
Using XSEM for Modeling XML Interfaces of
Services in SOA?

Martin Nečaský

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University

martin.necasky@mff.cuni.cz, http://www.necasky.net

Using XSEM for Modeling XML Interfaces of
Services in SOA?

Martin Necasky

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University

martin.necasky@mff.cuni.cz, http://www.necasky.net

Abstract. In this paper we briefly describe a new conceptual model for
XML data called XSEM and how to use it for modeling XML inter-
faces of services in service oriented architecture (SOA). The model is a
combination of several approaches in the area of conceptual modeling of
XML data. It divides the process of conceptual modeling of XML data to
two levels. The first level consists of designing an overall non-hierarchical
conceptual schema of the domain. The second level consists of deriving
different hierarchical representations of parts of the overall conceptual
schema using transformation operators. Each hierarchical representation
models an XML schema describing the structure of the data exchanged
between a service interface and external services.

Keywords: conceptual modeling, XML, XML Schema, SOA

1 Introduction and Motivation

Recently, XML has been used for an exchange of data between heterogeneous
information systems, for an internal data representation, and also as a logical
database model. Therefore, modeling of XML data should become an inseparable
part of the application data modeling process on the conceptual level.

For example, assume a medical application integrating data about patients
from several external sources. The application works as a service. It is a black
box that stores the patient data in an internal database in an internal represen-
tation and provides access to the database through predefined interfaces used
by external services such as hospital systems or insurance systems. The data ex-
changed between an external service and the medical service is in an XML form.
Each interface provides an XML schema describing the form in which the data is
presented to and received from the external services through the interface. The
external services do not know the structure of the internal database. They only
know the XML schemes provided by the interfaces.

? This paper was supported by the National programme of research (Information so-
ciety project 1ET100300419)

J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 35–46, ISBN 80-7378-002-X.



36 Martin Nečaský
2

Assume an interface Iexam for exchanging results of medical examinations
and an interface Idiag for exchanging medical diagnoses in XML. Both inter-
faces define XML schemes describing the required structure of exchanged XML
documents. We can imagine the following scenario:

1. physician in a hospital makes a diagnosis of a patient; to decide the diagnosis,
the physician needs the results of a patient’s examination performed in a
different hospital

2. physician requests the hospital system for the results; hospital system re-
quests the medical service for the results through Iexam

3. medical service exports the results from the internal representation into an
XML document with the structure defined by Iexam and sends it back to the
hospital system

4. hospital system receives the XML document and presents the data to the
physician; physician diagnoses a patient’s disease and records the diagnosis
to the hospital system

5. hospital system exports the diagnosis data into an XML document with the
structure defined by Idiag and sends it to the medical service through Idiag

6. medical service receives the XML document with the diagnosis and stores
the data into the internal database

Fig. 1 shows how the medical service similar to our example would be or-
ganized today. The figure shows the internal structure of the service. There is
the internal database and a conceptual schema describing the structure of the
database. For the external hospital system, the service is a black box. The hos-
pital system communicates with the service through the interfaces Iexam and
Idiag. The figure illustrates the scenario described above.

Fig. 1. Motivation

The connection of the example with the conceptual modeling is that there
is a need to model the structure and semantics of XML documents exchanged
between the medical service and external services/applications through the in-
terfaces on the conceptual level. However, the following problems can occur:



Using XSEM for Modeling XML Interfaces of Services in SOA 37
3

1. conceptual schema and the XML schemes describing the structure of the
data exchanged through the interfaces can be missing

2. if the conceptual schema and the XML schemes are present, there is no
explicit binding between them (i.e. the XML schemes have to be created
and maintained manually)

3. scripts for extracting data from the XML documents and transforming the
data into the internal representation and vice versa must be created and
maintained manually

The challenge is to eliminate these problems (1-3) by introducing a con-
ceptual model for XML data. Such a model must allow to design an overall
conceptual schema of the service domain and to derive the XML schemes de-
scribing the service interfaces (1). Even though the XML schemes organize the
data into hierarchies, the overall conceptual schema need not be hierarchical.
The explicit binding between the XML schemes and the overall non-hierarchical
conceptual schema facilitates the maintenance of the XML schemes and the cre-
ation and maintenance of the scripts that transform data between the internal
representation and the interface XML representations (2,3).

