Declarative Specification of Taxonomic Constraint
Enforcement in Conceptual Schemas:

Dolors Costal, Cristina Gomez and Ernest Teniente

Universitat Politécnica de Catalunya
Departament de Llenguatges i Sistemas Informatics
Jordi Girona 1-3 E08034 Barcelona (Catalonia)
{dolors|cristinalteniente} @lsi.upc.edu

Abstract. We propose to declaratively specify policies for the enforcement of
taxonomic integrity constraints directly in the structural conceptual schema.
These policies depend on the kind of constraint to be enforced (disjointness,
covering or specialization) and on the particular event that may cause its
violation. Our work eases conceptual modelling since defining taxonomic
constraint enforcement declaratively allows omitting its specification from the
external events in the behavioural conceptual schema.

1. Introduction

An information system maintains a representation of the state of a domain in its
information base (IB). The structural conceptual schema defines the structure of the
IB while the behavioural schema defines how the IB changes when events occur.
Taxonomies are fundamental constructs of structural schemas [7]. A taxonomy
consists of a set of entity types and a set of specialization relationships among them.
Usually, taxonomies also include other constraints like disjointness and covering.
Integrity enforcement ensures that constraints are satisfied after each update of the
IB. This may be achieved either by integrity checking, which rejects any update
leading to an inconsistent state of the IB; or integrity maintenance, aimed at repairing
constraint violations by performing additional updates that maintain the IB consistent.
The classical approach to specify how to perform integrity enforcement in
conceptual modelling has been to spread the enforcement of those constraints among
the various events of the behavioural schema that may violate the constraint. Apart
from increasing the difficulty of the conceptual modelling task (since the designer
must be able to determine all events that may violate each constraint), this approach
has a negative impact on the understandability and modifiability of the resulting
conceptual schemas (since integrity enforcement is not localised in a single place).
The approach we propose in this paper overcomes the previous limitations by
specifying taxonomic constraint enforcement declaratively (without the need to know
which events may violate a given constraint) and in a localised way in the structural
conceptual schema. We define a set of predetermined policies for each taxonomic
constraint, which depend on the type of change that causes the constraint violation,
and that can be easily specified by the designer. As a consequence, the definition of
external events becomes simpler because only its intended effect must be considered
and taxonomic integrity enforcement actions or conditions may be omitted.

! Work supported by the Ministerio de Educacion y Ciencia under project TIN 2005-06053

Declarative constraint enforcement has mainly been addressed at a database level.
For relational databases, [1,5] support declarative enforcement specification for a
broad spectrum of constraints. For object oriented databases, [2] proposes to extend
the ODMG Object Model to specify declaratively referential and composite objects
constraint enforcement. [4] describes high-level abstractions defining how a database
can be made consistent when an update exception occurs. At a conceptual level, [8]
studies constraint enforcement for formal oriented specifications, however it does not
address the problem of providing declarative policies for integrity enforcement.

Specifying constraint enforcement at a conceptual level has the following
advantages: 1) it is specified at the early stages of information systems development,
2) in a technological-independent way, and 3) it allows automatic generation of the
integrity enforcement procedures.

2. Basic Concepts

Structural conceptual schemas define the structure of the IB and its constraints. We
represent by E(e,?) the fact entity e is instance of entity type £ at time 7. Taxonomies
of entity types consist of a set of entity types and a set of specialization relationships
among them. A specialization is a relationship between two entity types £’ and E, that
we denote by E’ Is4 E. A specialization implies a taxonomic specialization constraint
between the populations of both types.

Generalization and specialization are different viewpoints of the same Is4
relationship. We denote by E Gens E|,...,E, the generalization of entity types E;,...,E,
to E. For instance, in Fig. 1, Employed Gens Temporary, Permanent.

Behavioural conceptual schemas define how the IB changes when events occur.
External events cause changes in the state of the domain and, consequently, in the IB
[6]. These events can be defined precisely in terms of a more basic concept, a
structural event. A structural event causes an elementary change in the IB. We use
two structural event types, to update the contents of IB taxonomies: entity insertion,
denoted by Insert E(x,t), and entity deletion, denoted by Delete E(x,t).

An external event consists of a set of structural events which causes composite
changes in the IB. In Fig. 1, a Substitution external event {Insert Employed(Maria,2),
Delete_Employed(Pere,2)} occurring at time 2 has the intended effect of replacing an
employee of the company (Pere) for another person (Maria) previously unemployed.

3. Specifying taxonomic constraint enforcement policies

Our proposal for taxonomic constraint enforcement specification consists of
providing, for each type of constraint and type of change that may cause its violation,
a set of predetermined policies for integrity enforcement. In the following, we give an
intuitive explanation of the policies and, finally, we provide an application example
which combines several policies. More details of our proposal can be found in [3].

Disjointness Constraint. Given a generalization £ Gens E,,...E,, a disjointness

constraint indicates that every instance of E at time ¢ is instance of at most one E£; at ¢.
Therefore, the only type of structural event that may induce a disjointness constraint

violation is an entity insertion in one of the subtypes of the generalization. This
subtype insertion may come directly from the external event definition or, indirectly,
from the application of a previous integrity maintenance policy.

Policy delete-when-subtype-insertion is an integrity maintenance policy that repairs
the external event by adding a deletion of the involved entity from the subtype of the
generalization to which it belonged in the previous time instant. The alternative policy
restrict-when-subtype-insertion is an integrity checking policy and, like all integrity
checking policies, consists of rejecting the external event that violates the constraint.

