with respect to their lengths. The algorithm works in iterations and tends
toward the desired number of vectors. In order to guarantee convergence, a half of the
vectors are expected to be thrown away in each iteration (the number of vectors to
throw away can be easily configured as well, giving slower of faster convergence).

Which vectors should be thrown away is decided upon their lengths(short vectors
are considered first) and upon the knowledge similar to that used in Artifact Removal
Component (most probable artifacts are thrown away first). A typical output is de-
picted in Figure 5.

Polyline Connection Component
vectors→PolylineConnection(Scenarios,ScenariosCharacteristics)→vectors

It happens (especially in edge detection) that a significant polyline gets divided into
multiple parts as a result of inaccurate thresholding, noise or overlap.

Three phase algorithm is employed to join parts together into bigger entities. The
first phase operates on polylines that have their endpoints very close to each other
and can be joined together without additional heuristics. Second phase takes care of
larger gaps between endpoints with respect to multiple criteria (vector length, distance,
orientation, etc.). Third phase tries to handle disconnected corners. Figure 6 features
typical scenarios of these three stages. All phases are configurable and optionally offer
many important concepts like double sided check, identical angle orientation check etc.
Many of these concepts are mentioned in [6].

a

b

c

c d

Fig. 6. An example demonstrating typical scenarios when connecting polylines: a. con-
nection of lines based on their orientation, angle, . . . to create one longer polyline b.
closing disrupted cycles c. connecting near endpoints to form a corner d. connecting
far endpoints to form a corner, guessing corner shape.
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3.5 Vector Output Components

The last group of components provides an output to external storage (now file). Besides
an one-to-one export to a well-known format (like WMF, DXF), components in this
class cover also secondary feature extraction techniques needed for particular task –
typically representations for subsequent similarity measuring/search.

Vectors Output Component
vectors → VectorToFile(FileName, Format)

This component saves its vector input into a specified format (DXF, textfile, etc.).

Angles Extraction Component
vectors → AnglesToFile(FileName, AngleType, NumberOfAngles)

A specialized feature component transforming polylines to (time) series. Each polyline
is normalized first by splitting it to a number of parts of the same length. A set of
angles is then saved to the output. The angles can be measured as the smaller angles
between each pair of successive line segments, as clockwise (or counter-clockwise) angles
between them, or as angles between each line segment and the X-axis.

4 Domain Scenarios

The components of the previously introduced catalogue have been designed in order
to easily create scenarios suitable for extraction of simple shapes. Hence, we are pri-
marily interested in simplified representation of shapes inside an image, rather than
in a comprehensive image-to-shape transformation preserving as much information as
possible.

A simplified shape could serve as a descriptor involved in measuring similarity of
two images (based on shapes found inside). The requirement on small-sized descriptor is
justified by handling the shape information by similarity measure. Since the similarity
measure is supposed to be evaluated many times on entities of a huge image database,
the similarity measuring should be as fast (yet precise) as possible. However, this goal
can be achieved by a smart shape extraction providing prototypical descriptors. An
image represented by a single (or very few) polylines/polygons limited to several tens
or hundreds of vertices (say up to 1 kilobyte) – this is our desirable descriptor.

On the other side, we are aware of the difficulties when trying to establish such
a simple descriptor. Therefore, we have performed experimentation on various images
(photography, drawing, etc.) and tried to assemble several configurations of component
networks (called domain scenarios) which gave us the best results for a particular
image type (with respect to desirable descriptor properties). In the following sections
we present three such scenarios.

4.1 Drawing

As for the drawings, the vectorization task is slightly simpler thanks to the fact that the
source image contains the desired information in an easily identifiable form (monochro-
matic strokes describing shapes, colored areas in case of cartoons, etc.). The extracted
layer or layers described by binary images can be further processed by means of thin-
ning (in case of strokes) or contour extraction (in case of thick areas). The result often
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Fig. 7. Scenario 1 – Drawing.

embodies only a low level of noise and can be directly used as is or further simplified. In
Figure 7 see the scheme of component configuration and interconnection under Drawing
scenario. Note that the two branches lead to two different types of shape extraction
(skeleton and contour). For an example of data flow regarding to the Drawing scenario,
see Figure 8.

Fig. 8. Scenario 1 – Drawing – Example of data flow.

4.2 Simple Object

For high contrast images containing unsophisticated shapes, the edge detection alone
is a reliable way to extract required feature information. When this is known, the
artifact removal is a relatively safe operation without the risk of removing important
features. A reconnection of disconnected lines (which follows then) almost completely
reconstructs the full shape information. Finally, the polyline simplification should be
done to straighten jagged lines and minimize the produced number of line segments.
In Figure 10 see the scheme of component configuration and interconnection under the
Simple object scenario. For an example of data flow, see Figure 10.
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Fig. 9. Scenario 2 – Simple object.

Fig. 10. Scenario 2 – Simple object – Example of data flow.

4.3 Complex Scene

In real-world images (photos), the edge detection cannot guarantee getting clean shapes,
on the contrary there are usually huge amounts of false detected or unwanted edges.
The iterative pruning is supposed to take care of most of the ”trash” in the vector
output and even then, maximum effort must be directed into connecting disrupted
polylines, corner detection and polygonal approximation. In Figure 11 see the scheme
of component configuration and interconnection under the Complex scene scenario.
For an example of data flow, see Figure 12.

Fig. 11. Scenario 3 – Complex scene.
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Fig. 12. Scenario 3 – Complex scene – Example of data flow.

5 Conclusions & Future Work

In this paper we have presented a highly configurable framework for shape extraction
from raster images. Based on the framework, we have proposed a catalogue of com-
ponents, which have been designed to be easily configured into a network. Based on
experiments, we have recommended three domain scenarios for extraction of simple
shapes, in order to create useful descriptors for similarity search applications.

In the future we would like to investigate similarity measures suitable for shape-
based similarity search. An extraction of simple prototypical shapes from images (as
proposed in this paper) is crucial for similarity measuring, so it is an unavoidable
step when trying to ”bridge the semantic gap” in image retrieval. Furthermore, we
would like to automate the scenario recommendation process (where each component in
scenario evaluates the goodness of what it produces), resulting in a kind of unsupervised
extraction technique.
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