2 Related Work

If we want to model XML data on the conceptual level, we have to deal with
some special features of XML data such as irregular structure, ordering, mixed
content, and a hierarchical structure.

There are some approaches, for example ERX [6] or XER [8], extending the
E-R model to be suitable for the conceptual modeling of XML data. Because
E-R is not hierarchical (there are M : N relationship types and n-ary rela-
tionship types), XML schemes must be derived in some way. The problem is
that a user can not specify how the data should be organized in hierarchical
XML. The hierarchical structure is derived automatically without following user
requirements.

Another possibility of how to model XML data is to start from a hierar-
chical structure. This approach may be called hierarchical approach. There are
conceptual models based on the hierarchical approach, for example ORA-SS
[1]. Using this approach we can model hierarchical structures easily. However, a
problem with modeling of non-hierarchical structures arises. Moreover, hierarchi-
cal schemes are not so transparent as non-hierarchical E-R schemes. A designer
must think about the data in hierarchies which is not natural in general.

The problem of the approaches is that it is not possible to design one or
more hierarchical organizations of parts of an overall non-hierarchical conceptual
schema of the domain as it is required by the example medical service. Moreover,
it is not possible to derive different hierarchical organizations of the same parts
of the overall conceptual schema.

We propose a new conceptual model for XML called XSEM trying to solve
the mentioned problems. In [4], we offer a survey of conceptual modeling for



38 Martin Nečaský
4

XML. We propose a detailed list of requirements for conceptual models for XML,
describe recent conceptual models for XML in a unified formalism, and compare
the described models against the requirements. In [5], we describe our XSEM in
a formal way.

In this paper we describe XSEM briefly and we show its possible application
to modeling of XML interfaces of SOA services. There are two contributions of
this paper. First, we show how XSEM can be applied to conceptual modeling of
XML interfaces of SOA services and how it can facilitate important processes
in the service creation and maintenance. Second, because we show a practical
application of XSEM, we also concentrate on presentation features of XSEM.
We show that it is necessary to extend the XSEM constructs proposed in [5] to
present XSEM schemes in a transparent way.

3 Idea

We illustrate our idea with the architecture of the medical service. There is the
internal logical database schema describing the structure of the data stored in
the internal database. The medical service provides several interfaces used by
external applications to access the internal database. Each interface provides an
XML schema describing the structure of XML documents that are exchanged
between the service and the external applications through the interface. We can
comprehend the XML schemes as hierarchical views on parts of the internal
logical schema. Each group of external applications needs different structure of
XML documents. These documents can contain the same data, but in different
hierarchical organizations.

Following the architecture of the medical service, we need to design an overall
non-hierarchical conceptual schema of the domain. From the overall schema, we
need to derive several hierarchical conceptual views. These views describe the
XML schemes for the interfaces. The derivation must be driven by a designer.
The hierarchical view design process consist of selecting the components of the
overall schema that should be represented in the view followed by the specifica-
tion of how the components should be organized in the hierarchy. At the end,
the XML schemes are derived automatically from the conceptual hierarchical
views.

4 XSEM Model

XSEM is a conceptual model for XML based on the previous idea. It divides
the conceptual modeling process to two levels. On the first level, we design an
overall non-hierarchical conceptual schema of our domain using a part of XSEM
called XSEM-ER. On the second level, we design hierarchical conceptual schemes
using a part of XSEM called XSEM-H. XSEM-H schemes are not designed sepa-
rately from the XSEM-ER schema. We derive them from the XSEM-ER schema
by so called transformation operators. Each XSEM-H schema is a hierarchical
view on a part of the XSEM-ER schema. It describes required XML schema on



Using XSEM for Modeling XML Interfaces of Services in SOA 39
5

the conceptual level and there is an explicit binding between the hierarchical
organization and the semantics of its components.

We can easily apply XSEM to model XML interfaces of SOA services. First,
we design an overall XSEM-ER schema of the service domain and then we derive
an XSEM-H schema for each service interface. The XSEM-H schema describes
the XML schema for the XML data exchanged through the interface.