Covering Constraint. The covering constraint for a generalization £ Gens E,,....E,
indicates that every instance of the supertype E at time ¢ is instance of at least one
subtype E; at t. Then, there are two types of structural events that may induce a
covering constraint violation: an entity insertion in the supertype of the generalization
or an entity deletion (a set of entity deletions) from one (some) of the subtypes.

Policy insert-in-E-when-supertype-insertion repairs a covering violation induced
by an insertion in a supertype by performing an insertion of the involved entity in a
particular subtype E;. Policy restrict-when-supertype-insertion rejects the event.

In case of a covering violation induced by deletions from subtypes, policy insert-
in-E-when-subtype-deletion adds an insertion of the involved entity in a particular
subtype E;. Policy delete-when-subtype-deletion repairs this situation by performing a
deletion of the involved entity from the supertype of the generalization. Finally,
policy restrict-when-subtype-deletion rejects the external event.

Specialization Constraint. The specialization constraint for a relationship £’ Is4A E
indicates that every instance of the subtype E’ at ¢ is instance of the supertype E at .
This constraint may be violated by two types of structural events: an entity insertion
in the subtype of the IsA4 relationship or an entity deletion from the supertype.

Policy insert-when-subtype-insertion repairs a specialization violation induced by
an insertion in the subtype by adding an insertion of the involved entity in the
supertype and restrict-when-subtype-insertion rejects the external event in that case.

Policy delete-when-supertype-deletion repairs a specialization violation induced by
a deletion from the supertype by performing a deletion of the involved entity from the
subtype and restrict-when-supertype-deletion rejects the external event.

Application to an example. Consider the taxonomy of Fig. 1.
{disjoint: delete-when-subtype-insertion,
gl complete: delete-when-subtype-deletion}
{disjoint: delete-when-subtype-insertion,

complete: delete-when-subtype-deletion, | Employed | |Unemployed|
insert-in-temporary-when-supertype-insertion} o2

Temporary Permanent

Fig. 1 Example of taxonomic constraint enforcement policies

In the following, we show how to repair the Substitution external event according
to the policies specified in the taxonomy of Fig. 1. Assume an IB at time / containing:
{Person(Pere,l), Person(Maria, 1), Employed(Pere, 1), Permanent(Pere, 1),
Unemployed(Maria,1)}. The event induces the following violations: 1) the insertion
of Maria as employed induces the violation of the covering constraint g2. Then,

according to its declared policy, Insert Temporary(Maria,2) is included in the
external event. 2) The insertion of Maria as employed also induces the violation of
the disjointness constraint g/. Due to its policy, Delete Unemployed(Maria,2) is
added. 3) The deletion of Pere as employee induces the violation of the covering
constraint g/. According to the delete-when-subtype-deletion policy,
Delete Person(Pere,2) is included in the external event. 4) The deletion of Pere as
employee also induces the violation of the specialization constraint Permanent IsA
Employed. A default policy, delete-when-supertype-deletion, is applied adding
Delete_Permanent(Pere,2). Summing up, the resulting external event is:
{Insert_Employed(Maria,2), Delete Employed(Pere,2), Insert Temporary(Maria,2),
Delete_Unemployed(Maria, 2), Delete_Person(Pere,2), Delete_Permanent(Pere,2))}.

This example illustrates that the designer may omit the needed repair actions
because they can be obtained from the declared enforcement policies.

4. Conclusions and future work

We have proposed a set of predetermined policies for the enforcement of taxonomic
integrity constraints. These policies are declaratively specified in the structural part of
the conceptual schema by stating the kind of enforcement to apply when a certain
type of structural event violates a taxonomic constraint.

Our approach facilitates conceptual modelling since taxonomic constraint
enforcement must not be spread along all the events that may violate an integrity
constraint. Moreover, it has a positive impact on the understandability and
modifiability of conceptual schemas. In this way, we overcome the limitations of
previous proposals for the specification of taxonomic constraint enforcement.

Further work may include the enforcement of other integrity constraints. We could
also define a UML Profile for these policies and incorporate them in a CASE tool.

References

1. Baralis, E.; Ceri, S.; Paraboschi, S. “Declarative Specification of Constraint Maintenance”,
In Proc. ER 1994, LNCS 881, pp. 205-222.

2. Bertino, E.; Guerrini, G. “Extending the ODMG Object Model with Composite Objects”, In
Proc. of ACM SIGPLAN, 1998, pp. 259-270.

3. Costal, D.; Gémez, C.; Teniente, E. “Declarative Taxonomic Constraint Enforcement in
Conceptual Schemas (Extended Version)”, Technical Report UPC, LSI-05-8-R.

4. Etzion, O.; Dahav, B. Patterns of Self-stabilization in Database Consistency Maintenance”,
In DKE 1998, pp. 299-319.

5. Gertz, M. “Specifying Reactive Integrity Control for Active Databases”, In Proc. of the
IEEE RIDE-ADS, 1994, pp.62-70.

6. Olivé, A. "An Introduction to Conceptual Modeling of Information Systems". In Advance
Database Technology and Design,(Piattini,M; Diaz,O. Eds.), Artech House, 2000, pp. 25-57.

7. Olivé, A.; Teniente, E. “Derived Types and Taxonomic Constraints in Conceptual
Modeling”, In Information Systems, vol. 27, no. 6, Sept. 2002, pp.365-389.

8. Schewe, K.D.; Thalheim, B. “Towards a Theory of Consistency Enforcement”, In Acta
Informatica, vol. 36, 1999, pp. 97-141.