4.1 XSEM-ER

XSEM-ER is an extension of E-R proposed by Chen. It allows to model the
special XML features like irregular structure, ordering, and mixed content. On
this level, it is not important how the modeled data is organized in hierarchies.
These hierarchical organizations are derived during the second part of the mod-
eling process.

Fig. 2 shows an example XSEM-ER schema modeling a small part of the
medical domain. As in the classical E-R model, there are strong and weak entity
types and relationship types. Strong entity types represent stand alone objects
and are displayed as boxes. Fore example, there is a strong entity type Hospital
modeling hospitals or a strong entity type Physician modeling physicians. Weak
entity types represent objects that depend on another objects. We display them
as boxes with an inner hexagon. Each entity type the weak entity type depends
on is connected with the box by a solid arrow. We call these entity types as
components of the weak entity type. For example, there is a weak entity type
Department with a component Hospital modeling departments of hospitals.
Relationship types represent relationships between objects. Therefore, a rela-
tionship type is composed of one or more entity types called components of the
relationship type. We display relationship types by hexagons connected by solid
arrows with their components. For example, there is a binary relationship type
Employ that represents employments of physicians at departments of hospitals
or at separate clinics (an extending modeling construct described in the following
text is used to unify departments and clinics).

XSEM-ER adds new modeling constructs called data node types, and outgoing
and incoming cluster types for modeling special XML features. A data node type
is connected with an entity type which is called component of the data node type.
It represents data values assigned to an instance of the component. These values
are not attribute values of the entity. They are data values which are mixed with
the relationships and weak entities having the entity as a component value. In a
graphical representation, a data node type is displayed as an ellipse with a name
of the data node type.

For example, assume a patient visiting a physician (represented by the weak
entity type V isit at Fig. 2). During the visit, the physician writes a description
of the course of the visit. The description is not an attribute value of the visit,
it is an unstructured text assigned to the visit. Moreover, the text is mixed with
the examinations made during the visit. At Fig. 2, we use a data node type V Txt
and an incoming cluster type (see the following text) to model this situation.
Ex. 1 is a motivating example for the introduction of data node types. There is



40 Martin Nečaský
6

Fig. 2. XSEM-ER Schema

an element visit containing data about the date of the visit, the visiting patient,
the visited physician, and the place of the visit. Moreover, there is a description
of the visit mixed with the examinations performed during the visit.

<visit><date>2006-09-12</date>

<patient><name>John Black</name></patient>

<physician><name>Bill White</name></physician>

<department><name>Department A</name>

<hospital><name>Hospital B</name></hospital>

</department>

<description>Because of the results of a

<examination><dsc>manual abdominal examination</dsc>...</examination>

there is a suspicion of some liver problems. Consequently, I made a

<examination><dsc>blood analysis</dsc>...</examination>...

</description>

</visit>

Ex. 1: Mixed Content in XML

An outgoing cluster type represents a union of entity types and it can be
used as a component of a relationship type or weak entity type. In a graphical
representation, an outgoing cluster type is displayed as a circle with an inner
label +. It is connected by a solid line with a relationship type or weak entity
type it participates in. Each component of the cluster type is connected by an
arrow going from the circle to the component.

We use outgoing cluster types for modeling irregular structure of XML. For
example, patients can visit physicians at departments of hospitals and at separate



Using XSEM for Modeling XML Interfaces of Services in SOA 41
7

clinics. This is an example of irregular structure we can express in XML. We use
an outgoing cluster type Department+Clinic to model this situation. We show
the cluster type at Fig. 2. Ex. 2 is a motivating example for the introduction of
outgoing cluster types. There is an element patient representing a patient with
a name ”John Black”. It contains a list of visit elements representing patient’s
visits. There are two visits in the XML document. First, he visited a physician
”Bill White” at a department ”Department A” of a hospital ”Hospital B”. Then
he visited a physician ”Jack Brown” at a clinic ”Clinic C”. It is a simple example
of irregular structure. There is a department element in the first visit element
and a clinic element in the second visit element.

<patient><name>John Black</name>

<visit><date>2006-09-12</date>

<physician><name>Bill White</name></physician>

<department><name>Department A</name>

<hospital><name>Hospital B</name></hospital>

</department></visit>

<visit><date>2006-10-03</date>

<physician><name>Jack Brown</name></physician>

<clinic><name>Clinic C</name></clinic></visit>

</patient>

Ex. 2: Irregular structure in XML

Incoming cluster types are used for grouping different relationship types,
weak entity types, and data node types having the same component. We call this
component as parent of the incoming cluster type. The incoming cluster type
specifies that instances of the components of the incoming cluster type connected
with the same parent instance are mixed together. Moreover, ordering can be
specified on such groups. Hence, we can use incoming cluster types for modeling
mixed content in XML documents. In a graphical representation, an incoming
cluster type is displayed as a circle with an inner label +. It is connected by a
solid line with its parent and there is a solid arrow from each of the components
to the cluster.

For example, we use an incoming cluster type (V isit, Examination+V Text)
at Fig. 2 to model a description of a visit mixed with the examinations made
during the visit. Ex. 1 described above is a motivating example. It is important
to specify that the incoming cluster type is ordered because an ordering between
the parts of the visit description and the examinations performed during the
visit is important as shown at Ex. 1.

4.2 Hierarchical Projections

The notion of hierarchical projections represents the step between the non-
hierarchical XSEM-ER level and the hierarchical XSEM-H level. It is a formal-



42 Martin Nečaský
8

ization of binarization of relationship types and weak entity types. For example,
the weak entity type V isit can be represented in a hierarchy where we have a
list of patients, for each patient we have the list of patient’s visits, and for each
patient’s visit we have the visited physician and the department or clinic where
the patient visited the physician. This hierarchy describes the structure of the
XML document at Ex. 2.

Hierarchical projections formalize such descriptions of hierarchical organiza-
tions of non-hierarchical relationship types and weak entity types. For example,
the previous hierarchy is described by the following three hierarchical projec-
tions:

V isit[Patient → V isit] (HP1)
V isitPatient[V isit → Physician] (HP2)
V isitPatient[V isit → Department + Clinic] (HP3)

HP1 represents a list of patient’s visits. HP2 represents the visited physi-
cian and HP3 represent the department or clinic where the patient visited the
physician. Another hierarchy is described by the following three hierarchical
projections:

V isit[Department + Clinic → Physician] (HP4)

V isitDepartment+Clinic[Physician → Patient] (HP5)

V isitDepartment+Clinic Physician[Patient → V isit] (HP6)

It represents a hierarchy with a list of departments and clinics. For each
department or clinic there is a list of physicians being visited by patients at the
department or clinic (HP4). For each physician, in the context of a department
or clinic, there is a list of patients who visited the physician at the department
or clinic (HP5). Finally, for each patient in the context of a department or clinic
and physician there is a list of patient’s visits of the physician at the department
or clinic (HP6).

More formally, a hierarchical projection of R is an expression
Rcontext[parent → child]. It specifies a hierarchy where parent is superior to
child. Context is a sequence of components of R and specifies the context in
which the projection is considered. For example, HP5 specifies a hierarchy where
Physician is superior to Patient in the context of Department or Clinic.

4.3 XSEM-H

XSEM-H is used for a specification of a hierarchical organization of a part of
a given XSEM-ER schema using hierarchical projections. It does not add any
semantics. An XSEM-H schema is an oriented graph where nodes represent entity
types, relationship types, and data node types from the XSEM-ER schema and
edges represent hierarchical projections of these types.

An XSEM-H schema is derived from an XSEM-ER schema by transforma-
tion operators. As parameters for the transformation we supply entity types,
relationship types, and data node types we want to represent in the hierarchical
XSEM-H schema and specify how the components should be organized in the



Using XSEM for Modeling XML Interfaces of Services in SOA 43
9

hierarchy. The operators are not described in a more detail here. For a more
detail, see [5].

Fig. 3 shows an XSEM-H schema where the edges labeled with 1, 2, and 3
represent the hierarchical projections HP1, HP2, and HP3.

Fig. 3. XSEM-H Schema

Fig. 4 shows an XSEM-H schema where the edges labeled with 4, 5, 6, and 7
respectively, represent the hierarchical projections HP4, HP4, HP5, and HP6
respectively. At the top of the hierarchy, there is represented the outgoing cluster
type Department + Clinic. However, we need the resulting hierarchical schema
to have a tree structure. Hence, each node in the tree can have no or only one
parent. For this reason we propose so called structural representatives in this
paper as an extension to XSEM described in [5]. We represent the hierarchical
projection HP4 by the two edges labeled with 4 and 5. Each has a child node
representing Physician. These two child nodes have the same content which is
specified by the parent of the edge labeled with 6. The child nodes of 4 and 5
are structural representatives of the parent of 6. The reason for this is that we
specify the structure of the Physician representation only once and we denote
the places where the Physician representation can be placed in the schema by
one or more structural representatives.

It is important to keep a tree structure of hierarchical schemes. Otherwise, we
would have problems with the schema presentation in a transparent way. Assume
that the nodes representing Department and Clinic have more child nodes.
Connecting the edges 4, 5 with the same child node representing Physician
means problems with displaying the child nodes in the right order. However, this
order is important when we model XML data. Moreover, such a presentation of
the schema would not be so transparent in general.



44 Martin Nečaský
10

Fig. 4. XSEM-H Schema

5 Service Creation and Maintenance Support with
XSEM

The goal of this paper is to show how XSEM can be applied to modeling of service
XML interfaces and how it can facilitate the service creation and maintenance.
We showed how we can use XSEM to model the structure and semantics of the
XML data exchanged through the interfaces. We have an XSEM schema consist-
ing of an overall non-hierarchical XSEM-ER schema describing the semantics of
the data and several hierarchical XSEM-H schemes describing how the data is
organized in hierarchial XML documents exchanged through the interfaces.

On the logical level we need to store the modeled data in an internal database
and we need scripts for the transformation between the internal database struc-
ture and the XML structure required by the interfaces.

First, we need to derive the internal logical database schema from the XSEM
schema. The process is similar to the process of derivation of relational database
schemes from E-R schemes. However, this process is more complex in the case
of XSEM because an XSEM schema consist of the XSEM-ER schema and one
or more XSEM-H schemes. Therefore, if we want to derive an optimal database
schema we have to take into account not only the non-hierarchical XSEM-ER
schema but also the hierarchical XSEM-H views and optimize the logical struc-
ture of the data according to the required hierarchial organizations. There are
several possibilities of how to store our data on the logical level.

(1) Native XML database systems seem as an optimal solution because we
are dealing with XML data. However, if there are more XSEM-H schemes orga-
nizing the same components from the XSEM-ER schema in different hierarchies
we have to choose one of them as the primary organization describing the logical
schema of the native XML database and provide the scripts for the transforma-
tion between the primary organization and the other hierarchical organizations.
Therefore, the performance of the system strongly depends on the ability of the
native XML database system to effectively execute such transformations. How-
ever, the performance of recent native XML database systems is weaker than
the performance of relational database systems.



Using XSEM for Modeling XML Interfaces of Services in SOA 45
11

(2) Relational database systems are very effective for strictly structured data.
However, they are not too effective for semistructured data like XML. It is
necessary to decompose the XML data to many tables and to join them back in
different ways. It is possible to translate an XSEM-ER schema into a relational
schema in a very similar way as in the case of classical E-R and to construct
SQL views that build required XML documents. The advantage is that the logical
database schema does not depend on required hierarchical XSEM-H views but
the overall XSEM-ER schema only. Therefore, it is not a problem to add, delete,
or change a particular hierarchical view. However, it can be ineffective to built
frequent hierarchies repeatedly from the tables.

(3) Nor the native XML approach nor the relational approach seems to be
optimal for our purposes. However, recent database systems like DB2 9 [7] offer a
possibility to combine both approaches effectively. In such systems there is still
a basic concept of table but extended with the XML data type supplied with
an extension of SQL to build XML data from relational ones and an XQuery
support. Therefore, we can combine structured and semistructured data easily
in one table and combine the advantages of both approaches. Moreover, there
can be many cases where data is structured but breaking the first normal form
is an advantage (for attributes of entity and relationship types for example).
Therefore, we can use the object-relational model instead of the relational one.

The problem to solve is what parts of the XSEM-ER schema should be
represented in the object-relational model and what parts should be represented
in the XML model. The basic solution is to divide the entity and relational types
to two groups. The ones that are represented in more different hierarchies where
it would not be effective to select one of them as the primary and transform it
to the others should be represented in the object-relational model (i.e. table).
The ones that are represented in only one or often repeated hierarchy where it
would not be effective to construct the hierarchy frequently or the ones with a
very irregular or mixed content should be represented in the XML model.

For example, the entity types Hospital, Patient, or Physician appear in
many hierarchies with different structure. Therefore, it is better to represent
them as separate tables. On the other hand, a patient history or examination
have an unchanging hierarchical structure (they are documents) and their parts
(not modeled in our simple XSEM-ER schema) do not appear in other hierar-
chies. Therefore, we can store the whole history or examination as one XML
document in our database and we do not need to store their parts in separate
tables.

After we have derived the logical schema from the conceptual schema we
need the scripts for the transformation between the logical database structure
and the XML structure of the interfaces. We have the explicit binding between
the logical schema and the XSEM-ER schema, between the XSEM-ER schema
and the XSEM-H schemes, and we can easily and automatically derive the XML
schemes from the XSEM-H schemes. Therefore, we can automate the creation of
the transformation scripts between the logical database structure and the XML
interface structures.



46 Martin Nečaský
12

Our approach facilitates not only the service creation but also its mainte-
nance. Any change in the structure of the interfaces is firstly modeled in the
XSEM schema. Therefore, we can propagate the change directly to the XML
schemes describing the interfaces, to the logical database level, and also to the
transformation scripts between them.

6 Conclusions and Future Work

In this paper, we described a new conceptual model for XML called XSEM which
is based on modeling of XML schemes as views on an overall non-hierarchical
schema. We described how XSEM can be used for modeling of XML interfaces
of services in SOA and how it can facilitate the creation and maintenance of the
services.

In our future research we will propose detailed algorithms for the translation
of XSEM-H schemes to the logical XML level. Beside the grammar based XML
schema languages such as XML Schema we will study the usage of pattern
based XML schema languages such as Schematron [3] for the description of
more complex integrity constraints. After this, we will create a prototype CASE
tool for designing XSEM schemes. Moreover, we will propose algorithms for
the automatic derivation of the logical database schemes from XSEM schemes
and algorithms for the automatic derivation of the scripts for the transformation
between the logical database structure and XML structure modeled by XSEM-H
schemes as requested by this paper.

References

1. Dobbie, G., Xiaoying, W., Ling, T.W., Lee, M.L.: ORA-SS: An Object-Relationship-
Attribute Model for Semi-Structured Data. TR21/00, Department of Computer
Science, National University of Singapore. December 2000.

2. D. C. Fallside, P. Walmsley. XML Schema Part 0: Primer Second Edition. World
Wide Web Consortium, Recommendation REC-xmlschema-0-20041028. October
2004.

3. International Organization for Standardization, Information Technology Document
Schema Definition Languages (DSDL) Part 3: Rule-based Validation Schematron.
ISO/IEC 19757-3, February 2005.

4. Necasky, M.: Conceptual Modeling for XML: A Survey. Tech. Report No. 2006-3,
Dep. of Software Engineering, Faculty of Mathematics and Physics, Charles Uni-
versity, Prague, 2006, 54 p. http://www.necasky.net/papers/tr2006.pdf

5. Necasky, M.: XSEM - A Conceptual Model for XML. In Proc. Fourth Asia-Pacific
Conference on Conceptual Modelling (APCCM2007), Ballarat, Australia. CRPIT,
67. Roddick, J. F. and Annika, H., Eds., ACS. 37-48., January 2007.

6. Psaila, G.: ERX: A Conceptual Model for XML Documents, in Proceedings of the
2000 ACM Symposium on Applied Computing, p. 898-903. Como, Italy, March 2000.

7. Saracco, C.M., Chamberlin, D., Ahuja, R.: DB2 9: pureXML Overview and Fast
Start, IBM Redbooks, 134 p., June 2006.

8. Sengupta, A., Mohan, S., Doshi, R.: XER - Extensible Entity Relationship Model-
ing, in Proceedings of the XML 2003 Conference, p. 140-154. Philadelphia, USA,
December 2003.




